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Abstract: Runoff from agricultural irrigation is contaminated and loaded with pesticides. Frequent
toxic levels of pesticide detection in the ecosystem motivate scientists and engineers to diminish agro-
chemicals flowing into the environment. Constructed wetland, CWs, treatments are a sustainable
methodology of special interest since it possess a symbiosis value. Flytek (FT) pesticide use has
increased at an unprecedented rate for crop production as well as an increase in runoff loaded
with Flytek. This study introduces the use of constructed wetlands based on an alum- sludge
substrate for the purpose of Flytek (FT) removal performance. The system is based on an adsorption
column and a sludge cake coupled with gravel acting as a carrier in order to be an adsorption
bed and filtration system for Flytek removal. The structure, morphology and characteristics of the
adsorption bed material “alum sludge” were characterized using X-ray diffraction spectroscopy and
Scanning Electron Microscope (SEM). Additionally, Fourier-Transform infrared spectroscopy (FTIR)
was explored. The experimental results revealed that a vertical flow constructed wetland is significant
in eliminating the Flytek pesticide. However, the amount and height of sludge in a wetlands column
affects its removal efficiency with the optimal removal (96%) being linked to the presence of sludge
in 80%. Moreover, temperature, pH and the FT load showed a significant effect in removals, with
the optimal operating conditions being recorded at 7.2 pH, 26 ◦C and 100 ppm of FT. The kinetic
modeling is also investigated to validate the practical life applications and designs, and the results
verified the reaction follows the pseudo 2nd-order reaction kinetic model according to the correlation
coefficient factor. Furthermore, according to the isotherm model results the scheme follows the
Freundlich isotherm model. Such preliminarily data of a gravel-alum-sludge-adsorption-column
scheme is a good indicator in developing a constructed wetland facility being a good candidate for
controlling agriculture effluent streams.

Keywords: constructed wetlands; agriculture water; pesticide treatment; removal efficiency;
design optimization

1. Introduction

Over recent decades, wetlands (CWs) have been applied as a unique cost-efficient and
low energy consumption system for treating aqueous municipal wastewater streams. Re-
cently, an interest in using CWs has increased in popularity for treating agricultural runoff.
Constructed wetlands possess the advantage of wastewater remediation from agricultural
irrigation systems. CWs are categorized as an ecologically engineered system because of

Processes 2023, 11, 396. https://doi.org/10.3390/pr11020396 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11020396
https://doi.org/10.3390/pr11020396
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-7167-3822
https://orcid.org/0000-0001-8550-6294
https://doi.org/10.3390/pr11020396
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11020396?type=check_update&version=1


Processes 2023, 11, 396 2 of 15

their low energy consumption and environmental friendliness. CWs exhibit a potential
to minimize and remove various agricultural chemicals simultaneously. Constructed wet-
lands have the ability to eliminate or reduce contamination levels of various chemicals from
aqueous effluents. Worldwide, treatment wetlands were applied in different regions. For in-
stance, in the United States of America [1], Canada [2], Ireland [3], Germany [4], Turkey [5],
Australia [6], Spain [7] and China [8]. Although, CWs, in comparison to the numerous
polluted aqueous effluents remediation systems, possess disadvantages categorized as a
requirement of a greater land area; however, their advantages include treating wastewater
together with providing an attractive place with ornamental plants for recreation [9–11] as
a multifunctional role [12,13]. However, it is important to mention that this has rarely been
applied to date for eliminating pesticide-containing wastewater based on an alum sludge
constructed wetland.

On the other hand, due to the water purification in a drinking waterworks plant,
aluminum sulfate is applied as a treatment as a primary coagulant’s aid to generate high
quality and sufficient drinking water prior to the domestic distribution [14,15]. The resultant
by-product is a massive quantity of sludge, which is named “alum sludge”. This by-product
represents an environmental issue since it is a two-phase combination comprising of both
solids and water. The European Union (EU) categorized such aluminum-based waste under
Code 19’s list of waste [16,17]. Commonly, such sludge, containing 99% water prior to it
being subjected to gravity for thickening, to eliminate the excess water, could be declined
to attain a sludge containing 95% water subsequent to its thickening. As a sustainable
zero-waste approach, the application of alum-sludge in significant treatments is signified
as an interesting utilization profit [18]. In this regard, scattered investigations [18–20]
were studied and their published data dealing with the application of alum-sludge as an
adsorbent material and as a substrate in constructed wetland systems. However, according
to the literature cited it has not been applied, to date, in constructed wetlands based on the
alum sludge for Flytek pesticide removal.

Pesticides are commonly constituted of at least one of the main groups of organic
substance complexes, which trigger severe damage to the surrounding environment since
their use, in massive amounts in the agricultural sector, is essential. Pesticides are applied
to agriculture land to safeguard the plants and vegetables from various damage, such as
an insect attack, mildew and bacteria. Such creatures could attack and cause damage to
the agriculture crops. Subsequently, the excessive tendency of such pesticides to be soluble
in water, chemically stable and resist biological degradation permits them to spread to
the groundwater [18,21]. Consequently, searching for a novel management technology to
eliminate such unwanted and harmful materials is a research topic. Among the treatments
processes, adsorption possess some advantages since it is reliable, simple in operation and
cost-efficient, particularly when it is based on waste or natural substances. Thus, with the
daily volumes of alum sludge produced through water processing, it is good candidate
to substitute chemicals for an environmentally benign world. Additionally, with the new
legislation that has been asserted to prohibit the use of toxic chemical substances, using a
cradle-to-cradle waste management system and use the “waste-alum sludge” for treatment
is an especially is good opportunity for the constructed wetland world.

Herein, the current study is aimed at introducing the use of a gravel-alum sludge
medium as a substrate for an adsorption column for preliminary data leading to a con-
structed wetland system. The Flytek pesticide that is widely applied in agriculture areas,
and the resultant effluent, is signified as hazardous waste and is used as a model pollutant.
Alum sludge characterizations are investigated using various techniques (XRD, SEM and
FTIR) and tested as an adsorption medium. Four treatment trails are introduced according
to the alum sludge constituent in the column. The effects of the working parameters,
such as initial Flytek loading, temperature and pH of the aqueous media are investigated.
Further, kinetics of the Flytek adsorption and isotherm parameters are also explored.
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2. Materials and Methods
2.1. Field Sampling “Alum Sludge”

A “Alum sludge” is an inescapable so-called aluminum-rich sludge waste by-product,
it was collected from the nearest water-works plant applying aluminum sulphate as a
primary coagulant for water purification. The sludge was collected from the drinking
water plant from the underflow channel of the sedimentation tank. Afterwards, the excess
water is removed and the sludge cake is used, after natural drying, as a substrate in the
adsorption column.

2.2. Adsorption Media and CW System Design

To investigate the proposed alum sludge, as a constructed wetland system, the ad-
sorption column is prepared according to the previously reported literature [10]. Then
the 100 mm column was prepared and initially filled with gravel support (10 mm in size),
which was determined according to the procedures outlined by Zhao [10]. Thereafter,
the lab-scale column is filled with the air-dried sludge cake. The system is connected to
a reservoir comprising the aqueous effluent loaded with Flytek (FT). After the previous
laboratory study [22]), the wastewater loaded into the entire system is exposed to a hy-
draulic loading of 0.5 m3/m2d to introduce a tidal flow system. The system is operated
continuously and the wastewater flows in an upward-flow mode, which is released by
peristaltic pumping. The illustration of the experimental tidal flow system is schematically
represented in Figure 1.
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2.3. AS “Alum Sludge” Characterization

The morphologies of the used alum sludge after drying, which is named AS cake that
is the substrate in the CW column was tested and imaged using a field-emission scanning
electron microscope (SEM) (model FE-SEM, Field-emission scanning electron microscope,
Quanta FEG 250) with typical magnifications of ×8000 and ×60,000. The X-Ray Diffraction
(XRD) was examined by the Bruker-Nonius Kappa CCD diffractometer using a CuKα

radiation source at a wavelength of 1.5406 Å.

2.4. Aqueous Effluent Stream

The simulated wastewater effluent was synthetically arranged following the estab-
lished protocol. A stock solution effluent (1000-ppm Flytek) was synthetically prepared and
afterwards the diluted aqueous effluent was prepared as required. The original effluent,
with a pH recorded at 7.2, was further adjusted using solutions of H2SO4 and/or NaOH
(provided by Sigma-Aldrich chemicals, St. Louis, MO, USA) to attain the various pH levels
as required.

2.5. Sampling and Analytical Determination

The technique of the batch methodology and sampling is used to track the concentra-
tion load of the Flytek (FT) removal through a UV-vis spectrophotometer (Unico UV-2100
spectrophotometer, Dayton, NJ, USA) by applying the maximum wavelength of FT with the
initial (CFTo) and the final Flytek FT (CFT) being recorded. The adsorption capacity of the
AS substance (qe) was explored and used to investigate the adsorption uptake. Moreover,
the wastewater pH was adjusted, when needed to examine its effect though a digital pH
meter (Model AD1030, Adwa instrument, Szeged, Hungary).

2.6. Prepared “Alum Sludge” Adsorption Bed Characterization
2.6.1. X-ray Diffraction Pattern

The X-ray diffraction pattern of the alum sludge cake is displayed and arranged in
Figure 2. Remarkably, the diffractograms clearly demonstrate the crystalline nature of the
sample that is obvious from the sharp diffraction peak patterns. The XRD of the sample
signifies the peaks that are mostly characteristic of calcium aluminum, graphite and quartz
phases with the predominant calcium Aluminate reflected through the most intensive
peaks. The peaks of (100), (101) and (110) signifies the presence of quartz [23]. Furthermore,
the XRD patterns show the peaks of (022), (112), (202) and (114) that represent the calcium
aluminum and the (002), (011) and (004) that reflect the existence of graphite [24]. This
reveals the importance of such material as an adsorbent medium.

2.6.2. Fourier Transform Infrared Spectroscopy:

The Fourier transform infrared (FTIR) spectroscopy of the alum-sludge cake is dis-
played in Figure 3. As shown in the curve of Figure 3, the bands around 3439.42 cm−1

are assigned to the O–H stretching vibration of the structural water. The bands for the
absorption, that refers to silica, appears at 1090.55 cm−1, which is attributed to the asym-
metric stretching vibration of Si—O—Si. The deformation of Si–OH–HAl and Si—OH—HSi
are recognized at 3846.33 cm−1 and 1467.65 cm−1, respectively. The absorption bands at
539.97 and 3440.38 cm−1 are associated to the bending vibration of the H–O–H angular
deformation and the OH stretching [23]. The Si—O—Si stretching vibrations attributed to
the band of 789.7 cm−1 is linked to the stretching vibrations of the Al–Mg–OH group.
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Figure 2. The XRD pattern of the alum sludge granulated bed in constructed wetland systems.
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Figure 3. The FIR spectrum of the alum sludge granulated bed in constructed wetland systems.

2.6.3. Scanning Electron Microscope Images

SEM imaging was applied to explore the morphology of the adsorbent bed “alum-
sludge cake” substance. The SEM micrograph (Figure 4 with different magnifications) of
the AS displayed a semi-hexagonal sheet-like AS material that has a rough surface with
a porous texture, which helps in the adsorption process. Moreover, it is noteworthy to
mention that the inset in Figure 4 displays the ranges of the alum sludge particle size.
Such particle sizes recorded at 281 nm, are considered quite small, which reflects a good
adsorption, since the adsorbing surface area is increased.
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3. Results and Discussion
3.1. Flytek Removals on Alum Sludge Based Column
3.1.1. Column Studies

The effect of the alum sludge amount on the bed height breakthrough for Flytek
removal is achieved, and the optimal configuration trials named: #1 (100%) Sludge CW; #2
(80%) Sludge CW; #3 (60%) Sludge CW; and #4 (40%) Sludge CW are tabulated in Table 1.
Alum sludge dually represents an adsorption bed and serves as a substrate, operating
as a filter medium for Flytek molecules for their loading reduction and removal. The FT
efficacy is quite low due to the sludge bed reduction (60 and 40% alum sludge substrate
in the column). This could be explained by the high hydraulic loading to the column.
More meaningfully, the greater Flytek pesticide immobilization demonstrates the merits
of using alum sludge in the adsorption column. The inclusion of supportive gravel in
the column, the infiltrative substrate of the AS and the gravel surface of the columns did
not verify the suggested beneficial advantages when it is increased in comparison to the
sludge. Interestingly, the removal of the Flytek pesticide in the non-gravel-containing
columns appeared lower than that of the joint gravel-AS columns as shown in Table 2.
Such investigations support the phenomena that more contact time with the adsorbent
resulted in the increased removal of the Flytek pesticide [25,26]. The highest Flytek pesticide
elimination was attained for the 80% sludge bed (96% removal), which delivered excess
binding sites for the absorption process of the Flytek pesticide, and the adsorbate onto the
alum sludge adsorbent.

Table 1. Typical data of CW configuration column.

Trail No. #1 #2 #3 #4

Configuration (100%) Sludge
CW

(80%) Sludge
CW

(60%) Sludge
CW

(40%) Sludge
CW

% Flytek
removal 89% 96% 72% 65%

3.1.2. Determination of Equilibrium Time

Initially, prior to the design of the adsorption matrix of the alum-sludge based sub-
strate, it is essential to examine the isotherm equilibrium time. In this regard, the time-
profile of the Flytek adsorption (200-ppm) using a gravel-alum sludge substrate was
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exhibited at room temperature and is displayed in Figure 5 as influent and effluent wastew-
ater into and out of the adsorption column. The majority of the Flytek is adsorbed (93%)
within 650 min. This could be due to the presence of favorable adsorption materials, such as
aluminate, silica and graphite and the porous structure of the alum sludge bed as confirmed
by the XRD and SEM images in Figures 2 and 3, respectively. The presence of graphite
supports and helps the adsorption system since its presence is significantly influenced in
the adsorption uptake. Graphite acts as an effective media since it possess hydrophobic
interactions [16,27,28]. This data confirms the significance of the porous adsorbent media
besides the presence of effective adsorption materials. A similar investigation was recorded
in the previous work by eliminating the polymer effluent wastewater matrix [29,30]. Notice-
ably, there is no more FT uptake with the prolonging effect of the time of adsorption since
the available active species and pores of the AS substance is saturated and fully occupied
with the FT molecules.
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Figure 5. Time plot for the constructed alum sludge wetland trend in the system.

3.1.3. Flytek Influent Loading Effect on Treatments:

The influence of the Flytek loading is displayed in Figure 6. The data revealed that
the influence of the initial pesticide loading ranged from 100 to 800 ppm at 26 ◦C with the
removal efficiency being assessed. Notably, the obvious enhancement in the adsorption
uptake is investigated by the Flytek removal with the decreasing pesticide concentration
of influent to the column. According to the results of the XRD (Figure 2) the existence
of highly adsorbent materials, such as alluminosillicate, which led to the high removal
rate reached at 96% when the FT load is 100 ppm [31]. However, with the increase in the
pollutant load the adsorption uptake declines to 93, 85 and 59% when the loaded Flytek
corresponds to 200, 400 and 800 ppm, respectively, in comparison to 93% when 100 ppm
of the FT is loaded. This trend in decline of the adsorption uptake, with the excess of FT
loading, could be certified when the active sites of the AS material substrate is loaded with
pesticide; therefore, it could not adsorb high loads of the Flytek. Hence, the rate of mass
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transfer for the solid-adsorbate interface is reduced, and therefore the increment of the
adsorption capacity. The available published literature [32] also suggests a similar trend.
However, Negi et al. [33] recorded the adsorption uptake of dye polluted water declined
with a methylene blue dye increase.
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Figure 6. Flytek pesticide loading effect on the uptake concentration decline.

3.1.4. Overall Treatment by pH Variation

Commonly, pH plays a major role in adsorption technology since it significantly affects
the adsorption behavior. Using this concept, the adsorption treatment methodology is
applied for Flytek removal at various pH values (3–9), including the original effluent pH
without adjustment (7.2); the results of this test are displayed in Figure 7. Various FT
removals are attained and their removal is strengthened with a pH recorded at 7.2, which
is signified as the original pH of the aqueous effluent without additional adjustment. Such
phenomenon might be associated with a point of zero charge, pHpzc (i.e., the point that
the alum sludge surface is generally near 8.0) [34]. However, behind or above such pHpzc
the alum sludge surface is positively or negatively charged, which leads to a reduction
in the adsorption efficacy. This is due to the repletion forces generated between the
adsorbent “alum sludge” material surface and the pesticide molecules [22]. Hence, the
Flytek molecules are certainly adsorbed at a pH of 7.2. Additionally, elevating the pH value
to the alkaline range (pH 9.0) hinders the interaction between the pesticide molecules and
the solid “alum sludge” adsorbent surface. Similar data was recorded by [35] an adsorption
of a blue reactive dye by a bio-adsorbent.
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Figure 7. Effect of aqueous Flytek pesticide effluent pH on the uptake removal.

3.1.5. Temperature Effect on Flytek Removals

The temperature profile influence on the adsorptive capacity of the alum sludge was
assessed for the Flytek pesticide. The data displayed in Figure 8 signifies a decline in
Flytek removal, which is significantly observed when the temperature was elevated from a
room temperature of 298 K to a gradual increase in temperature to 313 K of the aqueous
solution, influencing the adsorption column. A decline in the removal rate from 96% to
85% with this temperature elevation is recorded. This is attributed to a decline in the
adsorption capacity, and, hence, the pesticide elimination efficacy is reduced. Thus, the
temperature change effects the Flytek adsorption capacity, indicating the significance of
temperature on the alum-sludge-adsorption column scheme. This could be credited to the
alteration of the chemical structure of the pesticide molecule with the temperature change
to undesirable intermediates. The increment in adsorption capacity at low temperature
systems could be due to the exothermic reaction nature of the adsorption system. This
means that within the studied temperature ranges, the thickness of the absorption layer
declines since the upsurges in the affinity of the Flytek pesticide molecules to escape
from the adsorbent surface to the aqueous phase results in a decline in the adsorption as
temperature increases [36]. Moreover, the attractive forces augmented by the alum sludge
surface and the Flytek pesticide molecules are hindered, and, therefore, the adsorption
declines [37]. This behavior in the reaction phenomenon was previously reported by
various authors [37,38] on treating various dye types using numerous adsorbents, such as
filler earth and fried clay.



Processes 2023, 11, 396 10 of 15Processes 2023, 11, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 8. Effect of aqueous Flytek pesticide effluent temperature on the uptake removals. 

3.2.Isotherms Modelling 
Isotherm models for adsorption are investigated and applied to specify a relation be-

tween the Flytek pesticide adsorbate and the alum sludge adsorbent bed. The isotherms 
of the adsorption were applied according to the Langmuir and Freundlich models that are 
applied to analyze the isotherm results according to their liberalized form displayed in 
Table 2 [39]. The isotherms of the adsorption were conducted at 26 ºC for 100 to 800 mg/L 
of the Flytek pesticide. Figure 9 a,b and Table 2 display the isotherm parameters of Lang-
muir and Freundlich. According to the correlation coefficient results (r2) tabulated in Table 
2, the data were best fitted as the Freundlich isotherm model for the four systems, namely: 
#1 (100%) Sludge CW; #2 (80%) Sludge CW; #3 (60%) Sludge CW; and #4 (40%) Sludge 
CW since the correlation coefficient (r2) ranged from 0.99-0.98. Hence, the Flytek (FT) ad-
sorption system was categorized and found to be built on the heterogeneous multilayer 
adsorption surface. Additionally, the heterogeneity constant value (n)is an indication to 
categorize the adsorption as favorable when the (n) value is larger than “unity”. As dis-
played in Table 3, the n data recorded for the Flytek adsorption on the alum sludge is 
favorable. 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 50 100 150 200 250 300 350 400 450 

C F
T 
/C

FT
o 

Time (min) 

299 K 303 K 308 K 313 K 

Figure 8. Effect of aqueous Flytek pesticide effluent temperature on the uptake removals.

3.2. Isotherms Modelling

Isotherm models for adsorption are investigated and applied to specify a relation
between the Flytek pesticide adsorbate and the alum sludge adsorbent bed. The isotherms
of the adsorption were applied according to the Langmuir and Freundlich models that are
applied to analyze the isotherm results according to their liberalized form displayed in
Table 2 [39]. The isotherms of the adsorption were conducted at 26 ◦C for 100 to 800 mg/L of
the Flytek pesticide. Figure 9a,b and Table 2 display the isotherm parameters of Langmuir
and Freundlich. According to the correlation coefficient results (r2) tabulated in Table 2,
the data were best fitted as the Freundlich isotherm model for the four systems, namely:
#1 (100%) Sludge CW; #2 (80%) Sludge CW; #3 (60%) Sludge CW; and #4 (40%) Sludge
CW since the correlation coefficient (r2) ranged from 0.99–0.98. Hence, the Flytek (FT)
adsorption system was categorized and found to be built on the heterogeneous multilayer
adsorption surface. Additionally, the heterogeneity constant value (n) is an indication
to categorize the adsorption as favorable when the (n) value is larger than “unity”. As
displayed in Table 3, the n data recorded for the Flytek adsorption on the alum sludge
is favorable.

Table 2. Isotherm equilibrium model parameters of Langmuir and Freundlich isotherm for
Flytek adsorption.

Isotherm Parameters #1 #2 #3 #4

Langmuir
Ce
qe

= 1
KL

+ aL
KL

Ce

aL, L/mg 0.00377 0.0144 0.00244 0.00311
KL 0.82883 3.0778 0.42151 0.29652

Qo, mg/g 222.22 212.76 172.413 95.238
r2 0.84 0.87 0.99 0.97

Freundlich
ln(qe) =

ln KF + 1
n ln Ce

n 1.152 1.1735 1.18133 1.35464
KF 1.1278 1.9151 0.6694 1.4294
r2 0.99 0.98 0.99 0.99
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Figure 9. Comparison of (a) Langmuir and (b) Freundlich isotherm models of Flytek removal on
alum sludge bed.

3.3. Column Kinetics’ Study

Adsorption kinetic models illustrate and signify the magnitude and mechanism of
the adsorption reaction [39]. Two kinetic models were used to explore the controlling
mechanism of the Flytek pesticide removal from aqueous stream. Lagergren’s 1st-order
and pseudo 2nd-order were used to describe the relevant adsorption and the results
are organized in Table 3. The linearized equation of the Lagergren’s 1st-order model
((log(qe − qt) = K1

2.303 t + log(qe)), signifying that the initial adsorption kinetic model is
associated with the absorption uptake. The model suggests that one absorptive site, in the
solid-phase adsorbent is present, adsorbing one Flytek pesticide solute molecule. However,
the linearized equation of the pseudo 2nd-order model is prearranged as: t

qe
= 1

K2q2
e
+ 1

qe
t,

where k2 is the pseudo-2nd-orderrate constant.
From the data of the correlation coefficient values (see Table 3), validation of such

kinetic models is verified according to the highest correlation coefficient (r2), ranging from
0.94 to 0.99, which corresponds to the pseudo 2nd-order for all the systems in comparison to
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0.92 to 0.97 for the Lagergren’s 1st-order. Pseudo 2nd-order kinetic also correlates with the
experimental data, which means the rate-limiting step of the reaction is chemisorption and
the adsorption reaction is dependent on the adsorption uptake rather than the loading of the
Flytek concentration. This investigation agrees with the previously reported literature [40]
in eliminating an oil-contaminated solution.

Table 3. Comparing Lagergren’s 1st-order and Pseudo 2nd-order models for Flytekabsorption system.

Kinetic Model Parameters #1 #2 #3 #4

Lagergren’s
1st-order qe, mg/g 0.27 0.09 0.29 0.28

k1, min−1 4.67 4.29 4.77 4.82
r2 0.67 0.97 0.63 0.62

Pseudo
2nd-order qe, mg/g 16,667 14,285 100,000 5000

k2 × 10−5, g·mg/min 7.2 24.5 0.25 6.675
r2 0.98 0.94 0.93 0.94

A comparison of the adsorption uptake of various substances as an adsorbate on alum
sludge using different systems in the literature is compared to the current work and the
data is tabulated in Table 4. Encouragingly, alum sludge could be applied for treating
numerous pollutants, ranging from dyes, heavy metals and emerging pollutants with
promising adsorption capacities. It is noteworthy to mention that it is not applied, to date,
in treating agriculture effluent streams. Alum sludge is a suitable adsorbent candidate
since it is a waste material, so the system is considered a win-win technology. It is noted
from Table 4 that the adsorption capabilities are dependent on the type of pollutant and the
operating conditions.

Table 4. Adsorption capabilities of numerous uptake removals from wastewater using AS adsorbent.

Pollutant Testing Conditions Adsorption
Capabilities (mg/g) Reference

Flytek Initial pollutant = 200 ppm; pH = 7.2; Time = 600 min 76.03 Current investigation

Procion Blue dye Initial pollutant = 11.8 ppm; pH 7; Time = 1 h 6.5 [41]

Phosphorus Initial pollutant = 4.2 ppm; pH = 6.2; Time = 12 d 0.89 [42]

Phosphorus Initial pollutant = 4.2 ppm; pH = 6.8; Time = 12 d 1.59 [42]

Arsenics Initial pollutant = 1875 mg/kg; pH = 6–6.5; Time = 2 d 7.68 -
6.00 [43]

Arsenics Initial pollutant = 37.7 µg As/L; pH 8.1; 20 h 0.003 [44]

Lead Initial pollutant = 8.5 ppm; pH 5–8 0.21–0.22 [45]

Chromium Initial pollutant = 8.5 ppm; pH 5–8 0.51 [45]

Chromium Initial pollutant = 8.5 ppm; pH 5–8 0.30 [45]

cadmium Initial pollutant = 0.1 g; pH 4.5; Time = 24 h 0.040 [46]

Cobalt Initial pollutant = 25–800 ppm; pH 6.0; 48 h 17.31 [47]

Humic acid Initial pollutant = 12.28 ppm; pH 5.56 0.47 [48]

Phosphorus pH 7.0; Time = 24 h 0.90 [49]

Ammonium Initial pollutant = 17 g/L; Time = 60 min 11.3 [50]

4. Conclusions

With increasing worldwide environmental challenges, a very distinctive response
must be taken. Using this concept, the current investigation has validated the feasibility
of a sustainable waste management system, which embraces a future world, for an inte-
grated waste management system. A laboratory scale study demonstrated the promising
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application of an alum sludge (AS) by-product “waste” material from waterwork plants as
a useful raw material, supporting the material labor in constructed engineered wetland
systems for agriculture wastewater loaded with Flytek elimination and control. Trials
on adsorption treatment columns as an introductory wetland system is applied, and the
presence of an 80% alum sludge cake, supported with a gravel medium, showed the highest
removal efficiency, reaching 96%. The optimal operating conditions, including pH (7.2)
and temperature (299 K) were recorded with the results indicating that the dewatered AS
cake can be a carrier for the Flytek pesticide for use in agriculture stream elimination. In
particular, for long term operations, clogging of the CW scheme should be tested and the
AS saturation with the pesticide should be explored prior to real life applications.
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