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Abstract: The human gut microbiota rely on complex carbohydrates for energy and growth, particu-
larly dietary fiber and host-produced mucins. These complex carbohydrates must first be hydrolysed
by certain microbial groups to enable cross-feeding by the gut microbial community. We consider
a mathematical model of the enzymatic hydrolysis of complex carbohydrates into monomers by a
microbial species. The resulting monomers are subsequently digested by the microbial species for
growth. We first consider the microbial species in a single compartment continuous stirred-tank
reactor where dietary fiber is the only available substrate. A two compartment configuration in which
a side compartment connected by diffusion is also studied. The side compartment is taken to be the
mucus layer of the human colon, providing refuge from washout and an additional source of complex
carbohydrate in the form of mucins. The two models are studied using stability analysis, numerical
exploration, and sensitivity analysis. The delay in substrate availability due to hydrolysis results in
bistability and the unconditional asymptotic stability of the trivial equilibrium. The addition of the
mucus compartment allows the microbial species to survive under conditions that would otherwise
result in washout in a comparable single compartment reactor. This would suggest that depending on
the features of the gut microbiota being studied, extracellular hydrolysis and a representation of the
mucus layer should be included in mathematical and lab reactor models of the human gut microbiota.

Keywords: chemostat model; compartments; hydrolysis; gut model; dietary fiber; mucins

1. Introduction

The human colon houses a complex community of microogranisms that have a sig-
nificant impact on human health and disease. These microbes persist in part on complex
carbohydrates that escape digestion in the upper gastrointestinal tract. The complex carbo-
hydyrates, which primarily include resistant starches, plant cell wall polysaccharides and
non-digestible oligosaccharides, are digested into beneficial metabolites by the microbial
community once they reach the colon [1]. Though complex carbohydrates are the primary
source of nutrients for the entire gut microbial community, their degradation must be initi-
ated by a subset of the population referred to as the primary degraders [1,2]. This group of
gut microbiota possess a suite of enzymes that break down complex carbohydrates into
consumable sugars through the process of enzymatic hydrolysis [1]. We develop two math-
ematical models of the microbial-assisted enzymatic hydrolysis of complex carbohydrates
into consumable sugars, and the growth of microbial species from the produced sugars,
as a system of ordinary differential equations (ODEs). Our models are formulated in the
context of a chemostat framework, mimicking experimental bioreactors that are often used
to study questions of gut health. The carbohydrates are in the form of externally supplied
dietary fiber, and, in the case of the second model, internally produced mucins which are
sloughed from a mucus layer representation. We present a mathematical and computational
analysis of the resulting ODE models. The aim of this work is to explore in greater detail the
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mechanism of the enzymatic hydrolysis of carbohydrates, to understand the impact of this
process on mechanistic models of the gut, and to determine the importance of including a
mucus representation in both mathematical and experimental reactor models of the gut.

The human colon is a tubular-shaped organ consisting of a hollow lumen covered with
a two layer mucosal membrane. The mucus layer has many functions in the gut, including
(i) being a physical barrier that separates the gut microbial from the host, (ii) providing
attachment sites that prevent microbes from washout, and (iii) providing the gut microbiota
with a source of carbon in the form of glycoproteins (mucins) [3]. Mucus is continuously
shed into the lumen, allowing both luminal and mucosal bacteria to forage on glycoproteins.
The mucosal community is thought to differ from the luminal community in composition,
rate of proliferation and resource utilization [4,5]. While the composition of the colonic
microbial community differs between individuals, in a healthy state, there exists a stable
community that grants protective, structural and metabolic benefits to the host [6].

A key role of the gut microbiota is the fermentation of complex substrates that escape
digestion in the upper gastrointestinal tract, the majority of which are insoluble complex
carbohydrates. The degradation of these complex carbohydrates to soluble monomeric
sugars results in the release of energy to the microbial community. This is facilitated
by certain microbial species that have varying degrees of nutritional specialization and
abundance. Endogenously produced mucins also serve as a major source of complex
carbohydrates. In the absence of dietary fiber, such as during low fiber diets, members
of the gut microbial community shift to the metabolism of mucus glycans [3]. This shift
has been correlated with a compromised colonic mucus barrier and several negative
health outcomes, such as imbalances in the gut microbial community (dysbiosis), increased
pathogen susceptibility, and several disease states [3].

Complex organic materials often must be degraded into substrates that can be con-
sumed by microorganisms. The microbiota that inhabit the colon can express enzymes
that the host cannot, allowing for the degradation of resistant macronutrients entering the
colon. While the gut microbial community exhibits a high degree of functional redundancy,
a subset of the gut microbial community are responsible for the extracellular enzymatic
degradation of complex carbohydrates. This primary degradation of complex carbohy-
drates makes nutrients available in the form of soluble monosaccharides that results in
cross-feeding by other groups of bacteria.

It is possible to investigate the interactions of complex carbohydrates, gut microbiota,
and the colonic mucus barrier through in vivo, in vitro, and in silico methods, each with
its advantages and drawbacks. In vivo studies which involve human subjects provide the
greatest biological significance but have ethical, economical and practical constraints. Hu-
man clinical studies have shown correlations between dietary fiber deprivation and mucus
layer integrity, and other negative outcomes; however, human studies of the gut microbiota
are subject to host interference and are typically limited to end-point measurements in
the form of fecal samples [7]. Moreover, while healthy states of homeostasis exist [8], gut
communities vary between individuals [6,7]. These factors make drawing conclusions on
underlying mechanisms and processes difficult.

Many of the shortcomings of in vivo studies can be addressed using in vitro and ex
vivo studies. On a finer scale, this includes culture-based cell models, organ culture, and mi-
crofluidic systems. The goal of these approaches are to study microbiota–host interactions.
These studies can provide functional and mechanistic information such as the adherence of
commensal and pathogenic cells to intestinal epithelial cells and human mucosa. However,
culture-based cell models are limited to human and microbial cells that can be cultured in a
laboratory. In organ culture, organoid traits are dependent on the individual they were ex-
tracted from, and microfluidic systems are expensive and do not allow for high-throughput
experiments. These experiments are limited to addressing specific interactions, and a single
model cannot encompass all the features of colon physiology and gut microbiology [9].

In vitro fermentation models, or experimental gut reactors, can also be used to study
the human colon on a larger scale. These experimental models range from simple batch
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culture to complex continuous culture or ‘chemostat’ systems, and allow for the study
of the gut microbial community without the complexity of the host physiology [6]. For
example, the Simulator of the Human Intestinal Microbial Ecosystem (SHIME), is a multi-
compartment bioreactor that simulates the human gut [10]. In [11] an overview of existing
experimental gut reactor models is presented. Experimental gut reactors are typically
seeded from feces and reach an equilibrium (steady state) that resembles the in vivo distal
colon microbial community [6]. Unlike other types of experimental studies of the gut,
experimental gut reactor studies are highly reproducible, economical and allow for the
culture of whole gut microbial communities [12]. It is also possible to represent the mucus,
for example, by using mucin breads or a mucin-covered microcosm [9]. However, the
equilibrium state of the gut microbial community can vary depending on the source of the
inoculum and varies between individuals and temporally within an individual fecal donor.
Variation in reactor conditions, lack of simulation of mucosal binding sites, and the lack
of host selective pressures can also result in a discrepancy between the composition of a
reactor microbial community and fecal inocula [6]. Experimental gut reactors are easier to
model than the in vivo system. Mathematical modelling can be a useful tool to understand
such experimental systems and their limitations.

There are several existing mechanistic mathematical models of fermentation in the
human colon by the gut microbiota, each with varying degrees of detail. To our knowledge,
the first complete metabolic model of the human colon was presented in [13]. In this model,
the lumen and mucus environments of the colon are considered as a bioreactor and the
processes within the colon are derived from mass balances of the metabolites and microbial
groups involved. The proximal, distal and transverse regions of the luminal colon are each
represented as a continuously stirred-tank reactor (CSTR) connected in series. Intestinal
mucus is modelled as a separate compartment adjacent to each region of the colon, provid-
ing additional substrate with transport of microbes and substrates occurring between the
mucus compartment and its respective luminal compartment. The microbial community
is based on the well-established Anaerobic Digestion Model 1 (ADM1) [14], which is rou-
tinely used in modelling anaerobic bioreactors in wastewater and solid waste treatment.
Similarly, the model presented in [15] is also based on ADM1, using a more simplified
representation of the colon and multiple input substrates. The colon is represented as a
single compartment CSTR and input substrates include carbohydrates, galactooligosac-
charides, and proteins. Following ADM1, [13] use a functional representation of the gut
microbiota based on the degraded substrate and metabolic pathways, dividing the gut
microbiota into four major groups. Carbohydrates are the only substrate considered, as
they are the majority of substrate entering the colon, and are hydrolysed by the biomass
functional group at the top of the metabolic chain. This model was extended in [16,17].
In [16], the colon is represented as a single reactor without separate lumen and mucus
compartments. The gut microbiota are divided into 10 functional groups, each with 10
strains with stochastically generated growth parameters. Multiple substrates are available
for growth, with biomass growth from protein, non-starch polysaccharides, resistant starch
and sugars. Biomass growth from multiple substrates is possible with substrate preferences,
and substrates is directly utilized for growth, without a hydrolysis step. In [18], a software
tool in R is presented, allowing for multiple reactor configurations, substrates, biomass
functional groups, and metabolic pathways. In [17], the colon is represented as a continuous
plug flow reactor with a fixed-medium of constant volume attached to the inner surface
representing the intestinal mucus layer. Materials are well-mixed across a cross-sectional
area and transported through the colon occurs with constant velocity. As in [13], carbo-
hydrates are the only substrate that enter the colon from the upper gastrointestinal tract
but meal times are approximated rather than a constant rate of input. Anaerobic digestion
of carbohydrates follows from [13], excluding gaseous states. A software tool in C of this
model is presented in [19]. In [20], a plug-flow model of the human colon is presented,
with a focus on the impact of colon physiology on bacterial growth and composition. A
hydrodynamic approach is taken and the flow rate is related to intestinal wall contractions
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and water absorption along the colon. The two dominant phyla, the Bacteroidetes and the
Firmicutes, compose the modelled bacterial groups. Finally, in [21], the presented model
includes a sophisticated representation of the mucus layer and its properties, with the same
metabolic processes in [13], excluding gaseous states. In all mathematical models discussed,
the main products of fermentation are short-chain fatty acids (SCFAs), with [13,15,17,20],
including the absorption of metabolites by the host.

Mathematical models of primary degradation have been explored in several studies
in the context of anaerobic digestion and microbial growth in a chemostat. A relevant
chemostat model with an additional degradation step has been previously studied in [22].
In this model, a nutrient is supplied into a chemostat with a single species of microorganism.
The nutrient must first be converted into a growth-limiting intermediate product by the
microorganism before it can be consumed for growth. Both the conversion rate of the
nutrient to intermediate product and the growth rate of the organism through consumption
of the intermediate product are described as monotone response functions. In [22], it
was demonstrated that the washout equilibrium is locally asymptotically stable, even if
an asymptotically stable positive equilibrium point exists. This results in the survival
of the organism being additionally dependent on the initial concentration of the species.
If the initial concentration of the organism is too low, it will tend towards the washout
equilibrium, even if a stable positive equilibrium exists. Moreover, unlike the standard
chemostat in [23], depending on the monotone response function used, the existence of
more than one positive equilibria is possible. For example, for a Monod response function,
there exists two positive equilibria, with one equilibrium being an asymptotically stable
node and the other an unstable saddle point. Unlike the standard chemostat model, the
model outcomes depend on initial conditions in addition to certain parameters.

While the various mathematical models share a common goal of characterizing the
digestion in the colon, not all include a description of a primary degradation of complex
carbohydrates or a distinct mucus compartment. We study the effect of including these
features in a single compartment chemostat model of primary degradation that is extended
to include a lateral diffusive compartment, as first presented in [13]. Representing the
mucus layer as a separate compartment allows us to capture its main features, such as
the distinct ecological niche of the mucus and its function providing attachment sites that
prevent washout. This reactor configuration was studied in detail in [24], where the growth
of a single species from a single growth-limiting substrate was considered in a chemostat
model with a second lateral diffusive compartment. In [24], the first compartment is a
standard single species chemostat with a second compartment that is connected through
lateral diffusion. As with the standard chemostat, there is a constant flow of growth-
limiting substrate into the first compartment only. The substrate and microorganism can
pass between the two compartments through diffusion, but there is no inflow or outflow
from the second compartment. As with the standard chemostat, under certain conditions,
the washout equilibrium is globally asymptotically stable; however, there is an additional
condition for stability that is dependent on diffusion and compartment volume not present
in the standard chemostat. If the two conditions for stability of the washout equilibrium
are not met, then there exists a single asymptotically stable positive equilibrium. It was
found that the addition of the lateral diffusive compartment allowed for the survival of
the organism in cases that would typically result in extinction in the single compartment
standard chemostat model. In particular, if the microorganism is removed from the reactor
at a rate higher than the maximal growth rate, the lateral diffusive compartment can act as
a refuge for microorganisms and allow for survival.

In a mathematical model of carbohydrate digestion in the gut presented in [25], it was
found that the model outcome following antibiotic treatment depended on the survival of
the bacterial functional group responsible for the primary degradation of supplied substrate.
If concentration of this group was reduced below a threshold concentration by antibiotic
treatment, the system would tend to washout and would not recover. To understand the
mechanisms responsible for complete washout, we study a subset of the model presented
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in [25]. While the fermentation of carbohydrates by the gut microbiota is a multistep process,
this study will focus on the first step in the metabolic network. We assume this step occurs
in two stages: (1) the hydrolysis of a complex polysaccharide (fiber) into monomeric sugars
and (2) the substrate-dependent growth of a microorganism through the consumption of
the monomeric sugar. The first stage, hydrolysis, is modelled using Contois kinetics, as are
used in previous mathematical models of the human gut [13,15,17,21], where the growth
rate depends on both the concentration of the microorganism and the concentration of
fiber. The second stage, the growth of the microbial community, is modelled using Monod
kinetics, where the growth rate depends on the concentration of the substrate. We model
these processes in two reactor representations, (i) a single compartment continuously-
stirred tank reactor representing the lumen and (ii) with the inclusion of the mucus as
separate compartment attached to the lumen.

2. Model Formulation

In this section, we introduce two mathematical models of carbohydrate degradation in
the human colon and the microbial group responsible for the hydrolysis of the carbohydrate.
In the first model, we consider only the lumen environment of the colon and the dietary
fiber that reach the colon. The second model adds the mucus environment as well as
host-secreted mucins, which act as an additional source of substrate.

2.1. Single Compartment Model

In the simplest form, the model consists of the fermentation of a dietary polysaccharide
(fiber) to a monosaccharide (sugar) by a single bacterial species in a simple continuous
stirred-tank reactor (CSTR), shown in Figure 1. There is a constant flow of media into and
out of the reactor and the contents of the reactor are fully mixed. Fiber enters into the
reactor at a constant rate and there is a constant outflow of fiber, sugar and biomass. Fiber is
exogenously degraded by the bacteria into consumable sugar through enzymatic hydrolysis.
The sugar made available through the degradation of fiber is the only growth-limiting
substrate available for the bacteria to consume.

2.1.1. Basic Model Assumptions

A1 The reactor is fully mixed and contains fiber, sugar and bacteria. There is constant
inflow of a fiber into the reactor and constant outflow of fiber, sugar and biomass
from the reactor.

A2 Fiber is exogenously broken down into digestible monosaccharide sugar by the
bacteria.

A3 Sugar is a growth limiting substrate consumed by the bacteria. The growth of
bacteria is proportional to the uptake of sugar.

A4 Bacteria die through first-order decay.

2.1.2. Governing Equations

Based on the above assumptions, our model is formed in terms of the dependent
variables: fiber concentration I [gL−1], sugar concentration S [gL−1] and sugar degrading
biomass concentration X [gL−1].

İ = D(I∞ − I)︸ ︷︷ ︸
A1: Transport

− g(I, X)X︸ ︷︷ ︸
A2: Hydrolysis

(1)

Ṡ = −DS︸ ︷︷ ︸
A1: Transport

− f (S)X︸ ︷︷ ︸
A3: Growth

+ YI g(I, X)X︸ ︷︷ ︸
A2: Hydrolysis

(2)

Ẋ = −DX︸ ︷︷ ︸
A1: Transport

+ YS f (S)X︸ ︷︷ ︸
A3: Growth

− αX︸︷︷︸
A4: Decay

(3)
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The substrate dependent growth rate of X from S, f (S) = κSS
KS+S , follows Monod

kinetics. The rate of hydrolysis of I resulting in S, g(I, X) = κI I
KI X+I , follows Contois kinetics.

The dilution rate, D [d−1], is derived from D = Q
V , where Q [Ld−1] is the flow rate and V [L]

is the reactor volume. κI is the maximum specific hydrolysis rate of I to S. The parameter κS
[d−1] is the maximum specific growth rate of X from S and is achieved when S is in excess
(ie. S >> KS). The yield coefficients YI [dimensionless] and YS [dimensionless] are the
yield of S per unit of I and X per unit of S, respectively. The parameters KI [dimensionless]
and KS [gL−1] are half-saturation concentrations.

Figure 1. The reactor representation of the single compartment model. The compartment is fully
mixed. There is inflow of fiber (I∞) and outflow of fiber (I), sugar (S) and biomass (X).

2.2. Dual Compartment Model

We extend the model presented in Section 2.1 to include the mucus environment of
the human colon. The mucus environment is represented as a second compartment that
is attached to the main luminal compartment. A schematic of the reactor configuration
is shown in Figure 2. Mucins are endogenously produced in the mucus compartment
and slough into the lumen. There is a transport of bacteria and sugar between the two
compartments.

2.2.1. Basic Model Assumptions

A1 The reactor consists of two compartments of different volumes. Both reactor compart-
ments are fully mixed and contain fiber, sugar and bacteria. The main compartment
of the reactor represents the lumen of the colon. The second compartment of the
reactor represents the mucus lining of the colon. There is constant inflow of a fiber
into the lumen compartment and constant outflow of fiber, sugar and biomass from
the lumen compartment. There is transport through the mucus compartment.

A2 Fiber is exogenously broken down into digestible monosaccharide sugar by the bac-
teria.

A3 Sugar is a growth limiting substrate consumed by the bacteria. The growth of
bacteria is proportional to the uptake of sugar.

A4 Bacteria die through first-order decay.
A5 Mucins, which are analogous to fiber, are endogenously produced by the host in the

mucus compartment.
A6 There is bi-directional exchange of all components between the lumen and mucus,

excluding fiber. Mucins in the mucus compartment are sloughed into the lumen
compartment, but there is no exchange of fiber from the lumen to the mucus com-
partment. Exchange is linear and donor-controlled.

2.2.2. Governing Equations

From the above assumptions, the model can be formed in terms of the dependent
variables fiber concentration in the lumen Il [gL−1], sugar concentration in the lumen Sl
[gL−1], sugar degrading biomass concentration in the mucus Xl [gL−1], fiber concentration
in the mucus Im [gL−1], sugar concentration in the mucus Sm [gL−1], and sugar degrading
biomass concentration in the mucus Xm [gL−1].
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İl = D(I∞ − Il)︸ ︷︷ ︸
A1:Transport

− g(Il , Xl)Xl︸ ︷︷ ︸
A2: Hydrolysis

+

(
Vm

Vl

)
γs,I Im︸ ︷︷ ︸

A6: Exchange

(4)

Ṡl = −DSl︸ ︷︷ ︸
A1:Transport

+YI g(Il , Xl)Xl︸ ︷︷ ︸
A2: Hydrolysis

− f (Sl)Xl︸ ︷︷ ︸
A3: Growth

− γd
Vl

(Sl − Sm)︸ ︷︷ ︸
A6: Exchange

(5)

Ẋl = −DXl︸ ︷︷ ︸
A1: Transport

+YS f (Sl)Xl︸ ︷︷ ︸
A3: Growth

+

(
Vm

Vl

)
γs,XXm︸ ︷︷ ︸

A6:Exchange

− γa,XXl︸ ︷︷ ︸
A6: Exchange

− αXl︸︷︷︸
A4: Decay

(6)

İm = Λ(Im)︸ ︷︷ ︸
A5: Mucin

− g(Im, Xm)Xm︸ ︷︷ ︸
A2: Hydrolysis

− γs,I Im︸ ︷︷ ︸
A6: Exchange

(7)

Ṡm = YI g(Im, Xm)Xm︸ ︷︷ ︸
A2: Hydrolysis

− f (Sm)Xm︸ ︷︷ ︸
A3: Growth

+
γd
Vm

(Sl − Sm)︸ ︷︷ ︸
A6: Exchange

(8)

Ẋm = YS f (Sm)Xm︸ ︷︷ ︸
A3: Growth

+

(
Vl
Vm

)
γa,XXl︸ ︷︷ ︸

A6: Exchange

− γs,XXm︸ ︷︷ ︸
A6: Exchange

− αXm︸︷︷︸
A4: Decay

(9)

The substrate dependent growth rate of Xi from Si, f (Si) = κSSi
KS+Si

, follows Monod

kinetics where i ∈ {l, m}. The rate of hydrolysis of Si from Ii, g(Ii, Xi) =
κI Ii

KI Xi+Ii
, follows

Contois kinetics. D [d−1] is the dilution rate, from D = Q
Vl

, where Q [Ld−1] is the flow
rate and Vl [L] is the volume of the lumen. κI is the maximum specific hydrolysis rate of S
from I. κS [d−1] is the maximum specific growth rate of X from S and is achieved when
S is in excess. The yield coefficients YI [dimensionless] and YS [dimensionless] are the
yield of S per unit of I and X per unit of S, respectively. KI [dimensionless] and KS [gL−1]
are half-saturation concentrations. Λ(Im) [gL−1] is the concentration of endogenously
produced mucin, the rate of production given below.

Λ =

{
0, if Im

Γmax
> 1

(1− Im
Γmax

)Γprod, otherwise

Figure 2. The reactor representation of the dual compartment model. Both compartments are fully
mixed. For the lumen compartment, there is inflow of fiber (I∞) and outflow of fiber (Il), sugar (Sl)
and biomass (Xl). There is transport of sugar (Si) and biomass (Xi) between the lumen and mucus
compartments, where i ∈ {l, m}. There is no transport of fiber (Il) between compartments. Transport
of mucin (Im) is unidirectional from the mucus to the lumen.
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3. Model Analysis
3.1. Single Compartment Analysis

For use in local stability analysis, we calculate the Jacobian of Equations (1)–(3)
as follows

J(I, S, X) =

 −D− gI(I, X)X 0 −[g(I, X) + gX(I, X)X]
YI gI(X, I)X −D− f ′(S)X YI [gX(X, I)X + g(X, I)]− f (S)

0 YS f ′(S)X YS f (S)− D− α

 (10)

With
g(I, X) :=

κI I
KI X + I

, f (S) :=
κSS

KS + S

f ′(S) =
κSKS

(KS + S)2 , gX(I, X) = − κIKI I
(KI X + I)2 , gI(I, X) =

κIKI X
(KI X + I)2

The Jacobian at a positive steady state is calculated as

J(I∗, S∗, X∗) =

 −D− gI(X, I)X 0 −[g(I, X) + gX(I, X)X]
YI gI(X, I)X −D− f ′(S)X YI [gX(X, I)X + g(X, I)]− D+α

YS
0 YS f ′(S)X 0

 (11)

Proposition 1. Models (1)–(3) preserves non-negativity. Solutions to the initial value problem
are unique and exist for all time. Solutions depend continuously on model parameters and on
initial data.

Proof. Positive invariance of the non-negative cone follows from the standard invariance
theorem [26]. In the non-negative cone the right hand side is differentiable, thus a Lipschitz
condition is satisfied. Thus, local existence and uniqueness of the initial value problem
follow.

From non-negativity, it follows directly that I(t) ≤ min{I(0), I∞}. By comparison
theorem it follows X(t) ≤ X(0) exp(κsYs − (D + α)). From boundedness of X(t) and
I(t) for any finite t it follows that S(t) is bounded for any finite t. Thus, global existence
follows.

Proposition 2. The washout equilibrium (I∗, S∗, X∗) = (I∞, 0, 0) is the only biomass free equilib-
rium. It exists for all choices of positive parameters. It is unconditionally asymptotically stable.

Proof. That for X∗ = 0 necessarily I∗ = I∞ and S∗ = 0 is easily verified. We show local
stability by linearisation. The Jacobian evaluated in the trivial equilibrium reads

J(I∞, 0, 0) =

 −D 0 ∗
0 −D ∗
0 0 −D− α

 (12)

where ∗ denotes a non-zero entry that depends only on parameters. Thus, all eigenvalues
are negative, implying asymptotic stability.

Proposition 3. Necessary for the existence of a nontrivial positive steady state (I∗, S∗, X∗) is

YSκs − (D− α) >
KS(D + α)

YI I∞ , (13)

I∞KI
κI
D + κI

> I∞ − KS(D + α)

YI(YSκS − (D + α))
. (14)
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Proof. Note that in particular (13) implies also that YSκs > D + α. For a steady state with
X∗ > 0 and S∗ > 0 we need YsκsS∗ = (D + α)(KS + S∗), thus S∗ = KS(D+α)

YSκS−(D+α)
. This is

the unique breakeven concentration for the population. For this to be positive, we require
YSκs > D + α.

With S∗ > 0 fixed, at steady state, we obtain two equations for I∗, X∗, namely

0 = −DS∗ − κSS∗

KS + S∗
X∗ + YI

κI I∗

KI X∗ + I∗
X∗, 0 = D(I∞ − I∗)− κI I∗

KI X∗ + I∗
X∗ (15)

Using the second of these and the expression for S∗, we obtain

0 = −DS∗ − κSS
KS + S∗

X∗ + YI D(I∞ − I∗)

This simplifies to

YI I∗ − D + α

DYS
X∗ = YI I∞ − S∗ (16)

which, due to positivity of I∗, X∗ implies (13). Equation (16) defines a line segment in
the positive cone of the I-X plane that connects the points (0, YS

DS∗
YI DI∞ ) and (I∞ − S∗

YI
, 0).

The second equation of (15) rewrites as

0 = I∞ − I∗ − κI
D

I∗

KI X∗ + I∗
X∗

0 = (I∞ − I∗)(KI X∗ + I∗)− κI
D

I∗X∗

0 = I∞KI X∗ + I∞ I∗ − (I∗)2 −
(κI

D
+ KI

)
I∗X∗

This finally defines the function

X∗ =
I∞ I∗ − (I∗)2( κI

D + KI
)

I∗ − I∞KI
, (17)

which has a singularity at

Î∗ =
I∞KI

κI
D + KI

< I∞

A positive steady state is an intersection of the graph of (17) with (16). For 0 < I∗ < Î∗,
(17) is negative. Thus if Î∗ > I∞ − S∗

YI
, no positive steady state can exist. This establishes

(14).

Proposition 4. Under the necessary conditions established in the previous proposition, there
are at most two positive steady states, which can be explicitly calculated in terms of the model
parameters only.

Proof. We continue with the calculations in the previous proof. Alternatively to (17), we
can write

0 = (I∗)2 +
[(κI

D
+ KI

)
X∗ − I∞

]
I∗ − I∞KI X∗

from which, upon substituting (16),

0 =(I∗)2 +

[(κI
D

+ KI

)(−DYS(YI I∞ −YI I∗ − S∗)
D + α

)
− I∞

]
I∗

− I∞KI

(
−DYS(YI I∞ −YI I∗ − S∗)

D + α

)
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Thus, steady states are given by

S∗ =
DKS

YSκs − D
(18)

and

I∗1,2 = −1
2

[(κI
D

+ KI

)(−DYS(YI I∞ −YI I∗ − S∗)
D + α

)
− I∞

]
± 1

2

{[(κI
D

+ KI

)(−DYS(YI I∞ −YI I∗ − S∗)
D + α

)
− I∞

]2

− 4
[

I∞KI

(
−DYS(YI I∞ −YI I∗ − S∗)

D + α

)]}1/2

(19)

and

X∗1,2 =
−DYS(YI I∞ −YI I∗ − S∗)

D + α
. (20)

These are admissible if positive.

3.2. Dual Compartment Analysis

For use in local stability analysis, the Jacobian of Equations (4)–(9) is as follows

J(Il , Sl , Xl , Im, Sm, Xm) =

(
A B
C D

)
, (21)

where

A =

 −D− gIl (Il , Xl)Xl −D− f ′(Sl)Xl − γd
Vl

Sl −g(Il , Xl)− gXl (Il , Xl)Xl

YI gIl (Il , Xl)Xl 0 0
0 YS f ′(Sl)Xl −D + YS f (Sl)− γa,X − α



B =


Vm
Vl

γs,I 0 0
0 γd

Vl
0

0 0 Vm
Vl

γs,X


C =

 0 0 0
0 γd

Vm
0

0 0 Vl
Vm

γa,X



D =


Λ′(Im)− gIm(Im, Xm)Xm − γs,I 0 −gXm(Im, Xm)Xm − g(Im, Xm)

YI gIm(Im, Xm)Xm − f ′(Sm)− γd
Vm

YI gXm(Im, Xm)Xm

+YI g(Im, Xm)− f (Sm)
0 YS f ′(Sm)Xm YS f (Sm)− γs,X − α


With

g(X, I) :=
κI I

KI X + I
, f (S) :=

κSS
KS + S

gXl (Il , Xl) = −
κIKI Il

(KI Xl + Il)2 , gIl (Il , Xl) =
κIKI IlXl

(KI Xl + Il)2

gXm(Im, Xm) = −
κIKI Im

(KI Xm + Im)2 , gIm(Im, Xm) =
κIKI ImXm

(KI Xm + Im)2

Proposition 5. The washout equilibrium (I∗l , S∗l , X∗l , I∗m, S∗m, X∗m) = (I∞, 0, 0, I∗m, 0, 0) is the only
biomass free equilibrium. It exists for all choices of positive parameters. It is unconditionally
asymptotically stable.



Processes 2023, 11, 370 11 of 25

Proof. The washout equilibrium (I∗l , S∗l , X∗l , I∗m, S∗m, X∗m) = (I∞, 0, 0, I∗m, 0, 0) can be calcu-
lated using standard techniques and setting Equations (4)–(9) to zero.

We show local stability by linearisation. The Jacobian evaluated at the trivial equilib-
rium is as follows

J(I∞, 0, 0, I∗m, 0, 0) = (22)

−D 0 −κI
Vm
Vl

γs,I 0 0
0 −D Y IκI 0 γd

Vl
0

0 0 −D− γa,X − α 0 0 Vm
Vl

γs,X

0 0 0 Λ′(I∗m)− γs,I 0 −κI
0 γd

Vm
0 0 − κS

KS
2 − γd

Vm
YIκI

0 0 Vl
Vm

γa,X 0 0 −γs,X − α


(23)

The eigenvalues can be calculated using standard techniques by finding the roots of
the characteristic polynomial of J(I∞, 0, 0, I∗m, 0, 0).

λ1 = −D (24)

λ2 = Λ′ − γs,I (25)

λ3,4 =
−(D + γd

Vm
+ ks

K2
s
)±

√
(D + γd

Vm
+ ks

Ks
2 )2 − 4(Dks

Ks
2 + Dγd

Vm
+

γ2
d

VmVl
)

2
(26)

λ5,6 =
−(D + γa,X + γs,X + 2α)

2
(27)

±
[
(D + γa,X + γs,X + 2α)2 − 4(Dγs,X + Dα− γa,Xα + γs,Xα + α2)

]1/2

2
(28)

For positive parameters, λ1, λ3,4, and λ5,6 have negative real parts. In λ2, for all
positive parameters, Λ′ is zero or negative, resulting in λ2 < 0.

4. Numerical Results

We perform a simulation study of the equations presented in Sections 2.1.2 and 2.2.2 to
validate and augment the analytical results presented in Section 2.1.2. Our analytical results
demonstrate that it is possible for two possible stable equilibria to exist. Our numerical
analysis confirms these results and further demonstrates the bistability of the system and
its dependence on initial conditions.

The systems of ODEs presented in Sections 2.1.2 and 2.2.2 was solved using the ODE
solver solve_ivp as implemented in SciPy; all simulations were conducted using Python 3.8.
The model and simulation experiments are determinisitic and depend on model parameters.
Simulations were run until the concentrations of I, S, and X reached steady state. Steady
state was assumed to be reached when the 2-norm of the RHS was less than ε, where
ε = 10−3.

4.1. Single Compartment

For the following simulations in the single compartment configuration, the param-
eter values given in Table 1 were used unless otherwise specified. These values were
adapted from the mathematical model presented in [17], and were originally derived from
experimental gut reactor studies. In Section 4.1.1, the dilution rate D and the inflow fiber
concentration I∞ were varied to show that enough nutrients must be available for growth
for the microorganism to survive washout, as in the standard chemostat model. Unlike the
standard chemostat model, the outcome can also depend on the initial concentration of
biomass (X0).
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Table 1. Mean values of parameters used in numerical simulations of single compartment model,
adapted from [17].

Parameter Symbol Default Value Unit

Death rate α 0.1 [gL−1]
Dilution rate D 1.007 [d−1]
Inflow fiber concentration I∞ 1.0 [gL−1]
Max specific growth rate of X from S κS 12.627 [d−1]
Max specific hydrolysis rate κI 10.619 [d−1]
Half-saturation coefficient for growth of X KS 0.468 [gL−1]
Half-saturation coefficient KI 0.265 dimensionless
Yield coefficient for X using S YS 0.342 dimensionless
Yield coefficient for hydrolysis YI 1.0 dimensionless

4.1.1. Typical Simulations

In typical simulations, two possible outcomes were observed once the system reached
steady state: the washout of the microbial species or the persistence of the microbial species
in the chemostat at a steady state concentration. As in the standard single species chemostat
model, whether the microbial species survives depends on parameter values, as shown in
Figure 3a,b. In Figure 3a, there is a critical value of D = Dc such that if D > Dc, the growth
rate is not sufficiently large and washout of the microbial species occurs. A similar result
in shown in Figure 3b, where there is a critical inflow fiber concentration, below which
washout occurs.
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Figure 3. Steady state values of fiber (I), sugar (S) and biomass concentration (X) as a function of
(a) dilution rate (D), (b) inflow fiber concentration (I∞), and (c) initial biomass concentration (X0).

In Figure 3c, we can observe the single compartment model, described by Equations (1)–(3),
is bistable. It is possible for two stable equilibrium states to exist for a fixed set of param-
eters, and the system trajectory depends on the initial biomass concentration, X0. From
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Proposition 2, the washout equilibrium is attracting even if a stable positive equilibrium
exists. The initial concentration of biomass must be greater than a threshold value in order
for the system to tend to the positive equilibrium.

4.1.2. Bifurcation Analysis

The results shown in Figure 3c were further investigated using numerical continuation
software. The PyCont sub-package of PyDSTool was used to produce the bifurcation
diagrams in this section. In Figure 4a–c, the steady states of the single compartment model
(Equations (1)–(3)) are plotted as a function of I∞. When I∞ is sufficiently large to satisfy
the conditions for existence of a nontrivial positive steady state given in Proposition 4, two
positive steady states emerge (i.e., when the discriminant in Equation (19) is greater than
zero). I∗1,2 and X∗1,2, are calculated in Section 3.1 as Equations (17), (19), respectively, with
one stable (solid line) and one unstable (dotted line) steady state. S∗1,2 given in Equation (18),
is independent of I∞ and takes the same value for both positive equilibria, if they exist.
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Figure 4. Bifurcation diagrams showing the steady states of (a) fiber (I∗1,2), (b) sugar (S∗), and
(c) biomass (X∗1,2) as a function of inflow fiber concentration (I∞). The solid and dashed lines indicate
stable and unstable steady states, respectively. P1 and P2 refer to the start and end points of the
continuation. LP1 is the limit point.

4.2. Dual Compartment

Numerical simulations were conducted to investigate the role of the mucus com-
partment and the rate of transfer between the lumen and mucus compartment. Default
parameter values from Table 2 were used unless otherwise specified. In Section 4.2.1, we can
observe that the bistability and dependence on initial biomass concentration (X0) observed
in the single compartment model (Figure 3c) can also be observed in the dual compartment
model. In Section 4.2.2, simulations are conducted to investigate the influence of the mucus
compartment and to determine if there is an optimal mucus volume for biomass survival.
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In Section 4.2.3, the rate of attachment of biomass from the lumen to mucus (γa,X) and the
rate of sloughing of biomass from the mucus to the lumen (γs,X) are independently varied
to determine their role in model outcomes and biomass concentrations at a steady state.

The parameters used in the numerical simulations and as the mean values in the
sensitivity analysis are given below. The values were adapted from the gut model presented
in [17], which were originally derived from experimental gut reactor studies.

Table 2. Default parameters used in numerical simulations for dual compartment model, adapted
from [17].

Parameter Symbol Default Value Units

Death rate α 0.1 [gL−1]
Dilution rate D 1.007 [d−1]
Inflow fiber concentration I∞ 1.0 [gL−1]
Max specific growth rate of X from S κS 12.627 [d−1]
Max specific hydrolysis rate κI 10.619 [d−1]
Half-saturation coefficient for growth of X KS 0.468 [gL−1]
Half-saturation coefficient KI 0.265 dimensionless
Yield coefficient for X using S YS 0.342 dimensionless
Yield coefficient for hydrolysis YI 1.0 dimensionless
Diffusion rate γd 3.9 [Ld−1]
Attachment rate of X (Lumen to mucus) γa,X 0.1 [Ld−1]
Sloughing rate of I (Mucus to lumen) γs,I 0.1 [Ld−1]
Sloughing rate of X (Mucus to lumen) γs,X 0.4 [Ld−1]
Maximum mucus amount Γmax 500.0 [gL−1]
Mucus production rate Γprod 50.0 [g(Ld)−1]
Volume of lumen Vl 1.0 [L]
Volume of mucus Vm 1.0 [L]

4.2.1. Typical Simulations

As in the single compartment model, the hydrolysis of fiber results in a dependence on
the initial concentration of biomass for survival due to the stability of the trivial equilibrium
from Proposition 5. In Figure 5, once the initial concentration reaches a threshold, the
system transitions from the stable trivial equilibrium to a stable positive equilibrium.
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Figure 5. The effect of initial concentration of lumen biomass concentration (Xl,0) on steady state
concentration values in the dual compartment model.

4.2.2. Role of Mucus Compartment

Simulations were conducted to investigate how the ratio of lumen and mucus volume
affect the survival of the biomass (Figure 6a). The total reactor volume was held constant
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between simulations (i.e., Vl + Vm = 1.0L). In the single compartment model (i.e., Vl = 1.0L
and Vm = 0.0L), this parameter set and initial conditions would result in the eradication
of the biomass. The addition of the mucus compartment can prevent the washout of the
biomass species from occurring. As shown in Figure 6a, there is an optimal mucus volume
that allows for survival of the biomass. If the mucus volume is too small or too large relative
to the lumen volume of the reactor, the microbial species does not survive. For intermediate
values of mucus volume, which correspond to biological relevant mucus/lumen ratios, the
mucus compartment can act as a refuge for the biomass.
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Figure 6. (a) Steady state concentration values of the dual compartment model as a function of mucus
volume (Vm). The total reactor volume was held constant (Vm + Vl = 1.0). (b) Steady state values
of the dual compartment model as a function of the rate of biomass attachment from the lumen to
mucus (γa,X). (c) Steady state values of the dual compartment model as a function of the rate of
biomass sloughing from the mucus to lumen (γs,X).

4.2.3. Role of Transfer Parameters

The effect of the exchange of biomass between the two compartments was investi-
gated by varying the attachment (γa,X) and sloughing (γs,X) parameters of X in numerical
simulations. The simulations in Figure 6b,c show the effect of varying the exchange rate
of X between the lumen and mucus compartments of the reactor. The parameter set
used for simulations result in eradication of the species when there is no transfer between
compartments, which would correspond to the single compartment model.

In Figure 6b, increasing the attachment rate can shift the system from a washout to
the positive equilibrium. Once γa,X is large enough for survival, the steady state value of
biomass concentration in the mucus Xm increases with γa,X but the steady state concentra-
tion of biomass in the lumen (Xl) decreases at a very low rate.

In Figure 6c, for the sloughing rate γs,X = 0, the system tends to the washout equilib-
rium. Once the sloughing rate γs,X > 0, the system tends to the positive equilibrium until a
critical value of γs,X , at which washout once again occurs. For γs,X > γs,C, where γs,C is the
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critical value of γs,X , too much biomass is sloughed from the mucus compartment to the
lumen compartment and sloughing can no longer overcome the dilution rate in the lumen.

4.2.4. Bifurcation Analysis

As in the single compartment model, the dual compartment model was further investi-
gated using the numerical continuation software in PyDSTool. The figures contained in this
section were produced using this software. In Figure 7, the steady states of Equations (4)–(9)
are plotted as a function of γs,X . When γs,X is sufficiently large, two positive steady states
emerge similarly to Figure 4 showing the emergence of two positive steady states in the
single compartment. As in the single compartment, the one of the positive steady states is
stable (solid line) and the other positive steady state is unstable (dotted line).
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Figure 7. Steady state values of dual compartment model (Equations (4)–(9)) plotted as a function of
the rate of sloughing of biomass from the mucus to lumen (γs,X). The solid and dashed lines indicate
stable and unstable steady states, respectively. P1 and P2 refer to the start and end points of the
continuation. LP1 is the limit point.
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5. Sensitivity Analysis

A variance-based global sensitivity analysis of the model was conducted using the
library SALib in Python [27]. The input parameters were sampled using an extension of
Sobol’s sequence [28], which is a uniformly-distributed quasi-random sampling method. It
is more computationally efficient for the analysis of sensitivity indices than other methods
such as random sampling and Latin Hypercube Sampling [29]. This sampling method
yields N = n(2k + 2) realisations of each simulation, where N is the number of realisa-
tions, n is the sample size, and k is the number of model inputs. The estimation of the
sensitivity indices were calculated using the Sobol’ analysis, a variance-based global sen-
sitivity analysis method proposed in [30], and extended in [31]. This method is robust
to both non-linear and non-monotonic relationships between model inputs and outputs
and provides both first-order sensitivity indices and total-order sensitivity indices. The
first-order effect indices represent the variance in the output that can be attributed to each
input parameter without considering interactions between input parameters. The total
effect indices are the sum of the first-order indices and all higher-order indices involving
that parameter. The total effect indices represent a parameter’s total contribution to the
output variance, combined with all interactions with other parameters. In general, the
parameters most influential to model output will have the highest sensitivity indices. We
present a sensitivity analysis of the parameter set used in the single compartment model
and the parameter set used in the dual compartment model.

5.1. Single Compartment

In Figures 8 and 9, 1024 samples were used for each set of analyses, which results in
20480 model realisations with the nine parameters considered. The yield coefficients given
in Table 1 were held constant through all simulations. The remaining parameters were
sampled with a distribution of ±20% the values given in Table 1.

In Figure 8, each simulation concluded with the positive steady state. In Figure 8a,b,
the influential parameters for both first- and total-effect indices for steady state values are
those that appear in the steady state expressions given in Equations (19) and (20). The first-
and total-order sensitivity indices for the time to reach steady state are given in Figure 9c,d.
The most influential parameters are those that increase the initial growth rate of the biomass,
allowing it to reach a steady state more quickly.

Figure 9a,b show the first-order and total effect sensitivity indices for the steady-state
values of I, S, and X. All parameters, except yield coefficients, were sampled in a range
of ±20% of the mean values in Table 1, unless otherwise specified. The mean value for
initial biomass concentration was set to X0 = 0.035. With this parameter set and range,
particularly the range of X0, it is possible for the system to tend to either the washout
equilibrium or the positive equilibrium. As a result, the parameters most influential to
the sensitivity indices are those that determine which steady state each simulation will
result in, such as the initial concentration of the sugar (S0) and the initial concentration of
the biomass (X0), which had no effect in Figure 8a,b. The first- and total-order sensitivity
indices are given in Figures 9c,d. As in Figure 9a,b, the most influential parameters are
those that determine which equilibrium the system will tend to. If a simulation ends with
the system at washout, this occurs at a faster rate than a simulation that results in the
positive equilibrium.
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Figure 8. (a) First-order and (b) total effect sensitivity indices of steady-state values of fiber I, sugar S
and biomass X. (c) First-order and (d) total effect sensitivity indices of time to steady state values of
fiber I, sugar S and biomass X for a parameter set that tends to the positive steady state. Sampling
was conducted with a variance of 20% on input parameters, excluding yield coefficients. Mean values
were taken from Table 1.

5.2. Dual Compartment Model

In Figures 10 and 11, 1024 samples were used for each set of analyses. This results in
45056 model realisations with the 21 parameters considered. The yield coefficients given in
Table 2 were held constant through all simulations. In Figure 10, the remaining parameters
were sampled with a distribution of ±20% of the values given in Table 2. In Figure 11,
sampling was conducted similarly to Figure 10 but with the parameter range set to ±80%
of the mean values given in Table 2 to capture the saddle-node bifurcation (Figure 7). The
addition of the mucus compartment results in a narrower range in which the bifurcation
can occur.

In Figure 10a,b, each realisation results in the positive steady state, so the most in-
fluential parameters are those that affect the final steady state values, as in the single
compartment system. For all six variables, the influential parameters include those that
effected the corresponding variables in the single compartment system, but also included
parameters involved in mucus production (Γprod) and sloughing of biomass from the mucus
to the lumen compartment (γs,X). The parameters that are associated with a compartment
tend to influence variables associated with that compartment. For example, the dilution rate
(D) and inflow fiber concentration (I∞) only affect luminal variables. When considering the
sensitivity of the time to steady state, almost all parameters considered have an affect on
the first- and total-sensitivity analysis in Figure 10c,d, with γs,X being the most influential.
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Figure 9. (a) First-order and (b) total effect sensitivity indices of time to steady state values of fiber I,
sugar S and biomass X. (c) First-order and (d) total effect sensitivity indices of time to steady state
values of fiber I, sugar S and biomass X. Sampling was conducted with a variance of 20% on input
parameters, excluding yield coefficients. Mean values were taken from Table 1, excluding initial
biomass concentration, which was set to X0 = 0.035. This parameter set captures the saddle-node
bifurcation (Figure 4).

In Figure 11, each simulation can result in either the washout equilibrium or the
positive equilibrium. The parameters that are most impactful on steady state values are
those that influence the growth of the biomass (Figure 11a,b). As in Figure 10, the rate of
sloughing of biomass from the mucus to the lumen (γs,X) and the rate of mucin production
(Γprod) are the most influential to the steady state values of mucosal biomass Xm, and the
dilution rate D and the volume of compartments (Vl , Vm) are most influential to the steady
state values of luminal biomass (Xl). Unlike the single compartment system, the model
outcome is not greatly influenced by the initial concentration of biomass (Xl,0). The total-
order sensitivity indices (Figure 11a) include several additional parameters when compared
to the first-order sensitivity indices (Figure 11a). This would suggest that in the dual
compartment model, interactions between parameters are greater when the saddle-node
bifurcation is captured.

Similarly, in Figure 11c,d, most parameters have some influence, with γs,X and Γprod
being the most influential. The total-order sensitivity indices in Figure 11d shows that all
parameters have influence on the time to steady state, suggesting that there is a high level
of interaction between parameters.
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Figure 10. (a) First-order and (b) total effect sensitivity indices of steady-state values of fiber Il , mucin
Im, luminal sugar Sl , mucosal sugar Sm, luminal biomass Xl and mucosal biomass Xm. Parameters
with sensitivity indices below 0.1 for all variables were omitted for (a,b). (c) First-order and (d) total
effect sensitivity indices of time to steady state of fiber Il , mucin Im, luminal sugar Sl , mucosal
sugar Sm, luminal biomass Xl and mucosal biomass Xm. Parameters with sensitivity indices below
0.01 were omitted for (c,d). Sampling was conducted with a variance of 20% on input parameters,
excluding yield coefficients. Mean values were taken from Table 2.
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Figure 11. (a) First-order and (b) total effect sensitivity indices of steady-state values of fiber Il , mucin
Im, luminal sugar Sl , mucosal sugar Sm, luminal biomass Xl and mucosal biomass Xm. Parameters
with sensitivity indices below 0.1 for all variables were omitted for (a,b). (c) First-order and (d) total
effect sensitivity indices of time to steady state of fiber Il , mucin Im, luminal sugar Sl , mucosal sugar
Sm, luminal biomass Xl and mucosal biomass Xm. Parameters with sensitivity indices below 0.01
were omitted for (c,d). Sampling was conducted with a variance of 80% on input parameters to
capture the saddle-node bifurcation (Figure 7), excluding yield coefficients. Mean values were taken
from Table 2.

6. Discussion

Due to the complexities of interactions within the microbial community in the gut,
it can be difficult to attribute outcomes to the specific underlying functions. Several
mathematical models of experimental gut reactor systems exist; however, the mechanism
of the primary degradation of polysaccharides and the role of the colonic mucus layer
have not been extensively considered. In [25], it was found that the recovery of microbiota
after antibiotic perturbation depended on the survival and recovery of the microbial group
responsible for the primary degradation of carbohydrates. It was also found that antibiotic
perturbation that did not result in the immediate eradication of the primary degraders
could still result in the extinction of the entire community after antibiotics were no longer
present. We considered two mathematical models to investigate the interactions between
the commensal microbial community of the colon, dietary fiber and the colonic mucus
layer. Our results indicate that these features should be included in gut models for certain
applications such as perturbation studies of the human colon.

6.1. Primary Degradation

In the single compartment model (Equations (1)–(3)), a microbial species hydrolyses
a polysaccharide into monosaccharides that can then be consumed for growth in a con-
tinuous stirred-tank reactor setup. The human gut microbiota rely on the degradation of
dietary fiber for energy, and certain microbial groups are responsible for the initial release
of energy through hydrolysis [1]. This step has been observed in experimental work to be a
rate-limiting step in the digestion of carbohydrates by gut microbiota [32]. Hydrolysis is
typically the first step in the multi-stage process of anaerobic digestion, usually consisting
of hydrolysis, acidogenesis, acetogenesis and methanogenesis [33]. In the context of reactor
control and optimization, similar mathematical models have been considered by [22,34,35].
In [22], both hydrolysis and growth are characterised by monotone increasing functions,
such as Monod kinetics. In our model, hydrolysis is defined by the more common Contois
kinetics and growth is defined by Monod kinetics. As in [22], we found that the addition of
the hydrolysis step results in the unconditional stability of the washout equilibrium. This
is in contrast to a system where substrate is readily available for growth and the washout
equilibrium is not unconditionally stable. Even when the positive equilibria exists, the
washout equilibrium remains stable. As a result, if the initial concentration of the biomass
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is too low, washout can still occur, even with the existence of a stable equilibrium point.
Perturbations to the system that do not result in the eradication of biomass can also unex-
pectedly lead to washout as observed in the mathematical model in [25] and occasionally
in bioreactor experiments [22]. While the total washout of the primary degraders is not a
realistic outcome in the human gut, the delay in nutrient consumption caused by hydrolysis
may explain the loss of diversity after antibiotic treatment, observed in [36]. In this murine
study, while the total abundance of the primary degrader group, Bacteroides, recovered
after antibiotic treatment, Bacteroides diversity did not recover. This suggests that certain
Bacteroides species are pushed to extinction after antibiotic treatment. To replicate this
murine study in a mathematical model, the inclusion of several distinct groups of primary
degraders would be necessary.

6.2. Mucus Compartment

The intestinal mucus layer provides a protective habitat for the gut microbiota, pro-
viding attachment sites and a source of nutrients. In our second model, we investigated
the interplay between primary degraders, dietary fiber, the mucus layer and host-derived
mucins. We represented the mucus layer as side compartment attached to the main com-
partment, as in [13,24]. We found that the bistability exhibited in the single compartment
model due to the primary degradation step is preserved even with the addition of the
mucus compartment. However, as shown in [24], the addition of a second compartment
attached through diffusion results in a system that is less prone to washout when compared
to a single compartment system of the same volume. The role of the mucus as a protective
environment has also been observed in experimental studies using the M-SHIME reac-
tor [10], where the mucus layer provided a means through which gut microbiota could
escape stress. It was also determined in [10] that this protection was not due to the mucins
providing extra nutrients. The observations of this experimental gut reactor study support
our modelling results and vice versa, and would suggest that the mucus layer, even in its
simplest representation, should not be neglected in mathematical and experimental gut
reactor models of the gut.

6.3. Importance of Parameters

From the sensitivity analysis of the two models, the most influential parameters
affecting the value of the positive steady state are those that directly or indirectly change
the concentration of the biomass and thus change the steady state values of sugar and
fiber/mucin. When the parameter set can result in each simulation tending towards either
the washout equilibrium or the positive equilibrium, the variance in the output is most
attributable to which steady state each simulation concludes at. Thus, the parameters
that have the most effect are the ones that allow the growth rate at the beginning of the
simulation to be sufficiently large for the trajectory to avoid the basin of attraction of the
washout equilibrium, such as decreasing the half-saturation constant for growth (KS) or
increasing the initial concentration of biomass (X0). Similarly, the variance in time to steady
state also depends on whether the initial growth rate of the biomass will be high enough
for survival. Time to steady state is much smaller when a simulation goes to the washout
equilibrium rather than the positive equilibrium. If the parameter set only allows for the
positive equilibrium, then the influential parameters are those that change the steady state
concentration of the biomass, such as the supply of substrate to the biomass (I∞) and the
amount of time spent in the reactor before the washout (D). In simulations, it was observed
that the mucus compartment protects the biomass from washout. When sampling the
parameters in the dual compartment model, it was found that the bifurcation is primarily
relevant in parameter regimes far from default operating parameters when compared to
the single compartment model. These factors are important to consider when designing the
composition, timing and optimal doses of therapeutics such as probiotics and prebiotics.
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6.4. Implications for Mathematical Models of the Gut

The presented model of primary degradation assumes that primary degraders and
complex carbohydrates can be represented as a general group with a single metabolic
pathway. To further investigate the relationship between primary degradation, dietary
fiber and the mucus layer, as well as their role in dysbiosis and pathologies, multiple
representations of primary degraders should be included, with dietary fiber and mucin
considered as distinct substrates. To capture disease states associated with low fiber diets
and the subsequent thinning of the mucus layer, it is also important to consider the changing
volume of mucus and the availability of mucins. Many existing mathematical models of
the human colon include subsets of these features and can be extended to consider this
relationship as well as the complex bidirectional interaction between host glycan and gut
microbes. While the hierarchical nature of the metabolic pathways in the gut allow for
the study of simpler models, by considering only the top level of the metabolic processes,
cross-feeding and important metabolites, such as short-chain fatty acids, are not considered.
We can conclude that studies of dysbiosis and perturbations in the gut may benefit from the
inclusion of the hydrolysis pathway and a mucus compartment, but certain applications
may also require the incorporation of additional gut features.

7. Conclusions

We have presented a mathematical model of primary degradation of complex carbohy-
drates in a simplified representation of the human colon. We first considered the hydrolysis
of fiber into consumable sugar by a microbial species in a single compartment chemostat
reactor representing the lumen of the colon. We further investigated the effect of adding
a secondary compartment representing the mucosal environment of the colon as well as
endogenously produced mucins as a secondary source of complex carbohydrates.

• In both the single and dual compartment models, the washout equilibrium is uncon-
ditionally asymptotically stable. If the biomass concentration is within the basin of
attraction of the washout equilibrium, this will result in the washout of the biomass
species. This can be due to a perturbation, such as antibiotic treatment, or it can be
due to inoculating the reactor with too low of an initial concentration of biomass.
This is contrary to the standard single species chemostat model in which the washout
equilibrium is unstable when a nontrivial equilibrium exists and survival does not
depend on the initial concentration of the biomass.

• The hydrolysis step results in bistability in both the single and dual compartment
model. A saddle-node bifurcation appears when the positive equilibrium emerges.
This process should not be neglected in mathematical models of the gut and experi-
mental gut reactor systems, particularly in studies of dysbiosis in the gut.

• Numerical simulations show that the addition of the lateral diffusive chamber allows
for the survival of microbial species under conditions that would normally result in
washout. This depends primarily on the transfer parameters, which can be optimized
to maximize the regions that allow for survival. The inclusion of a representation
of the mucus layer should be considered in mathematical gut reactor models and
experimental gut reactor models.

• Fiber and mucins were considered to be metabolically equivalent in terms of the micro-
bial species that degrade them and the yield and type of monomeric sugars produced.
It was also assumed that all primary degraders in the gut can be simplified into a
single microbial group that can degrade all complex carbohydrates and reside in both
the lumen and mucus environments. In the human gut, there are both generalist and
specialist species, each with varying degrees of substrate and environment preferences.
For example, abundant generalist species such as Bacteroides thetaiotaomicron are able
to shift from dietary polysaccharides to mucus glycans in the absence of fiber, while
lower abundance species such as Akkermansia muciniphila can be considered mucus
specialists [7]. Additionally, low fiber diets can result in shifts in microbial composition
and mucus defects. Future mathematical models should consider the representation
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of multiple primary degraders, multiple polysaccharides and a dynamic mucus layer
to study this interplay.

• From the sensitivity analysis of the single and dual compartment models, different
parameters are of importance depending on the desired outcome and should be
considered when including therapeutics in simulation design and experiments, e.g.,
increasing abundance of a target species or preventing the washout of a species.

The mathematical model presented is a simplified representation of the primary
degradation in the human. While it is difficult to draw physiological conclusions from this
model, it provides a detailed study of a mechanism included in many more sophisticated
models of the human colon and can provide justification and direction for future model
development.
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