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Abstract: For machine learning algorithms, fine-tuning hyperparameters is a computational challenge
due to the large size of the problem space. An efficient strategy for adjusting hyperparameters
can be established with the use of the greedy search and Swarm intelligence algorithms. The
Random Search and Grid Search optimization techniques show promise and efficiency for this
task. The small population of solutions used at the outset, and the costly goal functions used by
these searches, can lead to slow convergence or execution time in some cases. In this research, we
propose using the machine learning model known as Support Vector Machine and optimizing it
using four distinct algorithms—the Ant Bee Colony Algorithm, the Genetic Algorithm, the Whale
Optimization, and the Particle Swarm Optimization—to evaluate the computational cost of SVM
after hyper-tuning. Computational complexity comparisons of these optimization algorithms were
performed to determine the most effective strategies for hyperparameter tuning. It was found that
the Genetic Algorithm had a lower temporal complexity than other algorithms.

Keywords: hyperparameter tuning; machine learning; optimization algorithms; ant bee colony (ABC);
genetic algorithm (GA); whale optimization (WO); particle swarm optimization (PSO); support vector
machine (SVM)

1. Introduction

Hyperparameters of machine learning algorithms are notoriously hard to modify
without a lot of computational work [1]. An effective strategy for adjusting hyperparameter
values can be developed with the help of the greedy search and swarm intelligence algo-
rithms. To this end, optimization strategies based on random searches and grid searches
have proven to be both effective and promising. Convergence or running time may be
slowed down due to the costly objective functions used by these searches and the small
population of initial answers [2].

A learning algorithm’s hyperparameters are the parameters whose values regulate
the learning process and determine the models’ final parameters. Finding the best settings
for hyperparameters to get good results from data as quickly as possible is the purpose of
hyperparameter optimization [3]. Any machine learning system will only be as good as its
training phase. Machine learning relies on algorithms that can adapt to new situations and
boost their own efficiency over time. These parameters of the model were discussed in [4].

However, some parameters cannot be adjusted during training and must be set up
ahead of time. The common term for these adjustments is “hyperparameters”. Data
transformation parameters and model structure hyperparameters are defined in [5].
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Changes to a machine learning model’s hyperparameters can have a significant impact
on the model’s predictive performance. A high value for the “tree depth” hyperparameter
can reduce the efficiency of the decision tree method [6]. This shows how careful work
with hyperparameters is essential. There are a variety of methods for finding the optimal
hyperparameters for a specific data collection [7]. When it comes to precision, a manual
setting has its advantages. This allows checks that the selected hyperparameter values
are having the expected effect by re-evaluating the model after each iteration. Manually
adjusting each hyperparameter requires a lot of time and trial and error [8].

Recommended hyperparameter settings in the software package are typically based on
prior research and experience; therefore, this is another way to find a good hyperparameter
setup. Even though the default settings produce satisfactory results on a test dataset, they
may not yield the optimum overall accuracy. Methods for optimizing hyperparameters are
also an option. These techniques are optimization algorithms that make use of the data at
hand to lessen the generalization error of the machine learning model for any given set of
hyperparameters [9].

The effect of the default settings of hyperparameters on the performance of ML
algorithms has been studied [10], and the results have been compared to those obtained by
employing various hyperparameter-tweaking techniques. Most studies investigate various
ways for optimizing hyperparameters in machine language tools in order to address
a particular classification issue. The characteristics of the problem strongly affect the
classification accuracy of a machine learning technique and the optimal combination of
hyperparameters for optimum classification accuracy [11,12].

The current article’s originality lies in the rigorous testing of machine learning method-
ologies, the broad comparison of hyperparameter tuning algorithms, and the originality
of the classification problem itself. No previous study has used hyperparameter tuning
methods to identify which values for these hyperparameters would result in the maximum
classification accuracy for the particular machine learning algorithm being used. It is
important to note that the values for these hyperparameters will vary depending on the
classification task at hand. The main objective of this research is:

(@) To use different ML-based datasets to test the multiple optimization approaches.
(b) To design hybrid Hyperparameter models for testing the computational time, accuracy
and cost of proposed model.

2. Related Work

Machine learning models are used frequently [13]. Hyperparameters can increase a
classifier’s performance. Grid Search, Random Search, Bayesian Optimization, PSO, and
the Genetic Algorithm have been compared (GA). Logistic Regression (LR), Ridge Classifier
(RC), SVC, DT, and NB improve six machine learning algorithms (NB). Change Arabic
sentiment data tests hyperparameters. Sentiment analysis identifies positive and negative
emotions. Arabic’s morphology makes meaning inferences difficult. All classifiers are
evaluated on this dataset after hyperparameter tuning. Each hyperparameter-adjustment
method has been discussed. The before-and-after score for SVC’s hyperparameter was
95.6208.

The authors of [8] improved ML hyperparameters. Machine learning algorithms
were updated using cutting-edge optimization methodologies. This paper answered sev-
eral hyperparameter optimization questions. Benchmark datasets showed optimization
methodologies and hyperparameter tuning. Optimizations of this poll helps industrial
users, data analysts, and researchers identify machine learning hyperparameters. Hyper-
parameter tweaking is computationally demanding [12]. Swarm intelligence can tune
hyperparameters. ABC has such potential. If ABC has few solutions and an expensive
objective function, convergence and execution time may be slow. OptABC speeds up the
ABC algorithm’s near-optimal solution search. OptABC blends bee-inspired techniques
with K-means clustering, greedy algorithms, and opposition-based learning. These tactics
allow OptABC to expand the training set and speed convergence without losing accuracy.
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Comparing this strategy to others tests its validity. Experimentally, OptABC outperforms
best practises.

NLP and ML have tricky hyperparameter tweaking. Sequential Bayesian Optimiza-
tion reduces iterations and trials by using previous information. Our paper describes
multi-stage hyperparameter optimization with more data. First, candidates’ speed and
performance were quickly assessed. Researchers have linked this novel method to Bayesian
Optimization [10]. Machine learning solves problems. Different conditions need adjusting
ML model hyperparameters [14]. Hyperparameters impact ML model performance. Ma-
chine learning and hyperparameter optimization are required. Autonomous optimization
strategies have pros and cons. Our study changed machine learning hyperparameters to
boost performance, and discusses machine learning optimization. We address issues in hy-
perparameter optimization research and review tools and frameworks. Benchmark datasets
examine optimization methodologies and illustrate hyperparameter adjustment. Hyperpa-
rameter tuning for machine learning models benefits industrial users, data analysts, and
researchers.

Optimizing hyperparameters uses grid and manual searches. Random trials are
superior to grid trials for optimizing hyperparameters [7]. Empirical evidence supports
grid search and manual search for deep-belief neural networks. Randomly searching the
same topic can find better or equal models. Random search delivers better model results by
searching a larger, less attractive configuration space. Manual and grid search produces
deep belief networks that have outperformed less thorough alternatives on four of seven
datasets. Gaussian process analysis considers just data-set-based hyperparameters. Grid
search doesn’t work well with new data sets. Recent “High Throughput” algorithms
examine many hyperparameters to get good results. Increasing interest in large hierarchical
models involves comparing adaptive (sequential) hyperparameter optimization algorithms
to random search, as random search provides a natural baseline against which progress
may be measured.

Modern supervised machine learning requires hyperparameters. Optimize predic-
tion outcomes by using the software’s default variables, explicitly configuring them, or
adjusting. Two goals drive this investigation. Researchers provide ways to assess algorith-
mic hyperparameter tunability and data-based defaults. Six machine-learning algorithms
and 38 OpenML datasets were benchmarked. These methodologies analyse modifiability.
These insights can help users choose a tuning strategy, prioritise hyperparameters, and
find tuning spaces. Before learning, machine learning models need hyperparameters (or
meta-parameters), although training parameters can be changed. Researchers must quickly
choose the model’s hyperparameters to deliver the optimal data model. Hyperparameter
learning system optimization requires computational complexity [15]. Researchers propose
integrating optimization methods, searching in a confined space, and lowering training
time. Case studies have proved effectiveness, with authors decoupling adaptive P and
hyperparameters.

Many hyperparameters must be modified when utilising neural networks to tackle
machine learning problems. This paper addresses HSIC for hyperparameter analysis and
optimization utilising goal-oriented sensitivity analysis. Complex, hostile environments
favor hyperparameters. Categorical, discrete/Boolean, and continuous. Sensitivity analysis
is complicated [16]. A sophisticated analytical measure was created to assess hyperparame-
ter effects on neural network output error, which optimized hyperparameters. The benefits
of this are presented in the context of hyperparameter optimization, and an HSIC-based op-
timization algorithm was constructed and used in MNIST and Cipher traditional machine
learning data sets, as well as the approximation of Runge function and Bateman equations
solution. This method makes neural networks affordable.

To meet modern photo classification criteria, researchers have focused on improving
existing technique combinations rather than developing new feature learning approaches.
Humans can handle little iteration hyperparameter tuning. These findings show that com-
puter clusters and GPU processors can improve algorithmic methods. Hyperparameter
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optimization teaches neural networks and DBNs [17]. Random search and greedy sequen-
tial approaches are used to identify optimal hyperparameter values. Random search is
unreliable for training DBNs. Hyperparameter adjustment is difficult without gradients.
Retracing training stages helps researchers estimate cross-validation gradients. Gradients
can be used to optimize tens of thousands of hyperparameters, such as step-size and mo-
mentum schedules, weight initialization distributions, and neural network architectures.
Hyperparameter gradients are generated via stochastic gradient descent with momentum.

Bayesian optimization has enhanced SVMs and DNNs. Training and testing a single
configuration for big datasets is time-consuming and limits performance. [18] Models
generative validation error vs. training set size. The model is trained while optimizing,
allowing configuration exploration on smaller subsets before extrapolation. The accelerated
hyperparameter results in optimization. FABOLAS is a Bayesian optimization approach
that balances global optimality and processing overhead. FABOLAS solves problems
10-100 times faster than Bayesian or Hyperband. HPO optimizes ML algorithms. Most
single-objective HPO approaches focus on improving an error-based metric [19]. Recent
algorithms optimize for conflicting aims. Metamodel-based, metaheuristic, and hybrid
algorithms have been discussed to compare multi-objective HPO quality measurements
and ongoing research.

Response surface methodology (RSM) is used to optimize ANNs, SVMs, and DBNs
(DBN). This research [20] attempts to show that RSM can maintain the ML's efficiency
while reducing the number of runs needed to acquire optimal hyperparameter values. ML
algorithms have analysed Thai food manufacturer data to quantify a material’s quality.
Data partitioning affects ML algorithm efficacy in training, validation, and testing sets.
Researchers have measured prediction precision using an MAE validation set. GS and RSM
hyperparameter settings were confirmed. GS hyperparameter settings are 80% reliable for
DBN but 90% for ANN. ANN, SVM, and DBN save 97, 97.79, and 97.81% of runs, respec-
tively, with RSM. Due to the demand for machine learning tools, cheap HPO solutions are
gaining prominence. Hyperparameters affect ML training costs. Existing HPO algorithms
disregard this issue, preventing cost management [21]. An inexpensive HPO is being
developed. AutoML benchmarks outperform HPO. Academic and business groups work
to detect malware. Several studies [22] used machine learning to spot malicious software.
Comparing methods is difficult; for example, ML parameter selection. Hyperparameter
optimization uses machine learning to optimize parameters. Researchers have compared a
Bayesian model-building approach with model-free, fundamental parameter changes. The
researcher used EMBER, a large benchmark dataset of Windows PE malware, for this work.

Bayesian optimization can fine-tune SVMs and DNNSs. Large datasets may take hours,
days, or weeks to train and confirm. Training set size in a validation error model speeds
hyperparameter tuning. Due to the model’s construction, the authors test numerous
configurations on training data before implementing the best on the full dataset. Bayesian
optimization Fabolas balances knowledge gain and processing costs based on dataset size.
Fabolas identifies high-quality solutions 10-100 times faster than Bayesian or Hyperband.
BO leads to high-throughput, self-contained materials science studies. Few tests have tested
BO on different materials [23]. Researchers have analysed BO in five material systems
using surrogate models and acquisition functions. Gaussian Process (GP) with anisotropic
kernels and Random Forest (RF) accelerate and improve materials optimization objectives.
GP is the most trustworthy, although RF warrants additional study because of its lack
of distribution assumptions, lower complexity, and less severe starting hyperparameter
requirements. Future GP optimization using anisotropic kernels had also been discussed.

Using Boolean functions, researchers in [24] present a simple hyperparameter opti-
mization method. Hyperparameters in a neural network demonstrate high-dimensional
training. Iterative orthogonal polynomial compressed sensing allows parallelization. Ex-
periments on Cifar-10 show this method is better than hand-tuning (e.g., Hyperband and
Spearmint). Hyperband and Bayesian Optimization are slower. Researchers investigated
Random Search 8 Decision trees with discrete Fourier transformations to test this notion.
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Decision tree complexity can be reduced without affecting system performance (polynomial
and quasipolynomial, respectively). Ref. [8] Optimizes machine learning hyperparameters.
This study includes machine learning techniques. The document gives access to hyper-
parameter optimization libraries and frameworks. On benchmark datasets, optimization
methods and hyperparameter optimization are tested. This poll can help business users,
data analysts, and academic researchers build more accurate machine-learning models.
Fine-tuning hyperparameters optimizes machine learning. Hyperparameters for high-cost
or many-parameter objective functions are time-consuming [9]. Since Neural Networks
manage many parameters simultaneously, fine-tuning hyperparameters is time-consuming.
Model accuracy ranges from 25% to 90%, depending on fine-tuning. Grid search, Ran-
dom Forest, and Bayesian optimization fine-tune deep learning hyperparameters. Each
approach has advantages and disadvantages. Grid search can change hyperparameters, but
not several at once. Researchers have evaluated tuning parameters and procedures using
synthetic polymer data. Hyperparameter optimization methods are useful in data mining.
Automated performance evaluations that go beyond optimum hyperparameter choices
haven’t advanced [25]. Authors have used OpenML'’s experimental meta-data to determine
SVM, RE and Adaboost hyperparameters. These results can be used in human-driven
algorithm design and hyperparameter optimization. Prior research has revealed that this
strategy’s hyperparameters effect optimization.

“Machine learning” involves self-improving algorithms. Big biomedical data are in-
volved in biomedical research and healthcare delivery [26]. A method and hyperparameters
are chosen before training a model. Identifying model strategy and hyperparameter values
is difficult. Computer scientists have automated selection techniques and/or hyperparame-
ter settings for supervised machine learning tasks, making them accessible to non-experts.
This article provides ways for employing these techniques on large biomedical data sets.
This will lead to greater research on autonomously selecting evaluation procedures and
hyperparameter values for large biological data sets. Parameters are needed for actual
machine learning. Hyperparameters affect model performance as machine learning models
become more complex. New algorithms [27] swiftly find hyperparameters. We created
and tested two SG++ Sparse Grid methods. Bayesian Optimization uses past discover-
ies to determine the optimal hyperparameter setting, whereas Harmonica narrows the
search space. We compared those using regression and density estimation approaches.
Harmonica parallelizes readily and searches deeply but demands more resources. Bayesian
Optimization speeds up solution searches.

3. Proposed Methodology

In this section we compare the proposed optimization algorithms on Diabetes dataset
to show the efficiency of each algorithm. We used a diabetes dataset of 70:30 (training and
testing respectively). We used the Support Vector Machine as a machine learning model
and then tested its post-hyper-tuning computational cost using four distinct optimization
techniques (Ant Bee Colony, Genetic Algorithm, Whale Optimization, and Particle Swarm
Optimization). To determine the most effective strategies for fine-tuning the hyperpa-
rameters of an algorithm, these optimization algorithms were compared in terms of their
computational complexity. Both datasets were passed through extensive balancing and
then used for classification. Furthermore, in Section 4, the datasets are used in a 70:30 ratio.
To enhance the performance and accuracy of the machine learning models during training,
feature engineering adding, removing, combining, and mutating features in data collection.
For feature engineering to be successful, one must have a thorough understanding of both
the business challenge and the accessible data. Feature learning, also known as represen-
tation learning, is a subfield of machine learning that entails a collection of methods for
automatically discovering, from raw data, the representations required for feature detection
or classification. Figure 1 shows the workflow of the study.
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Figure 1. Proposed flow dataset description.

We acquired PIMA (Diabetes) and heart disease datasets from kaggle.com, accessed on
18 November 2022. This information was collected from the National Institute of Diabetes
and Digestive and Kidney Diseases. The diagnostic parameters included in the dataset were
collected to help in the diagnosis of diabetes. From a larger pool of data, these instances
were selected by hand using rigorous criteria. Subjects were women of Pima Indian descent
who were at least 21 years old. The data was in a raw form, and we applied preprocessing
techniques, i.e., outlier detection and removal, to make it efficient for further use. Figure 2
shows the features of a dataset with frequency distributions.

Four different databases (Cleveland, Hungary, Switzerland, and Long Beach V) make
up this 1988 data set. Although it has 76 properties (including the expected attribute), only
14 were used in any of the studies reported. Target is a field that indicates whether or not
the patient has heart disease. The disease is represented as a value of 1, and absence of
disease as a value of 0. Figure 3 shows Target Outcome in the Heart dataset.
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Figure 3. Target Outcome in the Heart Dataset.

3.1. Data Preprocessing

Data preparation is the steps taken to clean and format raw data so they may be used
in a machine learning algorithm. In the process of developing an ML model, this is the
first and, perhaps, the most important stage. Having access to clean, well-structured data
is a huge advantage when developing a machine learning project, but it is not always
guaranteed. Data preprocessing is broken down into four steps—data cleaning, data
integration, data reduction, and data transformation—to facilitate the process. Figure 4
shows the dataset distribution after data preprocessing.
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Figure 4. Data preprocessing.

3.2. Feature Engineering

To enhance the performance and accuracy of machine learning models during training,
feature engineering allows adding, removing, combining, and mutating features in data
collection. For feature engineering to be successful, one must have a thorough understand-
ing of both the business challenge and the accessible data. Feature learning, also known
as representation learning, is a subfield of machine learning that entails a collection of
methods for automatically discovering, from raw data, the representations required for
feature detection or classification. Figures 5 and 6 shows the correlation matrix of the PIMA
dataset, while Figure 6 shows the correlation matrix of the heart disease dataset.
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Figure 5. Feature Correlation Matrix for PIMA Dataset.
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3.3. Feature Scoring

A feature’s score reflects how well it may be used to predict the dependent (class)
variable. Our feature selection procedure was founded on an individual machine learning
method that we attempted to optimize for a given data set. The method takes the form of a
greedy search, wherein any and all feature combinations are tested against the evaluation
metric. In this research we applied four different optimization techniques for feature
scoring. Each algorithm was used with Support Vector Machine (SVM) to improve accuracy
by using optimal features of data with optimal parameters of SVM. These techniques are
explained in following sections.

There are several methods for feature scoring, including univariate feature selection,
mutual information, and permutation importance. Univariate feature selection involves
evaluating the relationship between each feature and the target variable independently.
The features are ranked based on their correlation with the target variable. This method is
simple and fast, but it does not take into account the potential interactions between fea-
tures. Mutual information is a measure of the dependence between two random variables.
Mutual information between a feature and the target variable can be used to determine the
relevance of the feature. Mutual information takes into account the interactions between
features, but it can be computationally expensive. Permutation importance is a method
that involves randomly permuting the values of a feature and measuring the change in
model performance. The features are ranked based on the magnitude of the change in
performance. Permutation importance is relatively fast and easy to compute, but it is
computationally expensive if the data set is large, and the model is complex. There are also
other methods such as Lasso, Ridge, and Random Forest. Depending on the complexity
of the data and the model, different feature selection methods may be more suitable. In
recent years, several papers have been published on feature selection and feature scoring,
and new methods are constantly being proposed. It is important to compare these methods
with existing similar works to determine which method is most appropriate for a given
dataset and task.

Univariate feature selection. For a feature X and target variable Y, the correlation
between the two can be computed using the Pearson correlation coefficient:

cov(X,Y)
(std(X) = std(Y))

corr(X,Y) =
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where cov(X,Y) is the covariance between X and Y, and std(X) and std(Y) are the standard
deviations of X and Y, respectively.

Mutual information. The mutual information between a feature X and target variable
Y is defined as:

1061) = sun(pia ) = tog (2 )

where p(x) and p(y) are the marginal probability distributions of X and Y, respectively, and
p(x,y) is the joint probability distribution of X and Y.

Permutation importance. Permutation importance can be computed by measuring the
change in model performance before and after permuting the values of a feature X.

Let the performance metric accuracy be (A), then the permutation importance of a
feature X can be computed as:

PI(X) = A(original) — A(permuted)

3.4. Ant-Bee Colony Optimization (ACO)

An algorithm called the ant colony algorithm is modeled after the foraging strategies
of ant colonies to determine the best routes to their food sources. At first, the ants just go
where they want. An ant will return to the colony with “markers” (pheromones) indicating
the location of food along the way. For computational problem-solving and optimal path-
finding with the use of graphs, ant colony optimization (ACO) is a popular optimization
algorithm that makes use of the probabilistic technique.

In this research, we applied ACO with SVM to improve the accuracy of SVM and to
lower the computational cost. It can be seen in Figure 7 that in the first step, all parameters
are initialized, and then bee colony optimization starts with a cyclic process to check global
and guided scout phases. After that, the best parameters are saved, and the optimization is
finished.

Support Vector Parameters
Initialization

Features of Dataset

Bee Colony Initialization

Cyele Start

Global employed Phase

Estimated Probabilily

Global onlooker Bee
Phase

Cyele — Cycle — |

Guided Scont Bee
Phase.
A

Save Best SVM
Parameters and Features

Failure > Limit
No

Yes

Optimization Complete

Figure 7. ACO-SVM Algorithm.

Algorithm 1 shows the pseudocode for the ACO-SVM algorithm:
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Algorithm 1. The ACO-SVM pseudocode.

Begin

Initialize
While stopping criteria not satisfied

Position each ant in starting node

Repeat

For each ant
Choose next node by applying state rule
End for

Until every ant has built a solution

Apply offline pheromone update

Support Vector Machine

Train Model

Test Model

Fitness Accuracy

End while

End

3.5. Genetic Algorithm

In data mining, a genetic algorithm is a sophisticated strategy for determining how to

A

GA/SVM

Initial Population

A 4

Y

Fitness Evaluation

h 4

New Population

Y

Best Individual

Y

Final Feature Subset

Figure 8. GA-SVM Algorithm.

Algorithm 2 shows the pseudocode for the GA-SVM algorithm:

categorize records. The process of classifying data entails two phases: the learning phase
and the classification phase. In the learning phase, a classification model is built, and in the
classification phase, that model is used to make predictions about the output based on the
input. The genes are the parameters (variables) that define an individual. Chromosomes are
formed when genes are strung together (solution). The genetic makeup of an organism is
represented in a genetic algorithm by a string, or alphabetic representation of the genes. In
most cases, binary digits are employed (string of 1s and 0s). Therefore, a genetic algorithm
is preferable to alternative algorithms that maximize either SVM parameters or feature
subsets individually since it may optimize both simultaneously, as seen in Figure 8.
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Algorithm 2. The GA-SVM pseudocode.

Begin
Create initial population
While iteration number < max number of iterations
For Each Chromosome
Evaluate Fitness
Support Vector Machine
Train Model
Test Model
Fitness Accuracy
End For
Parent Select
Crossover
Mutation
Elitism
End While
End

3.6. Whale Optimization

New to the optimization toolkit is the Whale Optimization Algorithm (WOA), which
may be applied to a wide variety of issues. This algorithm features three operators that
mimic the humpback whale’s foraging behavior: the search for prey, encircling prey, and
bubble-net foraging. A comparison method was used to try out new ideas until one works,
with an iterative execution. Since the invention of computers, optimization has been
included into CAD processes. In this research, we applied WOA with SVM to improve the
accuracy of SVM and to reduce the computational cost, as seen in Figure 9.

@

Y

h 4

Input SVM Parameters

v

A

Calculate Fitness Value

h 4

Update Whale Position

Y
Apply Boundary Condition to Return
Back

Display Results

Figure 9. WOA-SVM Algorithm.

Algorithm 3 shows the pseudocode for the WOA-SVM algorithm:
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Algorithm 3. The WOA-SVM pseudocode.

Begin
Create Bubble Net
Updatea, A,Cand L
Calculate the distance between each whale
If(A<1)
Update the position for current whale
Elseif A>1
For each whale
Select the new best position
Evaluate Fitness
Support Vector Machine
Train Model
Test Model
Fitness Accuracy
End for
End if
End

3.7. Particle Swarm Optimization

Particle swarm optimization (PSO) is a computer approach to optimizing a problem by
iteratively trying to enhance a candidate solution with respect to a specific quality measure.
PSO excels at locating the extremes of functions defined on a high-dimensional vector
space. In this research we applied PSO with SVM to improve the accuracy of SVM and to
reduce the computational cost, as seen in Figure 10.

Tnput SVM Parameters

Y
Input n Site, m Fragrance <
Is termination
Criteria Met?
No

Yes

Best Solution for Swarms

h 4

Figure 10. PSO-SVM Algorithm.

Algorithm 4 shows the pseudocode for the PSO-SVM algorithm.
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Algorithm 4. The PSO-SVM pseudocode.

Begin
Initialize
While stopping criteria not satisfied
Position each ant in starting node
Repeat
For each ant
Choose next node by applying state rule
End for
Until every swarm has built a solution
Apply offline pheromone update
Support Vector Machine
Train Model
Test Model
Fitness Accuracy
End while
End

The evaluation of the proposed optimized algorithms with SVM was calculated using

the following metrics in Table 1.

Table 1. Performance Metrics.

Metric Formula
Cost Tn)=n -1
Accuracy =
TP + TN*TP + TN + FP + FN.
where
Accuracy TP = True Positives

TN = True Negatives
FP = False Positives
FN = False Negatives.

4. Results and Discussion

In this section, we compare proposed optimization algorithms on the Diabetes dataset
to show the efficiency of each algorithm. We used Diabetes and Heart Disease datasets of

70:30 (training and testing, respectively.)

4.1. Parameters

We initialized Support Vector Machine parameters as listed in Table 2.

Table 2. SVM Parameters.

Parameter

Description

Possible Values

C
Degree

Kernel
Gamma
Coef0
Shrinking

Probability

The regularisation parameter. For a given value of C, the regularisation
strength decreases. No negatives allowed. A penalty equal to 12 is imposed.
Polynomial degree of the kernel function. Totally disregarded by every
other kernel out there.

Defines the type of kernel to be used in the algorithm.

The ‘rbf,” “poly,” and ‘sigmoid” kernel coefficients.
The kernel function has an independent term. Only in the contexts of poly
and sigmoid does it have any bearing.
Whether or not to employ the “shrinking heuristic”

Allowing for the calculation of probabilities. A performance hit is noticed
when calling fit if this is turned on. The function utilizes 5-fold
cross-validation internally, which can take some time, and prediction may
not agree with prediction.

float, default = 1.0

int, default =3
‘linear’, “poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’} or
callable, default = "rbf’
{’scale’, “auto’} or float, default = "scale’
float, default = 0.0

bool, default = True

bool, default = False
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Table 2. Cont.

Parameter Description Possible Values
Tolerance Acceptable cutoff point for ending. float, default =1 x 1073
Cache Size Indicate the amount of space requ;/r[%ci to dedicate to the kernel cache (in float, default = 200
For SVC, use class weight[i]*C as the value for the class I parameter C. If no
other weight is specified, each class is assumed to have a weight of 1. By
Class Weight dividing n samples by (n classes * np.bincount(y)), the “balanced” setting dict or ‘balanced’, default = None
automatically adjusts weights so that they are inversely proportionate to
class frequencies in the input data.
Set the output to be very detailed. Be aware that enabling this parameter
Verbose may cause problems in a multithreaded environment because it relies on a bool, default = False

Max Iterations

Decision function shape

Random state

per-process runtime setting in libsvm.
A fixed upper bound on the number of iterations the solver can do, or -1 if
there is none.

Whether to return a decision function of shape (n samples, n classes) similar
to that of all other classifiers, or to instead return libsvm’s original
one-vs-one (‘ovo’) decision function. To train models, one-on-one (‘ovo’) is
always used internally, and an ovr matrix is constructed exclusively from
the ovo matrix. However, this parameter is lost in binary classification.
Controls pseudo random number generation for probability estimation data
shuffling. Ignored when probability is False. Pass an int for reproducible
output across function calls.

int, default = —1

{‘'ovo’, ‘ovr’}, default = "ovr’

bool, default = False

4.2. Performance of ACO-SVM

The Ant Colony Algorithm is a simulation of the processes that ant colonies use to

discover the quickest and most direct routes to food sources. Initially, the ants engage in
whatever activities they like. The worker ant deposits “markers” in the form of pheromones
at several locations along the path back to the colony to indicate the possible locations
of sources of food. Ant colony optimization, often known as ACO, is a well-known
optimization strategy that employs the probabilistic method for the purpose of solving
computing problems and determining the optimal path through the use of graphs. In this
particular investigation, we combined ACO and SVM to improve the accuracy of SVM
while simultaneously reducing the amount of processing time required. Figures 11 and 12
illustrates how well the ACO-SVM algorithm performs in terms of the amount of time it
takes and the accuracy it achieves:

Performance of ACO SVM on Diabetes
100 98.1 9%

95 96

90

80

70

60

50 39
4

3

2

1

Accuracy  Precision Recall F1 Score Time

o O © O O

M Performance

Figure 11. Performance of ACO-SVM on Diabetes.
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Performance of ACO SVM on Heart Dataset
100 %7 95 9 95
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60
38
40
20 I
0
Accuracy  Precision Recall F1 Score Time
B Performance
Figure 12. Performance of ACO-SVM on Heart Disease.
The selected best SVM parameters are shown in Table 3.
Table 3. Selected best ACO-SVM parameters.
Parameter Description Possible Values

The regularisation parameter. For a given value of C, the
C regularisation strength decreases. No negatives allowed. A default = 1.0
penalty equal to 12 is being imposed.
Polynomial degree of the kernel function. Totally disregarded
by every other kernel out there.
Kernel Defines the type of kernel to be used in the algorithm. rbf

Degree

4.3. Performance of GA-SVM

The process of data classification in data mining is made more complicated by the
use of genetic algorithms. The process of data classification is broken up into two stages:
training and evaluation. During the training phase, a classification model is created, which
is subsequently utilised during the classification phase to make input-based predictions
about the output. Genes are the fundamental components that distinguish one individual
from another. Chromosomes are formed when genes are connected to one another in this
way (solution). In a genetic algorithm, the genes of an organism are shown in the form
of an alphabetic and numerical string. The usage of binary digits predominates, for the
most part (string of 1s and 0s). It is preferable to use a genetic algorithm rather than other
strategies that maximise SVM parameters or feature subsets individually because a genetic
algorithm has the capacity to optimize both simultaneously. Performance of the GA SVM
is shown in Figures 13 and 14.
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Performance of GA SVM on Diabaets
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Figure 13. Performance of GA-SVM on Diabetes.

Performance of GA SVM on Heart Dataset
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Figure 14. Performance of GA-SVM on Heart Disease.

The selected best GA-SVM parameters are shown in Table 4.

Table 4. Selected best GA-SVM parameters.

Parameter Description Possible Values

Regularisation parameter. For a given value of C, the
C regularisation strength decreases. No negatives default =2.0
allowed. A penalty equal to 12 is being imposed.
Polynomial degree of the kernel function. Totally
disregarded by every other kernel out there.
Kernel Defines the type of kernel to be used in the algorithm. linear

Degree
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4.4. Performance of WOA-SVM

The Whale Optimization Algorithm (WOA) is a brand-new optimization method that
may be applied to a diverse variety of issues. It is named after its namesake, the whale.
The three operators in this algorithm that are modelled after the foraging behaviour of
humpback whales are called the search for prey operator, the surrounding prey operator,
and the bubble-net foraging operator. Iterative execution entails making repeated attempts
at a variety of potential solutions until one of those attempts is effective. Since the beginning
of the computer age, optimising CAD work processes has been an essential component. In
this investigation, we combined WOA with SVM to cut down on the amount of compute
required and to improve SVM'’s accuracy as shown Figures 15 and 16.

Performance of WOA SVM on Diabetes
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Figure 15. Performance of WOA-SVM in Diabetes.

Performance of WOA SVM on Heart Dataset
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Figure 16. Performance of WOA-SVM in Heart Disease.
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The selected best WOA-SVM parameters are shown in Table 5.

Table 5. Selected best WOA-SVM parameters.

Parameter Description Possible Values
The regularisation parameter. For a given value of C,
C the regularisation strength decreases. No negatives default = 2.0
allowed. A penalty equal to 12 is being imposed.
Kernel Defines the type of kernel to be used in the algorithm. polynomial

4.5. Performance of PSO-SVM

Computers utilise a method known as particle swarm optimization (PSO), which
entails constantly attempting to improve a potential solution in terms of some quality metric,
in order to optimize a problem. PSO is an acronym for “particle swarm optimization.”
In particular, the PSO algorithm is exceptional when it comes to locating the extremes of
functions that are defined on a high-dimensional vector space. In this investigation, we
combined PSO with SVM to cut down on the amount of processing time needed and to
improve SVM’s accuracy as shown in Figures 17 and 18.

Performance of PSO SVM on Diabetes
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Figure 17. Performance of PSO-SVM on Diabetes.

Performance of PSO SVM on Heart Dataset
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Figure 18. Performance of PSO-SVM on Heart Disease.

The selected best PSO-SVM parameters are shown in Table 6.
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Table 6. Selected best PSO-SVM parameters.

Parameter

Description Possible Values

Class Weight

C

Kernel

Verbose

The regularisation parameter. For a given value of C, the regularisation strength
decreases. No negatives allowed. A penalty equal to 12 is being imposed.
Defines the type of kernel to be used in the algorithm. polynomial
For SVC, use class weight[i]*C as the value for the class I parameter C. If no other
weight is specified, each class is assumed to have a weight of 1. By dividing n
samples by (n classes * np.bincount(y)), the “balanced” setting automatically adjusts
weights so that they are inversely proportionate to class frequencies in the input data.
Set the output to be very detailed. Be aware that enabling this parameter may cause
problems in a multithreaded environment because it relies on a per-process runtime False
setting in libsvm.

default =2.0

True

References

5. Conclusions

The huge magnitude of the endeavor makes fine-tuning the hyperparameters of ma-
chine learning algorithms a very difficult operation. We were able to find the most effective
method for adjusting the hyperparameters by utilising several algorithmic approaches,
such as greedy search and swarm intelligence. Optimization strategies such as random
search and grid search have a lot of potential and could be very useful for completing this
assignment. The tiny initial population of solutions and expensive objective functions that
these searches use can, in some circumstances, lead to a gradual convergence or a prolonged
execution time. We used the Support Vector Machine as a model for machine learning, and
then we optimized it with the Ant Bee Colony, Genetic Algorithm, Whale Optimization,
and Particle Swarm Optimization to evaluate the computation cost of SVM after it had been
hypertuned. The computational complexity of these optimization methods was analysed
to establish which strategies are the most effective for fine-tuning the hyperparameters.
The time complexity of the genetic algorithm was reduced when compared with the time
complexity of other algorithms. By making use of the aforementioned four optimization
techniques, an investigation like this one might be carried out in the future with the goal of
locating the ideal settings for deep learning.
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