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Abstract: Microbial fuel cells (MFCs) are an alternative to conventional wastewater treatments that
allow for the removal of organic matter and cogeneration of electrical energy, taking advantage of the
oxidation–reduction metabolism of organic compounds conducted by microorganisms. In this study,
the electrogenic potential and the capacity for the reduction of the organic matter of native microbial
communities in wastewater from the wet processing of coffee were evaluated using open-cathode
MFCs. To determine the electrogenic potential, a factorial experimental design was proposed in
which the origin of the residual water and the source of the inoculum were evaluated as factors.
The MFCs operated for 21 days in both open-circuit and closed-circuit operation modes. Voltage
records, current determinations, and chemical oxygen demand (COD) analyses were used to estab-
lish the power reached in the electrochemical system and the degree of the decontamination of the
wastewater. During the MFC operation, voltages from 200–400 mV and power and current densities
from 300–900 mW·m−2 and 10–22 mA·m−2, respectively, were reached. The inoculum used, with a
statistical significance of α < 0.05, influenced the electrogenic performance of the microbial fuel cell.
The previous process of adaptation to the operational conditions of the MFCs of the native microbial
community positively influenced the current generation in the system. The degradation rates reached
500–600 mg·L−1·day−1, indicating the metabolic capacity of the microbial community in the MFCs to
achieve the decontamination of wastewater from the coffee agroindustry. It was shown the imple-
mentation of bioelectrochemical systems constituted a viable option for the treatment of agricultural
waste in Colombia. In addition, it was observed the capacity to cogenerate electrical energy from the
biotransformation of the polluting organic matter in the effluents of the coffee industry.

Keywords: microbial fuel cell; MFC; electroactive; native microbial community; coffee waste;
agro-industrial wastewater

1. Introduction

In Colombia, agriculture constitutes a fundamental pillar of the regional economy,
contributing an estimated USD 6116 million during the first half of 2022 [1]. One of the
outstanding Colombian agricultural products is coffee, which is recognized worldwide
for its quality. This attribute comes from the cultivated species and the post-harvest
process used, known as wet coffee processing [2–4]. This process consists of a series of
washing, pulping, and mucilage removal stages that require high pure water consumption,
estimated at up to 20 L for each kg of processed coffee beans [4]. In Colombia, between
13 and 14 million 60-kg bags of dry parchment coffee are produced annually [5], and
pure water consumption of more than 1.7 × 107 m3 is estimated for the different stages
of wet processing of coffee [4]. Consequently, a large amount of liquid waste, called agro-
industrial wastewater (AWW), is generated. In general, agricultural activities intensify in
proportion to a population increase to meet the growing food demand, and consequently,
the consumption of resources and the generation of waste also increase.
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For the removal of contaminants in liquid waste, systems known as wastewater
treatment plants (WWTP) are designed and installed [6]. However, these installations
are generally found in urban areas or cities, and they are not distributed in agricultural
areas. Only 20% of WW treatment is conducted in these plants, mainly domestic WW [7].
Considering that nearly 95% of the harvest and post-harvest of coffee takes place in the
artisanal facilities of small farmers, there is no effective treatment and control of AWW
discharges [3,8–10]. The difficulties of accessibility and the limitation in the collection of
liquid waste from rural areas generate environmental and public health problems due to
the dumping of AWW into surface water sources [7].

As an alternative to conventional wastewater treatment processes in WWTP, bio-
electrochemical systems (BESs), has been proposed [11,12]. BESs are systems that, through
the microbial oxidation–reduction metabolism of organic compounds, remove the contam-
inant load of WW by cogenerating chemical or electrical energy or biofuels, depending
on the type of system implemented or treated waste [13]. BESs can be classified depend-
ing on the type of cogenerated energy, and the most widely distributed are (i) microbial
electrolysis cells (MECs), from which biofuels, such as methane (CH4) and hydrogen (H2),
are recovered [14–16], and (ii) microbial fuel cells (MFCs) that generate usable energy in
the form of electricity [17–20]. The implementation of a specific BES depends largely on
the composition of the organic matter that is used as a substrate. The implementation of
BES has been reported to have the potential to decontaminate agro-industrial effluents,
such as, for example, as mentioned in various studies, the AR treatment of coconut crops,
food derivatives, and, in general, various residues from the production of raw materials,
raw and processed foods, or even from the agricultural inputs industry [19,21–25]. Differ-
ent microorganisms, consortia, and microbial communities involved in the generation of
energy from the degradation of organic matter have been reported; these are known as
electrogenic microorganisms [26–30]. MFCs use microbial metabolism, mainly anaerobes,
which release electrons derived from the catabolism of the organic molecules required
for their growth, reproduction, or cell maintenance [31,32]. In some stages of wet coffee
processing, such as mucilage removal, the native microbial communities of the same coffee
load are used in a fermentative process to remove the organic film (mucilage) of the fruit
to obtain the grain [8,33]. These native microbial communities in WW have an advantage
in terms of adaptation to the environment and do not require conditioning or biostimulus
to consume organic matter. The purpose of this study was to determine the capability of
native microorganisms used as the inoculum in non-conventional MFCs to generate energy
and remove organic matter from industrial coffee wastewater.

2. Materials and Methods

Substrate and inoculum. Industrial coffee wastewater (CWW) from a wet coffee
processing plant located in the municipality of Andes in Antioquia, Colombia, was used
as the substrate for the MFCs. In the experiment, two different wastewaters were used:
WW from a fermentation stage (S1) and leachate from a coffee-pulping stage (S2). The
inocula used were a mixed native microbial community (I1) obtained from a 1:1 mixture of
both CWW substrates and a mature native microbial community (I2) [34] obtained from a
previous experiment with non-conventional MFCs. To conserve the inocula, each sample
was mixed with a proportion of 15% pure glycerol in 15 mL conical tubes and stored at
−80 ◦C. The substrate samples were stored in plastic containers at 4 ◦C.

Experimental setup. The open-cathode MFC used in the experiment was fabricated
with unconventional materials [34]. The chamber was fabricated with ABS polymeric
material. The anode was made of carbon felt (G475, AvCarb®) (0.3 × 6.0 × 12.0 cm). The
ion exchange membrane was fabricated with traditional Colombian ceramic materials
(Medellín, Colombia) (brick mesh No. 30) (0.5 × 4.0 × 7.0 cm). A carbon cloth (1.77 g·cm−3,
CCP-30S, Fuel Cell Earth®), 4.0 × 6.0 cm, was used as a cathode, and it was joined to the
ceramic membrane with 99% activated carbon with 1:4 sodium chloride binder. Conven-
tional titanium wire (Gr1, CrazyWire® Warrington, UK) was used as a collector in the
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MFCs’ circuits. The anodic chamber has an effective volume of 200 mL. Figure 1 shows the
experimental assemblies.
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Experimental design and operation mode. To determine the electrogenic potential
and organic-matter-removal capability of the native microbial communities found in CWW,
a 22 factorial experimental design was developed. The sources of substrate (S) and inoculum
(I) were evaluated as factors. The levels of inocula were mixed inoculum (I1) and maturated
inoculum (I2), and the substrate levels were fermentation CWW (S1) and leached CWW
(S2); all these were previously described. The experiment was made in duplicate and with
two controls, using an electrogenic medium of reference adapted from Bagchi et al. [35].
The experimental design’s set of conditions are presented in Table 1. For each setup, 185 mL
of substrate was poured into the anodic chamber, and 15 mL of inoculum was added. The
MFCs were operated at room temperature (approx. 24 ◦C) in open-circuit and closed-circuit
operation modes for 21 days during each stage. The substrate in the anodic chamber
was maintained in suspension with magnetic stirring equipment (INTLLAB®) operated at
150 rpm. The MFCs were operated in the fed-batch mode with the addition of 10 mL of
substrate per day.

Table 1. Experimental design.

Experiment Inoculum Culture Media/Substrate

M1 and M5 Mixed inoculum (I1) Fermentation CWW (S1)

M2 and M6 Mixed inoculum (I1) Leached CWW (S2)

M3 and M7 Maturated inoculum (I2) Leached CWW (S2)

M4 and M8 Maturated inoculum (I2) Fermentation CWW (S1)

Control 1 (C1) Mixed inoculum (I1) Reference electrogenic medium

Control 2 (C2) Maturated inoculum (I2) Reference electrogenic medium

Results register and analysis. Response variables of the experiment were established:
the voltage for open-circuit operation, the current determination for closed-circuit operation,
and the COD determination for the organic-matter-removal capability. Voltage and current
potentials were determined every 24 h with a digital multimeter (UT61C, UNIT® Dongguan
City, China). The power and current densities of the MFCs were calculated considering
Ohm’s law, as shown in Equations (1)–(4). At the end of each open-circuit and closed-circuit
stage, polarization curves were made with resistors between 100 and 15,000 kΩ to establish
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the internal resistance of the system. A cyclic voltammetry analysis was made vs. Ag.AgCl
(KCl 3M, Metrohm Autolab® Utrecht, The Netherlands), the reference electrolyte Fe(CN)6
5 × 10−3 M (in KCl 0.1 M), and reference Au and Pt electrodes (CHI102 CH Instruments®

Austin, TX, USA) to evaluate the electrochemical performance of each MFC in this study;
for the analysis, an M204 Metrohm Autolab® (Utrecht, The Netherlands) was used. COD
analysis was completed in samples taken every 72 h, following the method proposed in
SM 5220 [36]. The statistical analysis for the experimental design was made by an analysis
of variance (ANOVA) and comparison tests (LSD–Tukey’s) with the statistical software R
Studio (V. 2022.02.0 + 443 Boston, MA, USA).

3. Results
3.1. Determination of Electrogenic Potential and Removal of Organic Matter

The cyclic voltammetry analyses of the reference electrodes and the experimental
electrodes were evidence of the system’s ability to transfer electrons (energy generation)
in the non-conventional MFCs used in this study. The behavior exhibited in the tests
conducted through CV analyses showed the same current peaks for the oxidation of 0.3 mA
and −0.3 mA for the reduction of the reference electrolyte (Fe(CN)6) in the tests conducted
on the reference electrodes and the carbon electrodes used in the non-conventional MFCs.
These results showed a similar magnitude for the redox current, indicating that the MFCs’
electrodes fabricated with carbon felt had electric charge transfer properties suitable for
energy recovery without limitations in this BES. The voltammograms are presented in
Figures 2 and 3.
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used in non-conventional MFC assemblies.

The positive voltage measures recorded during the open-circuit operation and positive-
current measures obtained during the closed-circuit operation of the MFCs were an indi-
cation of the electrogenic potential of the CWW’s native microbial communities. Voltage
values between 74 and 350 mV were recorded during open-circuit operation. The highest
voltages were present in MFCs M4 and M8, which corresponded to the maturated inoculum
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(I2). These results suggest an influence by the type of inoculum on the performance of the
cells. Even with C2, it was verified in a reference culture medium inoculated with I2 that the
electrogenic potential during open-circuit operation was considerably higher. The current
in the MFCs during closed-circuit operation was higher in the same experiments for M4,
M8, and C2. In general, currents between 0.01 and 0.06 mA were recorded. The MFCs with
the mixed inoculum without previous biostimulus (I1) showed lower potentials compared
with those with maturated inoculum. However, both the voltage and the current measured
directly in these MFCs were positive. The summary of the results of the maximum values
reached for V and I at the end of each stage are presented in Figures 4 and 5.
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During closed-circuit operation, there were polarization curves between 100 and
15,000 Ω. The electrical resistance for which the MFC registered the highest potential was
considered the minimum resistance to overcome the internal resistance of each system. The
summary of the results is shown in Table A1 in Appendix A. The power density (DP) and
current density (DI) per unit area of the anode electrode, determined using Ohm’s law, are
summarized in Figures 6 and 7. In general, the internal resistances of the systems oscillated
in the range from 1000–3800 Ω. The resistances of MFCs M3–M7 were superior to 10 kΩ.
These results are related to the electrochemical performance of the cells, considering the
influence of the culture medium and the microbial biofilms. In Figure A1, presented in the
Appendix A, it is possible observe the biofilm formed in the anode. This conformation is a
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common microbial growth on the surface that could generate transfer mass limitations and
affect an MFC’s performance. However, the results of the maximum potential determined
by means of the polarization curves for each MFC could be an indication of the specific
behavior of the microbial community and the origin of the culture medium used in each
experiment. These results show that the native microorganisms have an electrogenic
potential associated with the oxidation–reduction metabolism of the organic matter.
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The electrogenic potential of MFCs is directly related to the ability of the microorgan-
isms in the anodic chamber to metabolize the organic load. The ability of native CWW
microbial communities to reduce water contamination was determined by changes in the
COD concentration of the industrial coffee wastewater used as the substrate. A significative
reduction in the contained organic matter was registered for each experiment. The rates
of COD degradation in the MFCs were approximately similar for the open-circuit and
closed-circuit operation modes. COD removal rates between 400 and 600 mg L−1 day−1

were reached, and the results are shown in Figure 8. These results indicated microbial
adaptation in a complex substrate, such as CWW, and the ability of the native microbial
community to metabolize the organic material in this type of wastewater. Figures 9 and 10
show the behavior of MFCs M4 and M8 in which the highest potentials were obtained. The
voltage, current, and COD concentration were tracked as a function of time. A progressive
increase in the voltage and current values was obtained. For M4, shown in Figure 9a,
a gradually increasing potential was generated from the sixth day until the end of the
open-circuit operation. In Figure 9b, after connecting the electrical resistance of the MFCs
for closed-circuit operation, a short period of three days of adaptation was observed; after
that period, a continuous potential increase was also observed.
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For COD concentration, during the first part of open-circuit operation approximately
constant values were observed. However, at the end of each operation stage, a reduction in
organic matter contained in the substrate occurred. This performance could be explained
by the operational mode used in the experiment: the MFCs were operated in feed-batch
mode, with a daily substrate addition to maintain a constant volume in the anodic chamber.
However, this behavior could be attributed to the microbial specialization of the native
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microbial community during the MFCs’ operation and the substrate’s transformation as a
consequence of microbial metabolic activity. The relationship between these parameters
during the MFCs’ performance was inversely proportional, as the organic matter was
transformed and consumed by the electrogenic microbial metabolism, while the voltage
and current were incremented.

An electrochemical characterization of the wastewater used as the substrate in the
anodic chamber was performed by cyclic voltammetry, and the results are presented in
Figure 11. The CV voltammograms for S1 and S2 are presented in Figure 11a,b, respectively.
A negative current is observed in both substrates, indicating that industrial coffee wastewa-
ter is mainly composed of species with reduced potential. The presence of oxidation peaks
was not detected in the samples, and the current was greater than 0.0 mA. Considering
the results and the origin of the initial substrates, their chemical composition is mainly
organic molecules with reducing functional groups. The electrochemical characterization
by cyclic voltammetry of the substrate at the end of open-circuit operation for MFCs M6
and M8 is shown in Figure 12. In Figure 12a, a positive potential for the CV of MFC M6
was recorded. This result indicates the presence of oxidated organic compounds in the
culture medium. On the other hand, in Figure 12b, a slightly negative potential for the
CV of MFC M8 was recorded due to the peak having a negative potential. This result
suggests the organic compounds were reduced. The low values obtained at the end of
open-circuit operation in MFCs M6 and M8 indicate changes in the organic compounds
present in the substrates. These results suggest metabolic differences in the substrates’
transformation are conducted by the mixed native microbial community in M6 and by
the matured native microbial community in M8. Moreover, these results could suggest
differences in the intermediated compounds obtained from the leached substrate (S2) and
from the fermentation substrate (S1). In general, all the MFCs with an experimental design
exhibited the same electrochemical behavior associated with the physicochemical changes
of the medium and the native microbial community that was used.
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3.2. Statistical Analysis

The results of the multiple variance analysis (ANOVA) shown in Figure 13a indicate
that the current obtained using the experimental design, produced by the combination of
the inocula and substrates, is statistically significant (α < 0.05). However, the current of
each factor individually is not statistically significant. After identifying the effect of the
interaction between the inocula and substrates on the generation of the current, each level of
the inoculum factor was set, and an ANOVA was performed again; the results are presented
in Figure 13b. The statistically significant effect corresponded to the matured inoculum
(I2). However, there was no evidence (results not shown) of the effect of the individual
factors or their combination on the voltage-response variable during open-circuit operation.
Figure 14 presents the LSD and Tukey’s multiple comparison tests. The test was performed
to establish which factor majorly influenced on the response variable. The combination of
the matured inoculum (I2) and CWW from coffee fermentation (S1) presented the highest
effect. These statistical analyses confirm that the experiments with a better performance
were M4 and M8, as they had the highest electrogenic potential. It is possible to attribute
a positive effect to the biostimulation of the inoculum before it is used in the MFC. The
results show that the maturated native microbial communities in CWW are better adapted
to a complex substrate and the operational conditions of the BES.

3.3. Formatting of Mathematical Components

I = V/R (1)

DI = I/A (2)

Here, I is the current (mA), V is the voltage (mV), R is the resistance (Ω), DI is the
current density (mA.m−2), and A is the anode area (m2).

P = I × V (3)

DP = P/A (4)

Here, P is the power (W), I is the current (mA), V is the voltage (mV), DP is the power
density (mW.m−2), and A is the anode area (m2).
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4. Discussion

As has been reported in some investigations, MFCs have been evaluated mainly in
the treatment of domestic wastewater, with potentials between 100 and 3000 mW.m−2

reported [13,37–41]. According to the results obtained in this study, microbial fuel cells are
promising as an alternative to the conventional treatment of agro-industrial wastewater.
Proper functioning by non-conventional microbial fuel cells to obtain electrical potentials
and organic matter removal of wastewater from wet coffee processing allows for their ap-
plication as an alternative wastewater treatment in coffee-growing regions. Conventionally,
the microbial communities responsible for efficiency in MFCs arise from the adaptation,
maturation, enrichment, or biostimulation of the microorganisms settled in activated sludge
or other WW treatments [24,42–44]. However, there are a few reports on the application of
these techniques to the native microbial communities obtained directly from the specific
wastewater used as the substrate in an anodic chamber. The obtained results indicate the
capacity of the native microbial communities in industrial coffee wastewater to remove
polluting organic matter. The biostimulus and bioaugmentation of native microbial com-
munities increase the electrogenic potential of non-conventional MFCs, and the native
communities are better adapted to a complex substrate composition. The use of an in-
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oculum maturated under the same operational conditions positively influences power
generation. These results coincide with other reports, which show that the specialization of
microbial communities with electrogenic potential occurs as a function of time [23,45–47]
and due to the operational and environmental conditions [42–44,48–50]. The specialization
of the native CWW microbial communities in MFCs showed similar potential to those
reported in these studies.

The organic matter degradation rates observed in the non-conventional MFCs evidence
that the native microbial communities in CWW are adapted for the catabolism of this
complex substrate, and they can remove large amounts of organic matter with a high initial
COD load in a short period of time. In general, studies of the electrogenic potential derived
from the consumption of organic molecules focus on electrogenic metabolism from simple
carbon sources, such as glucose, or salts, such as sodium or potassium acetate [51–53]. The
organic components of CWW are possibly transformed from large carbohydrates, such
as cellulose or starch, to simple sugars, such as glucose and fructose. These compounds
are metabolized by microorganisms in routes that release energy in the form of ions. The
process is conducted for the native microbial diversity present in the substrate [39,54].
During wet coffee processing, the native microbiota is used during a stage known as
the fermentation process to remove the mucilage residues from the surface of the coffee
bean [2,3,33]. The mucilage is an organic layer that consists of water, sugars, and pectic
substances and has an associated microbiota, mainly yeasts and lactic acid bacteria [8,55].
The native microbiota could be responsible for the early stage of degradation of the complex
organic components, transforming them into the intermediates and precursors for the action
of microorganisms with electrogenic metabolism and with the potential to release electrons
during oxidation–reduction reactions. A diverse microbial community could interact in
MFCs and develop a synergistic biological relationship that allows for the specialization of
a community with the capability to produce electricity from the degradation of the organic
matter in CWW.

Different investigations have addressed the biological diversity associated with the
electrogenic potential in BESs, including a large amount of information on electrogenic
strains and microbial consortia [27,28,56–59]. Some studies have reported the performance
of BES in the treatment of WW with a considerable organic load, in addition to the presence
of nutrients derived from nitrogen and phosphorous, for example, in a mixed system
known as MFC-CW (MFC coupled to a constructed wetland). Tao et al. (2020) report that
the most abundant phyla in an MFC were proteobacteria, cyanobacteria, bacteroidetes,
acidobacteria, chloroflexi, and nitrospirae; in this BES, a >90% reduction of nitrates and a
power density of 6.09 mW·m−2 were achieved using xylose as carbon source compared
to 10% and 2.91 mW·m−2 using cellulose [60]. In another study using MFC-CW, Ge et al.
(2020) recorded a degradation of COD, NO3−-N, total inorganic nitrogen, and total phos-
phorus of 71.9%, 70.1%, 63.2%, and 91.2%, respectively, as well as current and power
densities of 47.77 mA·m−2 and 6.74 mW·m−2, respectively. The predominant microor-
ganisms found were the phyla proteobacteria, actinobacteria, acidobacteria, bacteroidetes
and chloroflexi [61]. On the other hand, in studies on the treatment of hydrolyzed food
waste, an open COD productivity of 0.97 kWh·kg−1 was found with a cylindrical cathode
MFC [37], or, another example, in a residues derived from corn stover treatment, a power
density of 296 mW·m−2 will be prolonged by purification with a double-chamber MFC [62].
However, to apply BESs for wastewater treatment, it is necessary to know the microbial
communities that are responsible for the oxidation–reduction process of organic matter and
energy transformation. For example, within a native microbial community of a complex
substrate, such as CWW, there could coexist a great diversity of prokaryotic and eukaryotic
microorganisms responsible not only for producing usable energy but also for degrading
the carbon sources and complex nutrients during different stages [63,64]. In previous
studies [34,45,64] the presence of the genera Acetobacter sp., Bacillus sp., Clostridium sp., and
Lactobacillus sp., among others, were associated with, in addition to an electrogenic poten-
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tial, the anaerobic or fermentative metabolisms that produce the metabolic intermediates
used by different electrogenic microorganisms as substrates.

5. Conclusions

The native microbial communities present in wet coffee processing have an electro-
genic potential and the ability to remove organic matter from coffee wastewater using
non-conventional MFCs. The results are evidence that BESs could be a promising strategy
for the treatment of agro-industrial coffee wastewater. Native microbial communities could
be adapted and bio-stimulated to favor electrogenic metabolism. Thus, it is necessary to
study the microbial composition of the communities involved in the transformation of
organic matter and electricity production to understand their behavior within the system,
to propose strategies focused on increasing the efficiency of MFCs for the treatment of
coffee wastewater, and on exploring the use of MFCs with different agro-industrial residues.
Bio-electrochemical systems are limited to the laboratory level, as their application in the
field is a challenge due to the cost of materials; however, with an MFC fabricated with non-
conventional materials, it is possible to reduce the material costs and create an alternative
to more expensive conventional wastewater treatment systems.

Author Contributions: All authors have contributed equally for this article. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Colombia-UK Newton Prize Award 2018, “Valorisation of
agro-industrial waste: A Bioelectrochemical System for waste degradation and energy recovery from
industrial coffee waste” (Project Number 1175).

Data Availability Statement: We did not use any genetic data in this publication. The research has
the permission to access genetic resources contract No RGE156-10 issued by the Colombian authority
Ministry of Environment and Sustainable Development (DTCR01). https://dataverse.harvard.edu/
dataset.xhtml?persistentId=doi:10.7910/DVN/DTCR01.

Acknowledgments: The authors would like to thank De los Andes Cooperativa for supplying the
wastewater samples and providing access to the coffee-processing plants.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Results of polarization curves: maximum potential (DP and DI) for each electrical resistance.

Experiment Electrical Resistance (Ω) DP (mW·m−2) DI (mA·m−2)

M1 1000 9.2 1.1

M1.1 3800 73.1 1.5

M2 3800 17.8 0.8

M2.1 2200 203.7 3.4

M3 12,000 20.8 0.5

M3.1 3800 289.6 3.1

M4 3800 230.2 2.7

M4.1 1000 286.0 16.1

M5 3800 372.3 3.5

M5.1 1000 205.0 5.1

M6 3800 941.5 5.5

M6.1 3800 293.1 3.1

M7 15,000 155.1 1.1

M7.1 12,000 403.0 2.1

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DTCR01
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DTCR01
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Table A1. Cont.

Experiment Electrical Resistance (Ω) DP (mW·m−2) DI (mA·m−2)

M8 100 343.8 20.1

M8.1 620 337.5 8.2

C1 1000 11.0 0.0

C1.1 10,000 161.0 1.4

C2 1000 868.6 10.4

C2.1 1000 247.7 5.6
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