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Abstract: Pulmonary Fibrosis (PF) is a non-curable chronic lung disease. Therefore, a quick and
accurate PF diagnosis is imperative. In the present study, we aim to compare the performance of the
six state-of-the-art Deep Transfer Learning techniques to classify patients accurately and perform
abnormality localization in Computer Tomography (CT) scan images. A total of 2299 samples
comprising normal and PF-positive CT images were preprocessed. The preprocessed images were
split into training (75%), validation (15%), and test data (10%). These transfer learning models were
trained and validated by optimizing the hyperparameters, such as the learning rate and the number
of epochs. The optimized architectures have been evaluated with different performance metrics
to demonstrate the consistency of the optimized model. At epoch 26, using an optimized learning
rate of 0.0000625, the ResNet50v2 model achieved the highest training and validation accuracy
(training = 99.92%, validation = 99.22%) and minimum loss (training = 0.00428, validation = 0.00683)
for CT images. The experimental evaluation on the independent testing data confirms that optimized
ResNet50v2 outperformed every other optimized architecture under consideration achieving a perfect
score of 1.0 in each of the standard performance measures such as accuracy, precision, recall, F1-score,
Mathew Correlation Coefficient (MCC), Area under the Receiver Operating Characteristic (ROC-
AUC) curve, and the Area under the Precision recall (AUC_PR) curve. Therefore, we can propose
that the optimized ResNet50v2 is a reliable diagnostic model for automatically classifying PF-positive
patients using chest CT images.

Keywords: pulmonary fibrosis; transfer learning techniques; ResNet50v2; chest computed tomogra-
phy; classification and detection

1. Introduction

Pulmonary fibrosis is a chronic progressive interstitial lung disease that causes per-
manent damage to the lung, affecting normal lung function and eventually leading to
death [1]. Currently, the pathogenesis of PF needs to be discovered, and it is impossible
to be cured. Therefore, the essential purpose of treating this disease is to control and slow
down the deterioration and progress of PF and thereby prolong the life of patients. For
conditions like PF, an earlier diagnosis and early interventional treatment are of great
significance in increasing the survival time of PF patients. Therefore, a quick and accurate
PF diagnosis is imperative [2]. Clinically diagnosing PF involves lung function tests, tissue
biopsy, and imaging. The accuracy of diagnosing PF using lung imaging techniques relies
on the relevant precision of the radiology imaging equipment.
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Moreover, the experience and knowledge of the radiologist and clinicians are also
limiting factors in the diagnosis of PF using imaging techniques. Even for the same cases,
different pulmonologists have different diagnostic decisions on this disease [3,4]. In clinical
practice, the diagnosis of PF using a chest X-ray examination is one of the most cost-effective
and standard medical imaging examinations. In critical cases, computed tomography (CT)
runs a series of body scans that are pooled to generate a three-dimensional X-ray image
that is analyzable using a computational device to confirm the diagnosis performed using
X-ray images. Multiple CT scans are required for lung diseases that develop rapidly, such
as PF. Therefore, CT scans are exceedingly costly, time-demanding, and perhaps harmful to
the patient as they use radiation.

Therefore, there is a diagnostic call for an artificial intelligence-based decision system
capable of rapid and accurate classification and detection of PF. Implementing AI in PF
diagnostics includes applying deep learning (DL) to make predictions from medical images
by extracting features (relevant information) such as shape and three-dimensional rotation
from the human chest images. The DL consists of a multi-layer image learning architecture.
The input images stimulate the initial layer of neurons via a sensor, which sequentially
enables the subsequent layer using complex connections. The individual layers in DL archi-
tecture process the input images in a non-linear fashion, producing a progressively intricate
schema of image classification and detection [5,6]. Object detection in a convolutional
neural network (CNN) involves transmitting information across multiple convolutional
layers, enabling the detection of patterns such as lines, corners, and edges to shape and,
finally, the object. The final layer predicts the image class possibilities, defining the most
relevant and informative feature class [7].

In this context, deep transfer learning-based methods are a popular way to gener-
ate image representations and have been used in medical image analysis [8]. In transfer
learning, a deep, pre-trained CNN model’s remarkable feature extraction competence can
be transferred by fine-tuning the network on the target dataset for several epochs. These
pre-trained models avoid overfitting when trained on the smaller target image dataset, as
the CNN architectures are often pre-trained on large labeled image datasets, including
1000 categories. Therefore, fine-tuning is much faster on a smaller target medical image
dataset with fewer categories to classify on a personal computer or standard laptop. With
the success of the AlexNet [7], many pre-trained CNN models have been created, namely
Dense Network (DenseNet) [9], Visual Geometry Group (VGG) [10], Residual Network
(ResNet) [11], Mobile Network (MobileNet) [12], Efficient Network (EfficientNet) [13],
Extreme Inception (Xception) [14], Inception Residual Network version 2 (InceptionRes-
NetV2) [15], Residual Network 50 Version 2 (ResNet50v2) [16], etc. In recent years, transfer
learning has progressed to the extent that it can be used in various fields, such as biomet-
rics [17], cloud computing [18], renewable energy [19], agriculture [20], and health [21].
Recently, many researchers have developed many systems based on deep transfer learning
and machine learning in medical imaging to diagnose various human ailments, certifying
smart healthcare automatically.

In this context, an efficient novel CGENet (COVID-19 Graph Extreme learning machine
Network) tool to assist COVID-19 diagnosis was developed [22]. First, an optimal backbone
selection algorithm was employed to select the best pre-trained transfer learning-based
architecture. Then, the optimal backbone architecture was modified into a graph neural
network for feature extraction. Finally, extreme machine learning as a classifier was used to
classify and detect COVID-19 in the chest CT images. The findings show that the CGENet
achieved state-of-the-art classification performance in classifying COVID-19.

Similarly, a deep learning technique based on the combination of a CNN and long
short-term memory (LSTM) was developed to efficiently and effectively diagnose COVID-
19 automatically from X-ray images [23]. Moreover, Batch normalized AlexNet, an extreme
learning machine and chaotic bat algorithm (BN-AlexNet-ELM-CBA), another novel ab-
normal brain detection technique for magnetic resonance image (MRI), was developed
to obtain an enhanced classification accuracy to classify abnormal brains [24]. Experi-
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ment results showed that the BN-AlexNet-ELM-CBA method achieved state-of-the-art
performance in the brain MRI classification task.

Likewise, deep CNNs have been critical in extracting vital information and pattern
recognition that facilitate the prediction and detection of Lung disease [25]. The deep
pre-trained transfer learning-based diagnostic tool will accelerate the diagnosis of PF and
reliably detect minute details that human vision may miss, which is of immense value to
the diagnosis and prognosis of lung patients. Moreover, the objective judgment of a deep
pre-trained transfer learning-based decision-making system will have a significant effect
on correcting subjective errors by clinicians and radiologists.

In this regard, in our study, the PF disease’s feature was extracted and detected using
six popular Deep CNN models, such as VGG-19, DenseNet121, Xception, InceptionRes-
NetV2, ResNet50v2, and InceptionResNetV2, pre-trained on the ImageNet dataset. The
chest CT images comprising normal and PF-positive CT images were collected from multi-
ple sources. The structures of the six deep transfer learning model architectures need to
be modified as per our dataset. Since there are only two classes of samples (fibrosis and
normal images), the dimension of the output vector was set to two, and a sigmoid function
was used as classifier activation. The pre-trained models were optimized for the learning
rate and the number of epochs. After fine-tuning the optimized models’ hyperparameters
on the training and validation data, the best-performing model was selected by comparing
the overall accuracy and loss function values. Upon fine-tuning the hyperparameters, the
ResNet50v2 model yielded the best accuracy and minimum loss. Therefore, the disease’s
features of PF can be easily and quickly detected using the ResNet50v2 model, allowing
for a quicker and more accurate diagnosis and detection of fibrosis from the chest CT scan
slices. The main contributions and the novel aspects of this study are as follows:

1. We applied different intrinsic and extrinsic regularization techniques during the
training of the DNN model to decrease the generalization error, thereby avoiding
overfitting the model on the training and validation data.

2. We have applied on-the-fly augmented image data and active learning using the
Augmented Queue method during the training and validation of the transfer learning
models to classify PF-positive CT scan images.

3. The optimized CNN architectures of the six state-of-the-art pre-trained deep transfer
learning models, including VGG-19, DenseNet121, Xception, InceptionResNetV2,
ResNet50v2, and InceptionResNetV2, were used to classify PF and Non-PF images to
increase the precision of classification and detection of PF using chest CT scan slices.

4. The robustness of the pre-trained Deep CNN models was further estimated using
accuracy, recall, precision, MCC, F1-score, ROC_AUC, and AUC_PR value on the
independent test data.

5. Grad-CAM heatmap of the last layer of the best-performing model (ResNet50v2) was
generated to represent the region of interest (tissue scarring regions) in PF-positive
CT scan slices.

6. An improved PF diagnosis system was developed based on hyperparameters opti-
mization, namely learning rate and a maximum number of epochs, to achieve the
highest degree of diagnostic accuracy for PF classification using chest CT scan slices.

7. The experimental results show that the ResNet50v2 model with optimized hyper-
parameters achieves higher PF diagnostic accuracy than other Deep CNN models
previously published by researchers for analyzing the same problem.

The operating framework of the present study to classify PF images and detect fibrosis
regions in PF-positive images is shown in Figure 1. The remainder of the paper is ordered
in the following way. Section 2 reviews the performances of the previous research on PF
diagnosis using some of the DL-based PF classification and detection methods. Section 3
describes the process of data collection, pre-processing, and procedures related to preparing
the image datasets before supplying the data to the pre-trained Deep CNN model. Section 4
covers the details of the chosen pre-trained transfer learning models and their evaluation
procedures. Section 5 discusses the experiment finding and compares our results with the
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other published work. Finally, Section 6 highlights points of our current research findings
and makes endorsements for future research.
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Figure 1. Workflow outlining the framework for classifying and detecting Pulmonary Fibrosis in
chest CT scan slices.

2. Literature Review

The capacity of the deep learning-based CNN model to identify anomalies in chest
CT scans and X-ray images has gained importance in the last few years. Deep pre-trained
transfer learning CNN architectures are being used to facilitate diagnosis in medical re-
search, and some studies have presented positive and accurate results. The DL approaches
used by past researchers to diagnose and detect PF disease are reviewed.

In 2017, the NIH Clinical Center released the chest X-ray 14 dataset, which had more
than 100,000 chest X-ray images and the corresponding labels, for use by researchers
worldwide [26]. The publicly available chest X-ray 14 dataset contained images of 14 lung
diseases, including emphysema and fibrosis. Li et al. [27] used the Inception-ResNet v2 on
the chest X-ray 14 dataset to predict lung fibrosis with 93% accuracy. Shamrat et al. [28]
classified multiple lung-disease X-ray images that include X-ray images of lung fibrosis
collected from various resources, namely GitHub, Kaggle, and NIH Clinical Center, and
the detection of various lung diseases, including PF. LungNet22 architecture was proposed
based on the primary architecture of the pre-trained VGG16 transfer learning model. An
optimization study was performed to determine the optimum value of important hyper-
parameters. Using the Adam Optimizer, the proposed model with tuned hyper-parameters
yielded a higher accuracy of 99.78% for classifying PF from control normal X-ray images.
Souid et al. [29] proposed a modified MobileNet V2, a Deep CNN model, to classify and
predict lung pathologies such as PF from the frontal thoracic X-ray images. The paper’s
findings show that the authors could classify PF-positive X-ray images with an accuracy
of 96.6%, a sensitivity of 47.2%, a specificity to screen the normal chest X-ray images was
99.1%, an F1-score of 65.2%, and AUC value of 0.762. Bharati et al. [30] propose a novel
hybrid learning framework named VGG Data spatial transformer network (STN) with
CNN (VDSNet) by combining VGG, STN, and data augmentation with CNN. The VDSNet
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showed a validation accuracy of 73% in classifying lung diseases. Baltruschat et al. [31]
compared different DL architectures to classify multi-label Chest X-Ray. The authors
reported that X-ray-specific Res-Net-38 produced the best overall results in classifying
fibrosis with an AUC value of 80.0± 0.9. Li et al. [32] used the ResNetv2 architecture
to classify and localize the region of abnormality with only a small amount of fibrosis
location information. Kim et al. [33] compared DL with shallow learning (SL) for pattern
classification. In their approach, only increasing the number of convolutional layers in
the proposed CNN architecture (four convolutional layers and two fully connected layers)
significantly enhanced the classification accuracy from 81.27 to 95.12%.

Moreover, the misclassification rate between unclear cases such as HC/RE or NL/EM
was also lowered, emphasizing that a higher complexity of DL methods is required for
better PF pattern classification. Wang et al. [34] reported with ResNet-50 using the ChestX-
ray14 database to classify thoracic diseases such as PF, and testing image data produced an
AUC value of 0.7859. Wang et al. [35] proposed a CNN algorithm centered on multi-scale
rotation-invariant. The authors used a filter named Gabon that can examine the specific
frequency and directions in a confined region, making it similar to the human visual cortex.
The proposed algorithm achieved an accuracy of up to 90% for classifying PF patterns,
such as GO and MN. Anthimopoulos et al. [36] proposed the first CNN to classify the
most common PF patterns (consolidation (CD), micronodules (MN), reticulation (RE),
ground glass opacity (GGO), a combination of GGO/reticulation and honeycombing (HC))
from healthy chest CT images (14,696 image patches, derived from 120 CT scans images
obtained from various hospitals) attaining accuracy of 85.5%, therefore demonstrating the
recognition capacity of CNNs for detecting lung patterns. The performances obtained
by the previous investigators by employing various Deep CNN model to classify PF is
summarized in Table 1.

Therefore, based on the previous studies and their corresponding limitations, as
tabulated in Table 1, encouraged us to propose our optimized and improved transfer
learning network to automatically classify PF-positive CT scan slices from normal chest CT
scan images with the highest degree of diagnostic accuracy.

Table 1. A list of related studies on PF classification and their corresponding advantages and
limitations.

Reference Year
Data
Type Model

Learning
Rate (LR)

Performance
Measures Advantages Limitations

Accuracy AUC

Li et al. [27] 2022 X-ray
Inception-

ResNet
v2

Optimized
model LR

not
provided

0.930 NA

Attention-U-Net
plus Inception-

ResNet
pulmonary

fibrosis
prediction model

to provide
appropriate

predictions on
the X-ray images.

The inadequate
amount of
computing,

power, and data
obtained for

training,
therefore, the

complexity of the
model, has room
for optimization.
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Table 1. Cont.

Reference Year
Data
Type Model

Learning
Rate (LR)

Performance
Measures Advantages Limitations

Accuracy AUC

Shamrat et al.
[28] 2022 X-ray LungNet22

Optimized
model LR
(0.000001)

0.9978 0.969

The research
shows that

image
processing,

enhancement,
and class
balancing
methods

improve the
model’s

performance.

Cross-validation
was not used to

confirm the
robustness of the

results
and

Disease
Localization
accuracy not

presented

Souid et al. [29] 2021 X-ray MobileNet V2

Optimized
model LR

not
provided

0.966 0.762

The optimized
MobileNet V2

architecture with
an additional

Global Average
Pooling layer

and one dense
layer attains

state-of-the-art
results in six out

of fourteen
classes in the

NIH
Chest-Xray-14

database.

An AUC and
F1-Score value of

only 0.762 and
0.652,

respectively, for
the classification
and detection of
fibrosis disease,
and the model

shows a diverse
performance for
different classes.

Bharati et al.
[30] 2020 X-ray VDSNet

Optimized
model LR

not
provided

0.5858 NA

The VDSNet, a
hybrid deep

learning network
combining VGG,

data
augmentation,

and spatial
transformer

network (STN),
outperformed
existing CNN

methods to
predict lung
diseases on

complete and
sample datasets

comprising tilted,
rotated, or other

abnormal
orientated lung
disease X-ray

images.

The present
research work

faces challenges
when handling

large-scale
datasets.

Moreover, the
confidence score
for the detection
of fibrosis is only

58.58%
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Table 1. Cont.

Reference Year
Data
Type Model

Learning
Rate (LR)

Performance
Measures Advantages Limitations

Accuracy AUC

Baltruschat
et al. [31] 2019 X-ray Res-Net-38

Optimized
model LR

not
provided

NA 0.816

The optimized
ResNet-38-large

meta-
architecture

achieves
state-of-the-art

results in five out
of fourteen

classes in the
NIH

Chest-Xray-14
database.

Only considered
X-ray images

and Model
shows a diverse
performance for
different classes.

Li et al. [32] 2018 X-ray ResNet-v2

Optimized
model LR

not
provided

- 0.79

Disease
classification and

localization of
abnormality with

only a small
amount of

disease location
information

An AUC value of
only 0.79 for the
classification and

detection of
fibrosis disease

Kim et al. [33] 2018 CT

CNN
architecture (4
convolutional

layers and
two fully

connected
layers)

LR not
included in
the study

0.9512 NA

Using a CNN
classifier with a

deep architecture
showed

significantly
better accuracy
than the SVM

classifier by 6–9%
to classify the

patterns of
interstitial lung
diseases (ILDs).

Small training
dataset.

Wang et al. [35] 2018 CT CNN’s
LR not

included in
the study

0.90 NA

Multi-scale
Rotation-
invariant

Convolutional
Neural Network
(MRCNN) model

for classifying
various lung
tissue types,
especially

EMPHYSEMA

The model’s
ability to classify

fibrosis and
micronodules is
slightly worse

than other lung
diseases and the

small training
and validation

dataset
employed.
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Table 1. Cont.

Reference Year
Data
Type Model

Learning
Rate (LR)

Performance
Measures Advantages Limitations

Accuracy AUC

Wang et al. [34] 2017 X-ray ResNet-50

LR for the
final round
of iterations

(0.00001)

NA 0.786

Building
hospital-scale

radiology image
databases

(ChestX-ray8)
with

computerized
diagnostic

performance,
benchmarks

were
not addressed till

this study.

An AUC of only
0.7862 for the

classification and
detection of

fibrosis disease.

Anthimopoulos
et al. [36] 2016 CT CNN’s

Default LR
value
(0.001)

0.8561 NA

The study was
the first Deep

CNN designed
to analyze and

classify ILD
patterns.

135 HRCT scans
of ILD cases

(Small training
dataset).

3. Materials and Methods
3.1. Transfer Learning Pipeline for PF Diagnosis and Detection

The PF disease’s patterns may be quickly and accurately detected using various pre-
trained transfer learning Deep CNN models, allowing for a more accurate diagnosis of PF.
Therefore, in the present context, the following transfer learning-based methodology has
been followed to classify PF images and detect fibrosis regions in PF-positive images.

1. The raw chest CT scan Digital Imaging and Communications in Medicine DICOM)
image data of PF-positive patients and masked images of normal lungs were collected
from multiple data sources and merged into a collective dataset. preprocessing of CT
scan images of each class was performed to ensure that both groups of images were
on the same scale.

2. Image segmentation is executed using TensorFlow and Keras packages that involve:

• Image normalization
• Clustering and image thresholding
• Erosion and Dilation
• Masking of the Region of Interest (ROI)
• Applying masked images to the original lung images
• During the training phase, perform extrinsic (dropout rate) and intrinsic (aug-

mentation and early stopping) regularization techniques to avoid overfitting the
models on the training data.

3. Due to a limited dataset for each class, a novel augmentation queues method was used
to generate more similar images for each category. In addition, to enhance the training
data, various transformation strategies, such as flipping, shifting, rotation, zoom,
shear transformation, channel shift, and brightness, were used under a specific range.

4. Adam’s optimizer was used to optimize the learning rate of the six pre-trained models.
5. The performance of the six pre-trained transfer learning models, namely VGG-19,

DenseNet121, Xception, InceptionResNetV2, ResNet50v2, and InceptionResNetV2, at
an optimized learning rate was compared to screen the best-performing model for
classifying PF images from Normal chest CT images. In addition, the accuracy and
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loss function for each pre-trained model was also used to estimate the performance
after training completion of the six transfer learning models.

6. To justify the robustness of the model, the pre-trained Deep CNN model’s accuracy,
recall, precision, MCC, F1-score, ROC_AUC, and AUC_PR value were estimated on
the independent test data.

7. Grad-CAM of the last layer of the best-performing model (ResNet50v2) was generated
to represent the visual description of fibrosis by the best-performing model.

8. The best-performing model performance is compared with other Deep CNN models
published previously by researchers for analyzing the same problem (PF images).

Figure 2 demonstrates a comprehensive overview of the proposed framework for
screening optimized deep CNN models that will be used to classify and detect PF in chest
CT images.
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Figure 2. Illustration to show the main structure of the proposed system to screen optimized deep
transfer learning models to classify and detect PF from chest CT images.

Pseudocode of the Proposed Method

To further explain the proposed method to screen optimized deep transfer learning
models to classify and detect PF from chest CT images, the following pseudocode is
presented in Figure 3:
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learning model for PF diagnosis using chest CT images.

3.2. Dataset

In the study, chest CT scan images were collected from two sources. First, the PF pa-
tients’ baseline CT scan images in DICOM format were downloaded from Kaggle (https://
www.kaggle.com/code/digvijayyadav/lung-fibrosis-dicom-image-preprocessing/data (as-
sessed on 11 June 2022)). The pre-processed masked normal (control group) chest CT
scan images were obtained from GitHub (https://s3.ca-central-1.amazonaws.com/ubccic.
covid19.models/L3netDemoData.zip (assessed on 11 June 2022)). The collection consists of
two classes of chest CT scan images: control (829 normal images) and Pulmonary Fibrosis
(1470 images). A sample of the raw unprocessed image data of each class is shown in
Figure 4a,b. The total chest CT scan images were divided into three groups according to
75:15:10 split across the training, validation, and test sets. Table 2 contains information on
the distribution of CT scan slices belonging to each class in the training, validation, and
test data.

https://www.kaggle.com/code/digvijayyadav/lung-fibrosis-dicom-image-preprocessing/data
https://www.kaggle.com/code/digvijayyadav/lung-fibrosis-dicom-image-preprocessing/data
https://s3.ca-central-1.amazonaws.com/ubccic.covid19.models/L3netDemoData.zip
https://s3.ca-central-1.amazonaws.com/ubccic.covid19.models/L3netDemoData.zip
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Figure 4. (a,b). Data samples from the combined chest CT scan image dataset (a) show Pulmonary
Fibrosis chest CT image slices, and (b) show normal chest CT image slices.

Table 2. Details of the distribution of chest CT images in each class and across the training, validation,
and testing data.

Class Training Data Validation Data Test Data Total

Normal 651 61 117 829
Pulmonary Fibrosis 1107 135 228 1470

Total 1758 196 345 2299

3.3. Data Preprocessing

In the present study, the raw patient CT scan images in DICOM format need to be
pre-processed to make the CT images compatible with the pre-trained Deep CNN models.
The data pre-processing steps employed in the present study are as follows: changes in
the input image data type to improve the type, quality, and consistency of the CT images,
resizing and normalizing the input chest CT scan slices. However, the number of CT scan
data of PF-positive and Normal samples is limited. Therefore, in the present study, data
augmentation was performed to resolve the issue of limited data for training the considered
Deep CNN models.

Initially, the input images were transformed to Hounsfield units (HU) scale values.
Then, the windowing technique was applied by selecting a window level of −650 HU
and a window width of 1700 HU to highlight clinically relevant lung features (structures)
significant for the current study. Next, lung segmentation was performed on the chest CT
scan slices to extract the Region of Interest (ROI). The training of the Deep CNN algorithm
on the extracted ROI enables the Deep CNN to learn and perform better on the segmented
images than on the whole chest lungs. The process of segmentation is executed using
TensorFlow and Keras packages that involve steps such as:

1. Image normalization: Performed by standardizing the pixel value by deducting the
average pixel value and dividing by the standard deviation (SD).

2. Clustering and image thresholding: Separation of lungs from the entire scan using
the K-Mean clustering technique. Then, identify the best threshold to create a binary
image (foreground image (soft tissue/bone) and background (lung/air)).
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3. Erosion and Dilation: The morphology technique was employed to morph CT scan
images by using erosion (contraction) followed by dilation (expansion) to remove tiny
features like pulmonary vessels or noise and label each scan region differently with
distinct colors.

4. Using bounding boxes for each image label, identify a label representing the lung and
another bounding box representing “everything else.”

5. After just the lungs are left, we perform another morphology-based dilation to apply
a lung mask only on the lung field and apply a masked lung on the original image to
get the final masked lung image.

The overall process of segmentation involving the steps mentioned above is illustrated
in Figure 5.
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Figure 5. Pictorial representation of the segmentation steps used to generate the final masked chest
CT image.

Further, in the present study, six different transfer learning models (VGG-19,
DenseNet121, Xception, InceptionResNetV2, ResNet50v2, and InceptionResNetV2) em-
ployed for the binary classification task require specific input image sizes. Therefore, during
the transfer learning process, the image size of the original input images is resized from
(512, 512, 3) to (135, 135, 3) pixels, as represented in Figure 6.

The pre-trained models can learn and classify input images based on the class labels
(PF and Normal). Therefore, individual image data in the training, validation and testing
dataset were labeled accordingly for each class. Furthermore, we used the one-hot encoding
technique to generate a column for the two categories; an instance (image data) in the
column will be given a “1” if the example in question has been labeled fibrosis; otherwise,
a “0” for normal chest CT images.
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3.4. Transfer Learning Models

Six pre-trained models, including Inception-v3, DenseNet121, VGG-19, Xception,
InceptionResNetV2, and ResNet50v2, were evaluated to identify the most efficient transfer
learning DEEP CNN models for the classification and detection of PF from chest CT
scan images.

3.4.1. Inception-v3

Inception-v3 [37] is a pre-trained convolutional neural network from the inception
family that consists of 48 layers deep to classify 1000 object categories, such as pencil, mouse,
many animals, and keyboard. The network requires an input image size of 299 × 299 pixels.
The Inceptin-V3 uses Factorized 3 × 3 convolutions, label smoothing, asymmetric convo-
lution (a 3 × 3 convolution can be substituted by a 1 × 3 convolution followed by a 3 × 1
convolution), use of an auxiliary classifier as a regularizer, and grid size reduction per-
formed using pooling operations. The Inception-v3 uses batch normalization throughout
the model and is utilized for activation inputs. The loss in Inception-v3 is estimated using
the SoftMax function.

3.4.2. DenseNet-121

A DenseNet-121 [9] is a feed-forward CNN where each layer gets additional inputs
from all previous layers and passes on its feature maps to the subsequent layer. The
DenseNet-121 employs Dense Blocks to establish a direct connection between all layers
with matching feature map sizes. In addition, the DenseNet-121 algorithm uses the SoftMax
function for classifier activation. The denseNet-121 network requires an input image size
of 224 × 224 pixels.

3.4.3. VGG-19

VGG-19 [10] is a CNN model comprising 19 layers deep with 16 convolution layers
used for feature extraction and three fully connected layers for classifying images into
1000 object categories. Moreover, the VGG-19 employs five MaxPool layers for the down-
sampling feature map and a SoftMax layer for classifier activation. The VGG-19 is one of
the most popular methods for classifying images, as the network architecture of VGG-19
uses multiple 3× 3 filters in each convolutional layer. In addition, the VGG-19 network
requires an input image size of 224 × 224 pixels.

3.4.4. Xception

Xception [14] is a convolutional neural network that comprises 71 layers. Xception is
extreme inception, where depth-wise separable convolutions have substituted the inception
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modules. Xception initially uses the filters on each depth map and eventually constricts,
using 1 × 1 convolution, the input space by employing it throughout the depth. The absence
of non-linearity after the first operation distinguishes it from the inception architecture. The
Xception network requires an image input size of 299 × 299 pixels. The Xception model
uses the SoftMax function for classifier activation.

3.4.5. Inception-ResNet-v2

Inception-ResNet-v2 [15] is a CNN model built on the inception network architecture
and involves residual connection instead of the filter concatenation feature of the inception
network architecture. Moreover, the Inception-ResNet-v2 architecture is 164 layers deep
and can classify images into 1000 object categories. The Inception-ResNet-v2 network
requires an image input size of 299 × 299 pixels. The Inception-ResNet-v2 model uses the
SoftMax function for classifier activation.

3.4.6. ResNet50 v2

ResNet50 v2 [11,16,38], short for Residual Networks 50 version 2, is a classic neural
network (NN) 50 layers deep and is used as a fundamental principle for various computer
vision tasks. ResNet50 v2 is derived from the original ResNet 50 network. The actual
invention of ResNet architecture was that it permitted the researchers to successfully train
very deep neural networks (DNNs) with more than 150 layers. Before ResNet, training
data with very DNNs was problematic because of dying gradients. The problem was
addressed by implementing a deep residual learning framework. So, shortcut connections
that perform identity mappings were introduced to implement deep ResNet. The advantage
of these shortcut identity mapping was that no extra parameters were supplemented to
the model, and the computational time was also kept in check. Figure 7a shows the
architecture of a Residual Block of a ResNet, and Figure 7b shows the architecture of
ResNet50V2 (https://keras.io/api/applications/resnet/#resnet50v2-function, accessed on
1 December 2022)
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The residual unit estimates the function F(x) by processing x across the two layers as
represented in Figure 7a [Resnet equations n.d. https://shuzhanfan.github.io/2018/11/
ResNet/ (accessed on 11 December 2022)] and H(x) is estimated employing Equation (1):

H(x) = RELU(F(x) + x) (1)

ResNet50 v2 focuses on forwarding the addition function’s output between the resid-
ual and identity mapping. In ResNet 50 v2, the final non-linearity does not happen, leading
to an identity connection between the input and output. Instead, ResNet50 v2 utilizes batch
normalization and Rectified Linear Unit (ReLU) activation to the input before multiplying
with the convolution operation (weight matrix). The ResNet50 v2 network requires an
image input size of 224 × 224 pixels. A detailed architecture of the ResNet50 v2 is shown
in Supplementary Figure S1.

3.5. Preparation for Training the Processed Image Data

The training and validation parameters chosen for the six-transfer learning-based
Deep CNN model under consideration in the present study are tabulated in Table 3.

Table 3. Training and validation parameters of the six-transfer learning deep CNN models.

Packages Transfer Learning
Model

Resized
Image
Size

No. of
Epochs Optimizer Weight Loss

Function Minibatch
Learning

Rate
Optimization

Tensor
Flow and

Keras

VGG-19

135 × 135 50 Adam
Binary
cross

entropy
64 0.01 to

0.000001

InceptionV3
Xception ImageNet

ResNet50v2
InceptionResNetV2

DenseNet121

To generalize the pre-trained models on the fibrosis region masked CT images, the
DNN models should stay balanced during training and validation. Deep CNN model
overfitting happens when a very deep CNN model is fitted on the training data, and the
DNN is unsuccessful in generalizing new image data [39]. However, regularization can
solve the overfitting problem in the DNN model. Regularization applies amendment to a
training DNN model that decreases the generalization error, perhaps at the cost of higher
training error [40]. The regularization is of two types: explicit and implicit.

Explicit regularization involves adjustments in the DNN architecture that can confide
the capability of the DNN. Standard explicit regularization uses approaches such as dropout
rate. The dropout rate is a regularization technique that avoids over-fitting the DNN model.
In dropout during training, few neurons in the hidden layers are arbitrarily disconnected.
Therefore, training occurs on diverse neuron combinations of several network architectures,
and the output of many networks derived from the original network is utilized to give the
final result. In this study, we used a dropout rate of 0.5.

However, implicit regularization is employed during the training without confining
the capabilities of the DNN model. Implicit regularization is of two types: early stopping
and data augmentation. Early stopping is the end of the training process whensoever there
is an increase in the generalization error (difference between the training and the validation
error). We used early stopping to avoid overfitting because of a vast data load in the
step per epoch. Data augmentation generates new training sample data from the original
by employing image transformations using various artificial image synthesis methods.
In the present study, to perform the binary classification of the input chest CT images,
the pre-trained transfer learning models are retrained by updating fully connected layers
according to the input-labeled masked image data. Pre-trained deep CNN models require
a large amount of labeled training image data, which enables the deep CNN models to

https://shuzhanfan.github.io/2018/11/ResNet/
https://shuzhanfan.github.io/2018/11/ResNet/
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learn all the details and variations in the images for improved learning performances and
enhanced generalization. Augmentation is applied to an image dataset to increase the
size of the dataset by artificially generating variation in the input image data. Using data
augmentation during training, the DNN is trained and validated on continuously changing
versions of the input-masked images, allowing the DNN to have effective learning and
more robust features [41]. Note that the labels of the augmented images will be the same as
those of the original input mask images. In this study, we have applied a novel Augmented
Queue method [42] to yield images on-the-fly during deep CNN model training and
validation. The augmented queue method addresses the dual problem (limited data and
class imbalance) by performing on-the-fly data augmentation, a multi-queue memory
to keep separate and balanced queues for each class, and active online learning. Thus,
to enhance the training and validation of image data, augmentation operations such as
flipping, rotation, shifting, zoom, shear transformation, channel shift, and brightness were
performed under a specific range, as shown in Figure 8.
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3.6. Learning Rate Optimization of the Transfer Learning Models

Finally, the learning rate (LR) is one of the essential hyperparameters that find the
jump amplitude in an individual iteration. If the LR is very low, it will take a lengthy
convergence time. On the contrary, if the LR is very high, then convergence time can
diverge [43]. The present study optimized the learning rate for the six-transfer learning
models during training. The learning rate is initiated from 0.001 and is multiplied by a factor
of 0.50 whenever the generalized error rises, and the models are trained for 50 epochs. The
dropout rate is set to 0.5, and the augmentation parameters are defined as aforementioned.
We optimized the learning rate using the Adam optimizer, and the performances of the
trained models with the optimized learning rate were compared based on the following
metrics: training/validation accuracy and training/validation loss. The validation accuracy
is characterized as “Val_Acc.” The validation loss is labeled as “Val_Loss.” The training
accuracy is labeled as “Train_Acc.” The training loss is depicted as “Train_Loss.”

3.7. Performance Matrix for Classification Evaluation

For a robust performance evaluation, the six pre-trained networks were also evaluated
on the independent 10% test data based on the following parameters: accuracy (acc),
sensitivity (Sens), precision, MCC, F1-score, AUC, and AUC_PR.

Accuracy =
(TP + TN)

(TP + TN) + (FP + FN)
(2)

Sensitivity =
(TP)

(TP + FN)
(3)

Specificity =
(TN)

(FP + TN)
(4)

Precision =
(TP)

(TN + FP)
(5)

F1 score =
(2 × TP)

(2 × TP + FN + FP)
(6)

In the above equations, while classifying PF patient’s CT scan images from the normal
CT images after the conclusion of the training phase, the true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) were used to denote the number of PF
positive images classified as PF positive images (TP), the number of normal CT images
classified as normal CT images, the number normal CT images incorrectly classified as
PF positive images, and the number of PF positive images incorrectly classified as normal
images, respectively.

3.8. Abnormality Localization Using Gradient Weighted Class Activation Mapping (Grad-CAM)

Researchers in the past have performed experiments to increase the viability of deep
learning applications in solving medical problems. Therefore, it is vital to enhance the
localization of abnormality in lung CT scan images by the deep neural models in various
deep learning applications for medical imaging-based diagnosis of PF. Selvaraju et al. [44]
proposed a Gradient Weighted Class Activation Mapping (Grad-CAM) method. Grad-
CAM visualizes densely linked neural networks. Visualization allows the determination
of the model’s extra information when performing prediction or classification processes.
After completing the training stage, the last layer of the best-performing (highest training
and validation accuracy and the lowest training and validation loss) transfer learning deep
CNN model was used to detect abnormality regions in chest CT scan images of PF-positive
cases using Grad-CAM.
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4. Results

In the present study, the pre-trained transfer learning deep CNN models were trained
and validated for classifying input chest CT scan images into Normal and PF. Six state-of-
the-art deep CNN transfer learning models (Xception, VGG-19, InceptionV3, Inception-
ResNetV2, DenseNet121, and ResNet50v2) were evaluated for the current classification
task. Supplementary Tables S1–S6 show the results of Adam optimizer-based optimization
of the learning rate for the six-transfer learning models for 50 epochs performed on 75%
training and 15% validation data. As shown in Supplementary Material Tables S1–S6,
the optimizer Adam with an optimized learning rate for each transfer learning model
considerably enhanced the performance of the six deep transfer learning CNN models.
Table 4 compares the highest training and validation accuracy and the lowest loss attained
by each DNN model at their corresponding optimized learning rate.

Table 4. Comparative performance examination of the six-transfer learning model at their corre-
sponding optimized learning rates.

Transfer
Learning Model Optimizer

Optimized
Learning

Rate

Training
Accuracy

(%)

Validation
Accuracy

(%)

Training
Loss

Validation
Loss Findings

VGG-19

Adam
optimizer

0.000125 55.48 79.69 0.6691 0.639826 Accuracy dropped
Inceptionv3 0.000125 99.83 89.84 0.00639 0.65128 Accuracy dropped

Xception 0.000125 99.91 87.5 0.00525 1.2058 Accuracy dropped

ResNet50v2 0.0000625 99.92 99.22 0.00428 0.00683

Identical performance
(train/validation).

Highest training and
validation accuracy &

Lowest training &
validation loss.

InceptionResNetV2 0.0000625 99.91 91.41 0.004081 0.139653 Accuracy dropped
DenseNet121 0.000125 99.92 74.22 0.00599 0.742188 Accuracy dropped

The ResNet50v2, with an optimized learning rate of 0.0000625, was best at classifying
the PF_positive images with a training accuracy of 99.92% and a validation accuracy of
99.22%. As a result, the ResNet50v2 had a minor training loss and validation loss of
0.00428 and 0.00683, respectively, as tabulated in Table 4. Moreover, similar training and
validation accuracy values were observed for the ResNet50v2 transfer learning model after
training. This signifies that overfitting was avoided in the ResNet50v2 model. The final
hyperparameters values of the trained ResNet50v2 model on the training chest CT scan
image data are tabulated in Table 5.
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Table 5. Hyperparameters settings of the best-performing model (ResNet50v2) on the training and validation dataset.

Packages
Transfer
Learning

Model

Resized
Image Size Pooling Optimizer Loss

Function
Minibatch

Size

Optimized
Learning

Rate

Dropout
Rate Classifer_Activation Maximum

Epochs
Training

Callbacks

Tensor Flow
and Keras ResNet50v2 135 × 135

Global
Average
Pooling
(GAP)

Adam
Binary
cross

entropy
64 0.0000625 0.5 softmax 26

ModelCheckpoint,
ReduceLROn-
Plateau, Early

Stopping
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Figure 9a,b shows the convergence curve depicting the training and validation accu-
racy and loss function values of the ResNet50v2 model up to 10 epochs performed on 75:15
training and validation data at a learning rate of 0.0000625. It can be noted from Figure 9a
that the training and validation accuracy curve shows considerable improvement in the
performance of the ResNet50v2 model, depicted by the gradual increase in the accuracy
with the rise in the number of epochs. In the first epoch, the training accuracy of the
ResNet50v2 model was 72.55%, which significantly increased to 99.92% in the final epoch.
Correspondingly, the validation accuracy of the initial epoch was 93.89%, subsequently
rising to 99.22% in the last epoch. In Figure 9b, the loss graph of the ResNet50v2 model
is illustrated. In the first epoch, the training loss was 0.57462, and the validation loss was
0.33916. However, at the final epoch, the training and validation loss reduced considerably
to 0.00428 and 0.00683, respectively. It can be observed from Figure 9b that the loss value
of the ResNet50v2 model decreased with a gradual increase in the number of epochs,
signifying an increase in the performance of the ResNet50v2 model.
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Figure 9. (a,b). (a) Training and validation accuracy convergence curve of ResNet50v2 model up to
50 epochs with an optimized learning rate of 0.00625; (b) Training and validation loss convergence
curve of ResNet50v2 model for 50 epochs at an optimized learning rate of 0.00625.

Additionally, the classification capabilities of the pre-trained transfer learning deep
CNN models were estimated on the independent 10% testing masked image data cen-
tered on the following statistical matrices: (a) recall which signifies patients with a PF,
(b) precision that signifies the model’s accuracy in classifying a PF patient as positive,
(c) accuracy is the ratio of correct predictions of PF to the total number of predictions,
(d) F1-Score combines the recall and precision of a model into a performance metric by
taking their harmonic mean, (e) MCC measures the correlation between true and predicted
values, the higher the correlation, the better the prediction of samples with and without
PF, (f) AUC value signifies the capability of pre-trained transfer learning deep CNN model
to distinguish between two classes, i.e., PF-positive and normal chest CT scan images,
and (g) AUC-PR evaluate the performance of the binary classification of PF-positive and
normal chest CT scan images by the different transfer learning models. The performance
comparison for different pre-trained transfer learning deep CNN models tested for the
classification scheme (normal Vs. lung fibrosis) on the chest CT scan image independent
test masked image data is shown in Table 6 and Figure 10, respectively.
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Table 6. Comparison of different performance evaluators between the six pre-trained transfer learning
deep CNN models.

Transfer Learning Models F1 Score MCC Precision Recall Accuracy AUC_ROC AUC_PR

VGG-19 0.8433 0.6787 0.8300 0.8600 0.8394 0.8390 0.8777
InceptionV3 0.9300 0.8499 0.8600 1.0000 0.9197 0.9180 0.9582

Xception 0.9100 0.8151 0.8400 1.0000 0.8996 0.8975 0.9477
ResNet50v2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

InceptionResNetV2 0.9400 0.8712 0.8800 1.0000 0.9317 0.9303 0.9645
DenseNet121 0.8200 0.6064 0.6900 1.0000 0.7711 0.7664 0.8809
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Figure 10. Comparative performance evaluation of various statistical evaluators between six state-
of-the-art deep transfer learning models to classify fibrosis and non-fibrosis images using the 10%
independent testing CT scan image dataset.

The pre-trained ResNet50v2 object detection architecture outperforms other transfer
learning deep CNN models in the given classification task. The ResNet50v2 model attained
a testing accuracy of 100%. The performance of ResNet50v2 in different key outcomes
are as follows: PF and normal chest CT scan images are classified with 100% recall and
100% precision. While 1.00 in each statistical evaluator, such as F1-score, MCC value, and
AUC, signifies that the ResNet50v2 model is ideal at classifying PF images from normal
chest CT images. The pre-trained transfer learning models had 50 epochs (with an early
stopping function enabled) to classify the two classes (PF and normal) chest CT images. The
performance comparison of the ROC_AUC curve and AUC_PR curve of pre-trained transfer
learning models (Xception, VGG-19, InceptionV3, InceptionResNetV2, DenseNet121, and
ResNet50v2) are shown in Figures 11 and 12, respectively.

We can observe from Figures 11 and 12, respectively, that the pre-trained ResNet50v2
model outperforms the other pre-trained transfer learning models under consideration in
the present study. The pre-trained ResNet50v2 model can effectively classify PF positive
images as denoted by the higher accuracy, precision, ROC_AUC, AUC_PR, MCC, and
F1-score obtained by the ResNet50v2 model, as tabulated in Table 6 and shown in Figure 10,
respectively.
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Figure 11. The ROC_AUC curve-based performance comparison of the six state-of-the-art transfer
learning models for the image-based classification of the fibrosis and normal classes from the testing
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Figure 12. The AUC_PR curve-based performance comparison of the six state-of-the-art transfer
learning models for the image-based classification of the fibrosis and normal classes from the testing
CT scan image dataset.



Processes 2023, 11, 443 23 of 28

Figure 13 shows the confusion matrix of the best-performing ResNet50v2 model. As
per the confusion matrix, the ResNet50v2 model can correctly classify 345 out of 345 image
data. Of the correctly classified images, 228 belong to the PF positive class, and 117 belong
to the negative class (normal images).
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Figure 13. Confusion matrix of Fibrosis and Non-Fibrosis classes of the testing CT scan image dataset
using the best performing ResNet50v2 model.

Grad-CAM is accomplished on the last convolution layer once the ResNet50v2 model
classifies the outcome label. Figure 14a depicts the heatmaps signifying the area of abnor-
mality (red) on the chest CT scan images that are visualized using the Grad-CAM method.
On the contrary, the class activation heatmap in Figure 14b shows nothing for the normal
masked CT scan image. The results of Grad-CAM show that the ResNet50v2 model can
efficiently predict and detect the problematic region of interest (fibrosis) in the PF-positive
chest CT images when compared to the normal chest CT images.
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Figure 14. (a,b). (a) The fibrosis region is represented in the chest CT images utilizing Grad-CAM
heatmap on the final layer of the ResNet50v2 model, and (b) Illustrate the normal chest CT image by
applying Grad-CAM heatmap on the last layer of the ResNet50v2 model.
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Additionally, Table 6 compares the performance of the ResNet50v2 model for PF
positive image prediction and detection in the present study with the recently published
work available for solving a similar problem using pre-trained transfer learning models.
We can observe that the ResNet50v2 architecture with optimized learning rate outperforms
other DNN architecture in classifying PF-positive chest CT scan images from normal chest
CT images with an AUC value of 1.00 and an accuracy of 100%.

The pre-trained ResNet50v2 model was implemented as a prototype web application
and hosted at https://fibrosisweb.azurewebsites.net/, (accessed on 1 January 2023). In
real-time, using the online prototype PF detector, the clinicians can classify the PF from
normal chest CT scan images using the ResNet50v2 DCNN model.

5. Discussion

Pulmonary fibrosis is widespread worldwide and a significant cause of morbidity
and mortality among lung diseases [1]. Therefore, it is essential to diagnose PF early and
efficiently. In this perspective, many image processing and deep CNN model have been
proposed [8]. The present work aimed to screen the best-performing pre-trained deep
CNN model to classify the considered chest CT scan images into positive (PF images) and
negative (normal images) classes. First, the collected CT scan images were resized based
on the requirement of the pre-trained transfer learning models, and image enhancement
methods were used to increase the quality of the chest CT scan images. Second, extrinsic and
intrinsic data regularization techniques were employed to avoid overfitting by the model
during training [40]. Third, novel data augmentation techniques, namely the augmented
queues method [41,42], were used to perform data augmentation on-the-fly and Active
Learning (during training) for PF-positive and normal CT scan image classification.

Moreover, different augment strategies, such as flipping, shifting, rotation, zoom,
shear transformation, channel shift, and brightness, were performed to increase the volume
and balance the chest CT scan image belonging to each class. Finally, the models were
optimized by fine-tuning the hyperparameters, such as the learning rate and the number of
epochs, to enhance the model’s performance in performing the current binary classification
task. Next, a binary classification was performed using six pre-trained optimized transfer
learning deep CNN models, namely VGG-19, DenseNet121, Xception, InceptionResNetV2,
ResNet50v2, and InceptionResNetV2 and their performance was evaluated to screen the
best performing optimized deep CNN model. The optimized ResNet50v2 model has the
highest classification accuracy for training (99.91%) and validation (99.22%) chest CT scan
image data.

Similarly, the ResNet50v2 model achieved a minimum loss function value for the
training (0.00428) and validation (0.00683) data at 26 epochs (with an early stopping function
enabled). Moreover, the ResNet50v2 model, when tested on the 10% independent test data,
yielded the highest value of 1.00 for each performance evaluator, such as accuracy, precision,
F1-score, MCC, ROC_AUC value, and AUC_PR. Finally, the best-performing model, the
ResNet50v2 model, was used for the abnormality localization of fibrosis (scarring) in
the PF-positive CT images using the Grad-CAM heatmap [44]. The ResNet50v2 model
showed great potential in rapidly and accurately detecting regions of interest from the
PF-positive sample’s chest CT scan image slices. Table 7 shows that the proposed MRCNN
system in [35] obtained an accuracy of 90% for lung texture or pattern classification in PF
disease. Moreover, the systems proposed by authors in [27] used the Attention-U-Net plus
Inception-ResNet pulmonary fibrosis prediction model to provide appropriate predictions
on the X-ray images. The modified pre-trained Inception-ResNetv2 model achieved an
accuracy of 93%, and the relevant diagnostic precision of the developed model was close to
a professional radiologist. In [33], the authors compared the shallow and deep Learning
architectures to classify the pattern in lung diseases such as interstitial lung diseases (ILD).
The architecture developed in [33] obtained an overall accuracy of 95.12% considering
the multi-classes classification of five ILD patterns (consolidation, ground-glass opacity,
emphysema, reticular opacity, and honeycombing).

https://fibrosisweb.azurewebsites.net/
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Table 7. A list of related studies on PF classification with their corresponding attainment in different
performance matrices.

Reference Year Data Type Model Performance
Accuracy

Li et al. [27] 2022 X-ray Inception-ResNet v2 0.930

Kim et al. [33] 2018 CT
CNN architecture

(4 convolutional layers and two
fully connected layers)

0.9512

Wang et al. [35] 2018 CT
Multiscale rotation-invariant
convolutional neural network

(MRCNN)
0.90

Optimized
ResNet50v2

(Proposed Method)
2023 CT ResNet50v2 1.00

While the optimized pre-trained ResNet50v2 model in the present study exhibited the
highest accuracy of 100% in classifying the positive class (PF images) from the negative
class in the tested dataset compared to the results of recently published works on the
same problem as tabulated in Table 7. Therefore, the experimental results suggest that
our proposed optimized ResNet50v2 model outperforms recent state-of-the-art deep CNN
models in PF classification accuracy.

6. Conclusions and Future Scope

In this study, we showed the optimized ResNet50v2 ability to classify and detect
pulmonary fibrosis from chest CT images with state-of-the-art classification accuracy in
classifying PF-positive Ct images compared to other comparable methods published in
recent years. The optimized ResNet50v2 model achieved the highest classification accuracy
of 99.91% for training and 99.22% for chest CT scan image data validation. Similarly, the
ResNet50v2 model reached a minimum loss function value of 0.00428 and 0.00683 for
the training and validation data, respectively, within 26 epochs (with an early stopping
function enabled). Moreover, the robustness of the proposed method was tested using
standard performance measures. The experimental results of the various performance
metrics showed that the optimized ResNet50v2 model achieved an outstanding 100% value
in all the evaluated performance measures. In addition, the Grad-CAM heatmap technique
demonstrated the practicality of the optimized ResNet50v2 in identifying the region of
interest (the problematic area in fibrotic lungs), which provides extra information for an
efficient and reliable diagnosis and detection of fibrosis in chest CT scan images.

Furthermore, the outstanding performance of the ResNet50v2 model motivated the
authors to implement a prototype application to examine clinically PF-positive patients
to detect abnormality regions of interest (fibrosis) in the CT scan slices. Moreover, the
prototype online application will be able to locate the fibrosis region in positive PF patient
CT scan images, enabling clinicians to detect PF efficiently and effectively. The outcomes of
the present study show that appropriate image processing, regularization, and hyperpa-
rameter tuning enhance the model’s performance. In addition, the results demonstrate that
the optimized ResNet50v2 model achieved state-of-the-art classification performance com-
pared to the versions of the other fine-tuned pre-trained deep CNN models in classifying
PF-positive CT images from normal chest CT images.

In the future, we aim to use various ablation studies to hyper tune the different com-
ponents, such as loss function, optimizer, flatten layer, and learning rate, of the ResNet50v2
or other pre-trained transfer learning model to develop a more resilient architecture with
enhanced classification accuracy. These resilient pre-trained deep CNN models will auto-
matically detect and classify various lung diseases, such as chronic obstructive pulmonary
disease and lung cancer, pleural effusion, COVID-19, and pneumonia, more accurately and
reliably. Moreover, the pre-trained ResNet50v2 model robustness in rapidly and accurately
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classifying PF CT images from normal CT images needs to be further studied on larger
chest CT scan image data of each class (PF and normal). Cross-validation studies may
be used to validate the robustness of the results on the training, validation, and testing
dataset. In future studies, we will try to find the disease localization accuracy of a deep
CNN transfer learning model in identifying the region of interest in PF-positive CT images.

Even if we have achieved state-of-the-art performance accuracy in classifying PF using
the improved ResNet50v2, some limitations are still there in the present study. Firstly, we
did not perform cross-validation studies to validate our findings’ robustness. Secondly, only
tuning the learning rate and the number of epochs was performed. Therefore, the scope of
modifying other components of the base architecture of the pre-trained transfer learning
model. Thirdly, we were not able to calculate the accuracy of the disease localization using
a reference model. Finally, we must collaborate with clinicians and prepare a study to
compare our results with the doctors to understand the precision with which our optimized
pre-trained model detects the region of interest in PF-positive CT scan images.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr11020443/s1. Supplementary Tables S1–S6: Supplementary
Tables S1–S6 show the results of Adam optimizer-based optimization of the learning rate of the
six-transfer learning models for 50 epochs performed on 75% training and 15% validation data.
Supplementary Figure S1: Illustrate the detailed architecture of the ResNet50 v2 network.
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