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Abstract: This review explores eco-friendly methods for extracting bioactive natural products from
diverse sources. The introductory exploration emphasizes the increasing demand for sustainable
extraction methods, with a focus on the environmental impact of conventional approaches. Ad-
dressing existing knowledge gaps, this review outlines the key objectives of evaluating various
green extraction technologies, including supercritical fluid extraction, pressurized liquid extraction,
ultrasound-assisted extraction, enzyme-assisted extraction, and others. The primary findings under-
score the remarkable potential and advancements achieved with green solvents, specifically deep
eutectic solvents and bio-based solvents. This review elucidates the synergistic effects achieved by
combining different extraction techniques, exemplified by ultrasound-microwave-assisted extraction
and sequential supercritical fluid and pressurized liquid extraction, among others. Notwithstanding
the promising results, this review emphasizes the importance of acknowledging and addressing
challenges such as standardization, selectivity, scalability, and economic viability.

Keywords: bioactive natural products; natural products extraction; green extraction; extraction
techniques; green solvents; eco-friendly methods

1. Introduction

Natural products (NPs) such as “proteins, dietary fibers, fats and oils, sugars, and
antioxidants, etc.” play a pivotal role in daily life, contributing to various aspects of human
health, nutrition, and well-being [1]. These compounds, derived from plants, animals, and
microorganisms, have been harnessed for centuries for their therapeutic properties and
nutritional benefits. The diversity of NPs provides a rich source of bioactive compounds,
including antioxidants, antimicrobials, and anti-inflammatory agents, which have been
integral to the development of pharmaceuticals and nutraceuticals. Additionally, NPs
form the basis of traditional medicine systems across cultures, highlighting their historical
significance in healthcare. Incorporating NPs into daily routines, such as consuming fruits,
vegetables, and herbal supplements, can positively impact health and contribute to disease
prevention [1,2].

The production of NPs involves a diverse array of sources, including plants, microor-
ganisms, and animals. Plants are a primary reservoir, yielding an extensive variety of
phytochemicals with medicinal and nutritional value [3]. Microorganisms, such as bacte-
ria and fungi, contribute significantly to the production of antibiotics and enzymes [4,5].
Animal-derived NPs, such as collagen and certain peptides, find applications in cosmetics
and pharmaceuticals [6]. However, the sustainable production of NPs faces several chal-
lenges. Overharvesting wild plant and animal populations poses a threat to biodiversity,
and habitat destruction further exacerbates this issue [7]. Additionally, climate change can
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impact the availability and composition of NPs, affecting their yield and quality. Balancing
the demand for NPs with conservation efforts and implementing sustainable harvesting
practices are critical for ensuring the long-term availability of these valuable resources [8,9].

The exploration of alternative sources in the production of NPs aligns with sustainabil-
ity goals, and an increasingly noteworthy aspect of this trend involves the harnessing of
waste products. Amidst the challenges posed by climate change and the overexploitation
of traditional sources, waste streams, including food waste and agricultural by-products,
emerge as valuable reservoirs for bioactive compounds [1]. Repurposing organic waste
not only mitigates environmental concerns related to disposal but also aligns with the
principles of the circular economy. Food waste, comprising discarded fruit peels, seeds, and
vegetable scraps, has become a focus for extracting antioxidants, dietary fibers, and natural
colorants, transforming what was once considered waste into valuable resources [10,11].
Similarly, agricultural residues, such as corn husks and sugarcane bagasse, are being repur-
posed for the extraction of biofuels, enzymes, and other high-value compounds, illustrating
the potential of waste-derived products in contributing to a sustainable natural product
supply chain [12,13].

Global waste production, exceeding 2 billion metric tons annually according to the
World Bank, includes a significant portion of biowastes (approximately 44% [14]), particu-
larly from the food and beverage sectors. The vast quantities of discarded organic materials,
such as fruit peels, vegetable scraps, and expired products, represent a substantial resource
for sustainable NPs production [15]. The extraction of NPs from waste streams involves
a multifaceted process wherein bioactive compounds are isolated from organic materials,
such as food waste and agricultural residues. Conventional extraction techniques, such as
solid–liquid extraction and organic solvent-based methods, have historically been used for
this purpose [16,17]. While effective in obtaining target compounds, these methods pose
challenges related to the use of large quantities of solvents, energy-intensive processes,
and the generation of potentially hazardous waste. Additionally, the reliance on conven-
tional techniques may hinder the attainment of sustainability goals in NP production.
Recognizing these challenges, the field has shifted toward sustainable and green extraction
practices. Recent and emerging approaches, including “green solvent-, supercritical fluid-,
subcritical water-, ultrasonic-, and enzyme-assisted- extraction, etc.”, minimize environ-
mental impact by reducing solvent usage and energy consumption [1,3,18,19]. While these
green technologies show promise, challenges persist in optimizing their efficiency, ensuring
cost-effectiveness, and implementing a holistic life cycle approach to waste management.
Overcoming these challenges is critical for the widespread adoption of green extraction
practices in the quest for sustainable and eco-friendly NP production [18–20].

In light of the evolving landscape of green extraction, this review paper aims to pro-
vide a comprehensive overview of current methodologies, challenges, and advancements
in sustainable NP extraction. The objective is to critically analyze the effectiveness of
green extraction techniques and highlight potential solutions to existing challenges. By
synthesizing the current literature, this review seeks to contribute to the understanding of
green extraction’s role in sustainable NP production and inspire further research directions
in this crucial area.

2. Bioactive Natural Products and Sources

Several investigations have delved into estimating a diverse array of bioactive NPs
within bio-waste streams [21–23]. It is worth mentioning that the foodstuffs with the
highest rates of spoilage include “cereals, roots, tubers, fruits, and vegetables”. “Citrus,
watermelons, bananas, apples, grapes, tomatoes, onions, cucumbers, cabbages, carrots,
and potatoes dominate fruit and vegetable category” [24]. The bioactive NPs that have
been isolated consist of a variety of substances, such as “pigments, fatty acids, volatiles,
anthocyanins, vitamins (A and E), minerals, and tannins” [21]. The animal industry’s
waste products, which include meat and components derived from fish, are excellent
resources for bioactive peptides and proteins [25]. The dairy industry, especially cheese
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production, stands out as another valuable source [26]. Alternatives for the large volumes
of produced wastes include biomass utilization as a source of energy or for feeding animals.
Nevertheless, there are additional beneficial substances that can be extracted from these
wastes and used as food additives or supplements, such as “fibers, pigments, sugars,
flavors, phytochemicals, organic acids, enzymes, and antimicrobial compounds” [27].

Similarly, growing and processing a wide variety of crops also results in massive
amounts of waste for the agricultural sector. Significant remnants are produced by various
crops and fruits, including “rice, corn, soybeans, sugarcane, potatoes, tomatoes, cucum-
bers, oranges, grapes, and apples” [23]. These residues are rich in bioactive NPs and
have the potential to become essential building blocks for the production of beneficial
phytochemicals. Beneficial phytochemicals found in the by-products of processing vegeta-
bles and fruits have many uses, such as protecting the “cardiovascular system, fighting
inflammation, cancer, and microbes” [28–30]. These residues and their bioactive NPs have
been investigated in many studies for use in the manufacturing of functional foods and
cosmetics [31–33]. Additionally, the rising concern about potential health risks associated
with synthetic antioxidants like BHA has fueled interest in identifying and isolating natural
antioxidants from agricultural waste, adding further allure to this sustainable pursuit [29].
Figure 1 encapsulates a concise overview of potential classes of bioactive NPs derived from
agro-food and agricultural waste streams [21,30,34], serving as a quick reference for the
extensive range of valuable compounds that can be harnessed from these sources.
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These abovementioned studies collectively affirm the substantial presence of bioactive
compounds, opening avenues for commercialization. In addition, they highlight the bioac-
tive NPs’ multipurpose uses in the chemical, food, and pharmaceutical sectors, which help
reduce environmental impacts and advance sustainability initiatives [35,36]. The literature
has extensively explored numerous conventional methods for extracting NPs, including
“Maceration, Digestion, Infusion, Percolation, Decoction, and Soxhlet extraction” [37–39].

To summarize, “maceration is a simple extraction method, entails soaking coarse or
powdered plant material in a solvent of choice for at least three days at room temperature,
stirring occasionally, in order to extract valuable compounds. Digestive processes, similar
to maceration, use gentle heating to facilitate extraction. In contrast, infusion involves
soaking plant material in a boiling solvent, usually water, for about 15 min, and then
filtering out the marc to get an extract. This method works for phytochemicals that aren’t
impacted by rising temperatures. A decoction typically involves steeping plant materials in
water for thirty to sixty minutes. Soxhlet extraction is a continuous method, employing hot
solvent for the extraction of phytochemicals” [37,39]. Traditional extraction methods come
with inherent limitations, including low yields and the substantial use of solvents, posing
environmental risks. High-temperature extraction procedures in traditional methods may
cause the degradation of heat-sensitive compounds, leading to the loss of valuable ele-
ments [40,41]. Moreover, these conventional techniques may struggle to effectively separate
compounds of similar chemical properties, resulting in impure extracts. The extensive use
of expensive solvents exacerbates environmental concerns, presenting a significant obsta-
cle [42]. Overcoming these challenges necessitates the adoption of alternative extraction
methods that are not only more efficient but also aligned with sustainability goals and
environmentally friendly practices

3. Green Extraction Techniques

Green extraction techniques represent a paradigm shift in the field of NP extraction,
emphasizing sustainability, environmental consciousness, and efficiency. These methods
prioritize minimizing the environmental impact associated with traditional extraction
processes. Their importance lies in addressing the limitations of conventional techniques,
such as low yields, substantial solvent usage, and the risk of degrading heat-sensitive
compounds. The benefits of green extraction include enhanced efficiency, reduced solvent
consumption, and the preservation of valuable bioactive compounds. Examples of green
extraction techniques encompass “supercritical fluid extraction (SFE), subcritical water
extraction (SWE), ultrasound-assisted extraction (UAE), and microwave-assisted extraction
(MAE)”, among others. The significance and advantages of each method contribute to
a more sustainable and eco-friendly approach to NP extraction. Detailed discussions on
each green extraction technique are provided below, highlighting their unique principles,
applications, and advantages in obtaining bioactive natural products.

3.1. Supercritical Fluid Extraction (SFE)

SFE is notable for being an eco-friendly method that is used to extract NPs [43]. This
technique utilizes supercritical fluids, which are substances that operate at temperatures
and pressures above their critical points, to selectively extract desired compounds of interest
from the initial material. Notably, carbon dioxide (CO2) takes the forefront as the most
widely used supercritical fluid in SFE [44]. SFE offers distinct advantages compared to
traditional extraction methods, because it uses non-flammable and non-toxic solvents,
guaranteeing both safety and environmental friendliness. Since SFE is very selective, it
can preserve the purity of NPs during extraction by allowing for lower temperatures [45].
Additionally, SFE minimizes residue production during extraction, a notable improvement
over the conventional method. The recyclability of supercritical fluids further reduces
residue, contributing to a reduced environmental footprint in the NP industry [20].
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As illustrated in Figure 2, the SFE system is made up of an extraction vessel, heat
exchangers, pressure release valve, pump, and extract recovery, among other necessary
parts [46]. In the initial stage of the extraction process, waste material is introduced into
the extraction vessel. A pressure release valve and temperature controllers are attached
to the extraction vessel to ensure that the conditions are always optimal. Usually, the
main vessel is filled with CO2 that is pumped under specific conditions (Pc = 5.7 MPa
and Tc < 5 ◦C). Heat exchangers cool the CO2 at both the inlet and exit of the extraction
vessel. Following this, a combination of pressure and temperature is applied, decreasing
the solvation properties of the used SFE fluid. The desired bioactive NPs dissolve in the
fluid, and separation occurs in the extract separator, facilitated by an outlet valve [47].
This SFE process persists until the highest recovery rates of the desired bioactive NPs are
achieved from the waste material sample.
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The efficacy of supercritical CO2 (scCO2) in extraction is particularly pronounced for
nonpolar phytochemicals due to its robust solvation capabilities. Polarized phytochemicals,
on the other hand, are problematic because of their poor solubility in scCO2. The addition
of small quantities of co-solvents, such as “ethyl alcohol, water, methanol, ethyl acetate,
acetone, or acetonitrile”, is effective in passing this limitation. This adjustment enhances
the solubility of polar phytochemicals, leading to an increased yield of phytochemicals in
the extract. An impressive 30% increase in the extraction yield of primary cannabinoids
from industrial hemp by-products was observed when ethanol was added to scCO2 as a co-
solvent [48]. Furthermore, the phenolic and flavonoid yields were significantly increased,
and the antioxidant capacity was significantly enhanced with ethanol as a co-solvent [49].
Studies have also highlighted the positive correlation between ethanol-modified scCO2 and
the recovery yield of extracts, along with their antioxidant activity [50]. To further improve
scCO2 extraction, a co-solvent consisting of ethanol and water was also used [51]. Table 1
is summarizing a comprehensive list of recent studies on bioactive NP extraction using SFE
methods. The table includes information on operating conditions, target compounds, and
other relevant details.



Processes 2023, 11, 3444 6 of 31

Table 1. Recent studies on bioactive NPs extraction with the SFE technique.

Feedstock SFE Operating Conditions Final Products and Classifications
ReferenceSource Type Pressure (MPa) Temperature (◦C) Time (min) Co-Solvent Target Bioactive NPs Class Yield (%, w/w)

Moringa oleifera
Seeds 80 57 -- -- Oil (fatty acids) Lipids 39.6

[52]Moringa peregrine 52.9

Prunus avium L.
(sweet cherry) Leaves 28 40 120 --

Polyphenols
Phenolic compounds
Carotenoids

Phytochemicals 2.47 [53]

Solanum tuberosum Potato peels 35 80 -- 20% Methanol Phenolics Phytochemicals 37 [54]

Acrocomia aculeate Fruits
22 40 200 --

Oil Lipids 41.55
[55]8 30 80 Propane 44.12

Apples Seeds 24 40 140 -- Oil Lipids 20.5 [56]
Nantes carrots Carrot peels 35 59 -- 15.5% Ethanol Carotenoid Phytochemicals 86.1 [57]
Lupinus mutabilis
Sweet Seeds 27 50 -- Ethanol Alkaloids Phytochemicals ~4 [58]

Cannabis sativa L.
(Hemp)

Stalks and
leaves 30 45 -- 10% Ethanol Phyto cannabinoids Phytochemicals 6.6 [48]

L. rivularis Stalks 40 -- -- 1% Ethanol Phenolics Phytochemicals 1 [50]

Haematococcus
pluvialis Microalgae 40 65 120 --

Astaxanthin
Lutein
Oil (fatty acids)

Phytochemicals
Lipids 27.9 [59]

Nannochloropsis sp. Microalgae 55 75 -- -- Oil (fatty acids) Lipids 9.4 [60]

Spinach Herbs 25 40 360 -- Carotenoids
Phenolic compounds Phytochemicals 21.6 [61]

Petroselinum crispum Parsley and
seeds 9–30 40 -- -- Phenylpropanoids

Essential fatty acid
Phytochemicals
Lipids

96.4
0.4–2.6 [62]

Curcuma longa L. Turmeric 30 40 -- -- Turmerones Phytochemicals 3.1 [63]

Tomato Skin of ripe
tomato fruits 55 40 80 -- Carotenoids Phytochemicals 79 [64]

Phyllanthus niruri Herbal plant 20 60 200 50/50
Ethanol–water Oil (fatty acids) Lipids ~20 [51]
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In contrast to traditional extraction methods, SFE boasts several distinct advantages.
Firstly, it consistently yields higher quantities of extracts while maintaining their biological
activities, outperforming conventional techniques like Soxhlet [55]. For example, SFE
not only extracts more oils from apple seeds compared with Soxhlet but also produces
extracts with superior oxidative stability. Additionally, SFE is characterized by its simplicity,
rapid operation, and exceptional efficiency, resulting in impressive yields. Secondly, the
dissolution characteristics of the supercritical fluid can be easily enhanced by adjusting
the pressure to a particular temperature. Thirdly, SFE stands out as a non-flammable
and non-explosive green extraction technique, ensuring minimal environmental impact.
Lastly, adding trace quantities of entrainers to SFE can enhance the polar phytochemicals’
solubility, altering the polarity of the extraction medium. In addition, the cost-effective
recyclability of the extraction medium further underscores the economic and environmental
benefits of SFE [3].

3.2. Subcritical Water Extraction (SWE)

The term “subcritical water” describes heated water that is subjected to a pressure high
enough to keep it in a liquid state at a critical pressure, between the boiling point of 100 ◦C
and the critical point of 374 ◦C [65]. Its diffusivity properties improve with increasing
temperature and its “surface tension, viscosity, and dielectric constant” all decrease. It is
interesting to note that at 250 ◦C and 2.5 MPa, the dielectric constant of water drops to 25,
which is similar to organic solvents such as methanol (ε = 33) and ethanol (ε = 24) at 25 ◦C.
In this state, water dissolves a wide range of compounds with medium to low polarity,
similar to organic solvents [66–68].

SWE, also known as “Pressurized Hot Water Extraction (PHWE)”, is a novel method
for extracting bioactive NPs from matrices that include food, agricultural products, and
by-products. The utilization of heated water as the solvent for extraction is the defining
characteristic of this technique [69,70]. The SWE procedure is carried out in an extractor
chamber that is pre-loaded with the sample matrices and a certain quantity of inert material,
most often sand, to avoid sample aggregation. The four sequential steps of the extraction
mechanism are depicted in the schematic flow diagram of SWE (Figure 3). The first step
is to pressurize and heat the sample matrix to a high temperature in order to desorb the
solute at different active sites. Extracts are diffused into the matrix in the second step. Step
three relies on the sample matrix; in this stage, solutes may separate from the matrix and
dissolve in the extraction solvent. Filling the extraction cell with the sample solution and
eluting it is the last step [71].

SWE stands out as a versatile method due to water’s unique ability to act as a universal
solvent, accommodating both polar and nonpolar phytochemicals. Leveraging its capability
to dissolve both types of phytochemicals, SWE was applied to extract steviol glycosides and
antioxidants (both polar and nonpolar) from Bertoni leaves. Higher yields were obtained
from this extraction when carried out at a higher temperature of 160 ◦C as opposed
to the lower temperature of 100 ◦C [72]. Moreover, SWE makes it easier to selectively
extract phytochemicals with particular biological activities. For example, its ability to
selectively extract phenolic compounds from kānuka leaves with a high antioxidant capacity
is particularly noteworthy, as it outperforms conventional ethanol extraction [73]. Table 2
summarizes a comprehensive list of recent studies on bioactive NP extraction using SWE
methods. The table includes information on operating conditions, target compounds, and
other relevant details.
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Table 2. Recent studies on bioactive NPs extraction with the SWE technique.

Feedstock SWE Operating Conditions Final Products and Classifications
ReferenceSource Type Pressure (MPa) Temperature (◦C) Time (min) Co-Solvent Target Bioactive NPs Class Yield (%, w/w)

Cannabis sativa Seeds 100 30 -- Cannabinoids Phytochemicals 96–100 [74]
Teucrium montanum L. Aerial parts 0.1 160 -- -- Phenolics Phytochemicals 42.63 [75]

Kānuka Leaves -- 170 20 -- Phenolic
Flavonoid Phytochemicals 3.81 [73,76]

Defatted orange Peel -- 150 -- -- Flavanones Phytochemicals 21 [77]
Onion waste Skin 10 145 15 -- Flavonol quercetin Phytochemicals ~1.8 [78]
Carménère Pomace 10 150 -- 50% Glycerol Polyphenols Phytochemicals -- [79]

Panax ginseng Meyer Root 9 240 -- --
Phenolic
Sugar
Protein

Phytochemicals
Carbohydrates
Protein

12 [80]

Camellia oleifera Seeds -- 133.59 32 -- Oil (fatty acids) Lipids 94.07 [81]
Castanea sativa (sweet) Nuts -- 250 5 -- Oil (fatty acids) Lipids 29.55 [82]

Cinnamomum Cassia
Blume Spice 2.66 130 60 --

Flavoring
compounds
(coumarin, cinnamic
acid,
cinnamaldehyde,
cinnamyl alcohol,
etc.)

Phytochemicals 10.95 [83]

Vitis vinifera Vine canes -- 250 -- --

Phenolic content
Flavonoids
Phenolic acids
Flavonols

Phytochemicals 38.4 [84]

Carica papaya L. Seeds 10 150 5 --
Phenolic acids
Flavonoids
Stilbene

Phytochemicals 26.3 [85]

Morus nigra L. Fruit 15 60 60
Phenolic
Flavonoids
Anthocyanin

Phytochemicals 3.89 [86]

Lentinus edodes Fruit -- 30 30 --
Polysaccharides
Xylose
Mannose

Carbohydrates 94–97 [87]
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Water, when used in SWE, has demonstrated superiority in recovering phytochemicals
compared with other solvents. A number of studies have compared SWE to other extraction
methods, such as maceration, Soxhlet, reflux extraction, and others, to determine its
extraction efficiency and activities. These works, as referenced in [88–91], consistently
demonstrate that SWE is superior to other extraction techniques or, at the very least,
comparable to them, when only one solvent is used. Water was determined to be the most
effective solvent for subsequent extractions after a study compared its efficiency to that of
“acetone, n-hexane, 96% ethanol, ethyl acetate, and methylene chloride”. The SWE that
used water had the highest levels of polyphenolics, flavonoids, and antioxidant activity [90].
Table 2 shows that pressure has less of an impact on extraction efficiency than temperature
and time. The optimal extraction temperature for flavonoids falls within the range of 150 to
200 ◦C, with an extraction time between 10 and 50 min.
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On the other hand, polyphenols, which are also referred to as polyhydroxyphenols,
constitute a structural class predominantly found in nature, characterized by the presence
of multiple phenolic units and the absence of nitrogen-based functions. These compounds
have the remarkable ability to resist oxidation, and are commonly found in a wide variety of
foods, including herbs, nuts, tea, algae, leaves, fruits, and vegetables [92]. The majority of
experiments have consistently demonstrated the superiority of SWE over maceration, Soxh-
let, and others [93,94]. On the other hand, a recent study offered an opposing viewpoint,
arguing that pomegranate peel is better valued at SWE’s lower temperatures. According
to the study’s findings, MAE is more effective than SWE in this situation for phenolic
extraction from pomegranate peel, especially when trying to produce an extract devoid of
5-hydroxymethylfurfural [94].

Furthermore, organic acids (e.g., fatty acids) in NPs are ubiquitous in plant tissues,
including stems, roots, and fruits. All these acids are water- or ethanol-soluble and manifest
acidic properties, yet they pose challenges in dissolving in other organic solvents. The use
of SWE was investigated for the extraction of organic acids from diverse matrices, such
as ferulic acid, gallic acid, and chlorogenic acid. Nevertheless, it unavoidably coextracted
additional active ingredients, such as “proteins and phenolics [95], flavonoids [96], lipids,
peptides, amino acids”, and other organic compounds. Recent research on sweet and
sour cherry stems used SWE to extract sugars, organic acids, alcohols, and other organic
compounds. Remarkably, the two samples’ chemical compositions were discovered to be
similar [97].

In general, SWE offers several advantages over steam distillation, providing superior
products in less time and with lower energy consumption. Water’s unique properties, such
as its eco-friendliness, universal solvent capabilities, suitability for recovering thermally
labile phytocompounds, and widespread availability, make it the preferred extractant
in SWE.
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3.3. Ultrasound-Assisted Extraction (UAE)

UAE is commonly performed with an ultrasonic probe or bath, both of which, as
illustrated in Figure 4, depend on a piezoelectric transducer to provide ultrasonic power.
The solid matrix is suspended in a solvent in an ultrasonic bath apparatus, which consists
of a stainless steel tank linked to the transducer. The ultrasonic probe, in contrast, is a horn
or probe attached to a transducer that, when submerged in the extraction vessel, transmits
ultrasound waves into the medium with little energy loss. Because of the greater ultrasonic
intensity at the probe tip, probe-based systems are often considered to be a more effective
tool for bioactive NP extraction than bath systems [98,99].
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UAE uses solvent extraction and ultrasonic waves to extract desired chemicals from
a wide range of materials. “Acidified water, alcohols, ethanol, acetone, and water” are
some of the solvents that have been used to extract various compounds during UAE [100].
Ultrasound, with frequencies higher than what humans can hear (>20 kHz), consists of
cycles of expansions and contractions of molecules, effectively extracting them from a source
material [101]. Increased solvent-to-waste sample contact area and cell wall permeability
are both mechanical effects of ultrasonic cavitation [3].

The number of bioactive NPs produced with UAE is greatly affected by the pretreat-
ment of food scraps. Blanching, drying, and milling are some of the pretreatment processes,
that raw materials go through when trying to extract pectin and polysaccharides from fruit
and vegetable by-products. Blanching is a process that eliminates enzymes by quickly
cooling the by-products in an ice bath after being immersed in hot water for 3 to 5 min at
temperatures between 80 ◦C and 100 ◦C [102]. The drying process involves placing the
sample in a hot air oven set at a temperature range of 45 ◦C to 60 ◦C for 24 to 72 h until a
constant weight is achieved. Then, the dried peels are ground into particles smaller than
0.25 mm in diameter using an electric grinder [103,104].

UAE has emerged as a versatile and efficient method for extracting bioactive NPs
from various sources. This technique has been widely investigated for the extraction of
compounds such as pectin [105], polyphenols [106], oils [107], and many others from fruits,
vegetables, and agriculture residues. Recent studies have extensively tested UAE for its
efficacy in extracting bioactive NPs, and a summary of these findings is compiled in Table 3,
providing a comprehensive overview of the diverse compounds successfully extracted
using this extraction approach.



Processes 2023, 11, 3444 11 of 31

Table 3. Recent studies on bioactive NPs extraction with the UAE technique.

Feedstock UAE Operating Conditions Final Products and Classifications
ReferenceSource Type Temperature (◦C) Frequency (kHz) Time (min) Solvent Target Bioactive NPs Class Yield (%, w/w)

Pomegranate Peel 61.9 20 28.31 Citric acid
solution Pectin Phytochemicals 23.87 [108]

Mango Peel 85 20 10 Nitric acid Pectin Phytochemicals 8.6 [109]

Orange Peel 20 10 Citric acid
solution Pectin Phytochemicals 28.07 [110]

Eggplant Peel -- -- 30 Acidified water Pectin Phytochemicals 33.64 [111]
Orange Peel -- -- -- Ionic liquid Carotenoids Phytochemicals 52–63 * [112]
Cymbopogon
martinii Leaves -- 26 16 Sodium cumene

sulfonate Geraniol Phytochemicals 1.9 [113]

Coffee silverskin Flake -- 20 10

Deionized water
or
methanol–water
(80/20, v/v),

Phenolic contents Phytochemicals 0.89 [114]

Olive
(Oleaeuropaea L.) leaves 27 20 -- Distilled water

and ethanol Phenolic compounds Phytochemicals 5.7–11.5 [115]

A. nodosum Macroalgae -- 20 2–5
Polysaccharides
Carbohydrates
Phenolic compounds

Carbohydrates
Phytochemicals 16.54 [116]

* Recovery.
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UAE stands out as a pivotal technique for extracting bioactive compounds, showcas-
ing its broad applicability. Noteworthy achievements include the successful extraction of
phenolic compounds from strawberries [117], yielding favorable results. Additionally, this
technique has been used to extract phenolic derivatives and anthocyanines from grape
peels, as documented in another study [118]. In contrast to the 120 min needed for the mac-
eration method, which produced lower quantities, a comparative study showed that UAE
significantly reduced extraction time to 30 min, highlighting its efficiency. In addition, UAE
is great at increasing the rate of extraction while using a smaller amount of solvent [119,120].
Consequently, UAE emerges as a preferred and efficient extraction method.

However, recent studies have noted that the frequency used in UAE can actively
modify and positively impact the extraction of chemicals from a material [121]. Intriguingly,
a study found that phenolic yields were higher at 40 kHz compared with 120 kHz [122].
This observation emphasizes the need for a thorough exploration of ultrasonic parameters,
encouraging researchers to simultaneously evaluate and optimize these factors to enhance
extraction efficiency. The dynamic interplay between frequency and extraction outcomes
underscores the importance of meticulous parameter adjustment for effective and tailored
UAE processes.

3.4. Microwave-Assisted Extraction (MAE)

MAE is a modern technique for NPs extraction that combines the use of microwaves
with solvents. It is extremely useful for enhancing extraction kinetics by heating the
solvent and material at frequencies between 300 MHz and 300 GHz. This heating process
is achieved with the direct impact of microwaves on polar molecules, leading to energy
conversion through dipolar rotations. MAE is a new extraction method that uses microwave
energy to quickly and efficiently remove bioactive NPs from a variety of sources (see
Figure 5 for a schematic diagram). The heating in MAE is directly correlated with the
dielectric constant of the solvents [123].

The MAE process unfolds through a series of systematic steps to ensure the efficient
extraction of phytochemicals from diverse sources. Commencing with the generation of
electromagnetic (EM) waves, this process effectively segregates targeted compounds from
the waste matrix (e.g., peel) by creating heightened pressure and temperature conditions.
Afterward, bioactive cellular components in the waste matrix (sample) interact with the
waves, which transport photon energy and cause the bound moisture in the waste to be
heated. The resultant cellular-level pressure buildup causes rapid cellular swelling and
rupture, which allows the chosen solvent to diffuse into the waste matrix. In the end,
targeted phytochemical solutes are leached from the waste matrix using this orchestrated
sequence [39].

The extraction process in MAE encompasses the diffusion of solvents into the sample,
followed by the separation of the solute from the functional site and, ultimately, the release
of solutes into the solvents. This technique excels in preserving the biological activities of
the extracts. An illustrative instance is the improvement in microwave-assisted extraction
(MAE) for extracting green tea, demonstrating its ability to boost the antioxidant activity of
phytochemicals. Additionally, this optimization has shown gains in the extracts’ intended
color quality and total phenolic content. The efficacy of MAE extends beyond extraction,
contributing to an enhancement in the key properties in the obtained extracts [124].

The recent studies on the extraction of bioactive NPs using MAE are comprehen-
sively summarized in Table 4, presenting essential information on various aspects of the
extraction process.
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Table 4. Recent studies on bioactive NPs extraction with the MAE technique.

Feedstock MAE Operating Conditions Final Products and Classifications
ReferenceSource Type Temperature (◦C) Power (W) Time (min) Solvent Target Bioactive NPs Class Yield (%, w/w)

Green tea Tea bags -- 350.65 5 Distilled water
Phenolic content
Flavonoid content
Tannin content

Phytochemicals 17.58 [125]

Sapindus mukorossi Seed 72 460 42 n-hexane Oil Lipids 40.12 [126]
Carrots Juice waste 165 9.39 Flaxseed oil Carotenoids Phytochemicals 77.48 [127]
Curcuma longa L.
(turmeric) Roots 160 29.99 Ethanol Curcuma oil Lipids 10.32 [128]

Soy sauce Sauce 70 -- 30

Cyclohexane
Toluene
Chlorobenzene
Styrene

Volatile oils Lipids 80.86–105.71 [129]

Centella asiatica L.
(Tiger grass) Leaves -- 450 60 --- Phenolic Phytochemicals 45,474 * [130]

Solanum melongena
L. Eggplant peel -- 269.82 7.98 Ethanol

Phenolics
Flavonoid
Anthocyanin

Phytochemicals 3.27 [131]

Aged garlic Vegetable 120 1200 60 Water
Organosulfur
Carbohydrates
Phenolic

Phytochemicals
Carbohydrates 4.05 [132]

Kaempferia
parviflora rhizomes Plant 83 -- 2.5 Methanol

Phenolics
Flavonoid
Gallic acid

Phytochemicals
Lipids 379.5+ [133]

Punica granatum Pomegranate
peel -- 450 4 Ethanol Phenolic content Phytochemicals 47.3 [134]

Coffea liberica Coffee -- 700 3 Methanol
Phenolics
Flavonoid
Carbohydrates

Phytochemicals
Carbohydrates 89.87 [135]

Pineapple Peel 600 40 Ethanol +
distilled Water

Phenolics
Flavonoid
Tannin
Protein

Phytochemicals
Protein -- [136]

* Recovery, +µg/mL.
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The MAE technique has proven to be versatile in obtaining a range of phytochem-
icals, including saponins, polyphenols, sterols, and flavonoids, from a variety of plant
sources [137–139]. The direct impact of microwaves on these compounds contributes to the
effectiveness of the extraction process. This highlights the adaptability of MAE in acquiring
diverse phytochemicals across different plant sources [140].
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Furthermore, operating parameters such as microwave power, extraction time, and
temperature play crucial roles in influencing the extraction efficiency in MAE. An example
that demonstrates this point is the successful carotenoids extracted from carrot waste. The
results showed that the extraction time and microwave power played a significant role
in this process. The optimization of these parameters becomes imperative for achieving
desired outcomes in MAE [141]. It has also been observed that the high dielectric constant
of polar solvents, such as water or ethanol, can increase the heating of the solvent–sample
mixture in MAE. Therefore, it is recommended to utilize solvents with lower dielectric con-
stants when extracting thermolabile compounds that require relatively lower temperatures.
One way to keep thermolabile phytochemicals intact during extraction is to immerse plant
material in a solvent that is transparent to microwaves, like n-hexane [142]. This strategic
solvent selection contributes to the efficient and targeted extraction of bioactive compounds.

Compared to conventional solvent extraction methods, MAE offers numerous advan-
tages over traditional solvent extraction techniques, such as being rapid and cost-effective,
requiring less solvent, and exhibiting a higher extraction rate. However, certain limitations
exist, primarily related to its suitability for relatively smaller phenolic molecules such as
quercetins and isoflavones, which demonstrate stability within the microwave tempera-
ture range. It is noteworthy that MAE is most beneficial for capturing phytochemicals
that are substantially lost using conventional methods. For instance, in food processing,
conventional methods result in significant flavonoid loss; hence, MAE proves invaluable
for extracting flavonoids intended as food additives for supplementation [143].
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3.5. Pressurized Liquid Extraction (PLE)

PLE is a fast extraction method that achieves targeted compound extraction by directly
interacting liquid solvent with waste matrix particles (e.g., plants) under subcritical tem-
perature and high pressure. The effectiveness of this extraction process is intricately tied
to three key aspects: “the nature of the matrix, mass transfer, and solubility”. Important
factors in the extraction efficiency are the matrix’s properties, the compound that needs to
be extracted, and the distribution of the compound within the matrix [144]. High tempera-
tures are essential for improving the mass transfer and solubility characteristics between
the extraction solvent and the plant matrix. This improvement in temperature leads to more
efficient extraction kinetics, ultimately contributing to enhanced extraction processes [145].

The solvent is circulated through the extraction cell or column in the PLE process,
usually with the help of an HPLC (high-performance liquid chromatography) pump (see
in Figure 6) to efficiently remove the bioactive NPs of interest from the waste matrix. This
process maintains constant pressure and temperature initially to initiate static extraction,
stabilizing the system and facilitating solvent diffusion through the plant matrix. Subse-
quently, dynamic extraction begins with the maintenance of the required pressure and
solvent flow rate.
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Recent years have seen a number of studies that have used PLE to extract bioactive
NPs from various agricultural by-products or agricultural products derived from a wide
variety of food matrices, such as cereals, microalgae, fruits, herbs, spices, and vegetables.
Table 5 offers a comprehensive compilation of recent studies focusing on the extraction of
bioactive NPs using PLE, highlighting the diversity of sources and the bioactive compounds
obtained with these advanced extraction techniques.
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Table 5. Recent studies on bioactive NPs extraction with the PLE technique.

Feedstock PLE Operating Conditions Final Products and Classifications
ReferenceSource Type Temperature (◦C) Pressure (MPa) Time (min) Solvent Target Bioactive NPs Class Yield (%, w/w)

Annona muricata Fruit 100 10 3 Methanol Phenolic
Fatty acids

Phytochemicals
Lipids -- [146]

Saccharum
officinarum

Sugarcane
Bagasse 120 10 60 Water/NaOH Arabinoxylan

Xylan Phytochemicals 33.31 [147]

Red wine grape Bagasse 120 9 90 50% Ethanol Phenolic compounds Phytochemicals 50.6 [148]

Spirulina Microalga 115 6.9 15 Ethanol
Carotenoids
Phenolic compounds
Chlorophyll

Phytochemicals 4.1 [149]

Onion Peel 165 9–13 15 Water Flavonols Phytochemicals 21.2 [150]
Pomegranate Peel 65 10 Ethanol + water Phenolic compounds Phytochemicals 1.93 [151]

Cocoa Shell 60–90 10.35 5–50 Ethanol Flavanols
Alkaloids Phytochemicals 1.339 [152]

Galician Algae Alga 160 10 10 Ethanol + water Fatty acids Lipids 57.19 [153]
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PLE is a new, environmentally friendly way to extract valuable compounds from
raw materials. Because it makes use of high pressure and temperature, PLE has a high
extraction efficiency and is therefore widely used for a variety of NPs, including medicinal
plants and fruits. Notably, PLE’s versatility extends to conducting extractions at lower
temperatures, protecting target compounds’ bioactivity and stability. This technique is not
only highly efficient but also environmentally friendly, generating less waste compared
with conventional extraction methods, thereby positioning itself as a sustainable and
preferable alternative.

The primary bioactive components of Centella asiatica, triterpenoids, have been success-
fully extracted using PLE. These triterpenoids have anti-inflammatory and neuroprotective
characteristics, which means they could be used to treat inflammatory and neurological
disorders [20]. Additionally, Melastoma malabathricum, a medicinal plant known for its
traditional use in treating inflammatory and diabetic conditions, has had its bioactive
compounds extracted using PLE [154]. This showcases the versatility of PLE in accessing
bioactive constituents with therapeutic potential from diverse botanical sources.

Nevertheless, despite its advantages, PLE does encounter some constraints. The
substantial cost of equipment, especially for small-scale producers [155], and high energy
consumption [156] stand out as a notable limitation. Furthermore, the elevated pressure
and temperature integral to the PLE process may impact the stability and quality of specific
compounds, leading to degradation and potential loss of bioactivity [157]. These challenges
highlight the need for a balanced consideration of factors when opting for PLE in various
extraction scenarios.

3.6. Enzyme-Assisted Extraction (EAE)

In certain plant matrices, the extraction of phytochemicals is challenged by the in-
tricate network of polysaccharides and lignin, secured through hydrogen bonding and
hydrophobic interactions like van der Waals forces. These phytochemicals, enmeshed in
the cell cytoplasm, pose accessibility issues with conventional solvent extraction methods.
However, a breakthrough is achieved by pretreating the plant material with specific en-
zymes [158], releasing bound phytochemicals at high yields. These enzymes, including
cellulase, pectinase, and amylase, are introduced during extraction and break down cellular
walls and hydrolyze carbohydrates like cellulose and lipid bodies. Two types of extraction
methods that make use of enzymes are known as “enzyme-assisted aqueous extraction
(EAAE) and enzyme-assisted cold pressing (EACP)”. The former is primarily applied for
extracting oils from diverse seeds, while the latter effectively hydrolyzes the cellular wall
of plant seeds [159]. The latest research findings on bioactive NPs using EAE are compiled
and organized in Table 6.
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Table 6. Recent studies on bioactive NPs extraction with the EAE technique.

Feedstock EAE Operating Conditions Final Products and Classifications ReferenceSource Type Temperature (◦C) Time (min) Enzymes (µg/g of Sample) Solvent Target Bioactive NPs Class Yield (%, w/w)

Prunus avium L. Fruit 55 300 120 Sodium
phosphate buffer

Non-extractable
polyphenols Phytochemicals -- [160]

Grapes Peel 50 120 300 -- Flavonoids Phytochemicals 80 [161]
Olive Pomace 60 120 2% Ethanol + water Phenolic compounds Phytochemicals 34.1 [162]
Sisal Waste 50 1200 88 Ethanol Pectin Phytochemicals 62.8 [163]
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EAE is used in tandem with other extraction methods to render non-extractable phyto-
chemicals accessible to solvents, thereby enhancing their susceptibility to extraction. An
example highlighting the effectiveness involves the integration of enzymes into microwave
processing. This synergistic approach substantially improved the phenolic compound ex-
traction yield, surpassing the limited recovery yields achieved using conventional solvent
extraction with water due to the application of higher extraction temperatures and a rapid
heating strategy [164]. Furthermore, when compared with alternative extraction methods
that did not incorporate enzymes, the pectin yields from different wastes sequentially with
enzymes and then administering ultrasound were significantly higher [165]. However, the
selection of enzymes poses a challenge and depends on various parameters such as the
plant matrix, target compounds, and desired extraction conditions

4. Recent Trends and Developments in Green Extraction

Recent trends in green extraction methods signify a paradigm shift in the field of
NP extraction, emphasizing sustainable practices and environmental consciousness. The
recent trends in green extraction techniques involve the combination of different extrac-
tion techniques and the use of environmentally friendly green solvents, steering away
from conventional approaches that often use large quantities of solvents with adverse
environmental impacts.

4.1. Combination of Extraction Techniques

With the rising focus on eco-friendly practices, different sectors aim to reduce produc-
tion costs by enhancing efficiency or increasing yields. While there is no flawless extraction
process solely based on technology, a harmonious balance can be achieved among sol-
vent consumption, production costs, and product quality. The combination of different
extraction techniques in a single process can yield superior outcomes.

4.1.1. Ultrasound-Microwave-Assisted Extraction (UMAE)

UMAE, also known as “ultrasonic-microwave synergistic extraction (UMSE)”, is an in-
novative method that synergizes ultrasound and microwaves, incorporating the vibrational–
cavitation mechanism of ultrasound and the high energy of microwaves [166]. UMAE
provides several advantages, including rapid sample preparation, accelerated extraction
processes, cost-effectiveness, short extraction times, and high extraction yields [167,168].
Ultrasound facilitates solvent movement into the sample, enhances solubility, and improves
mass transfer by disrupting cell membranes. Simultaneously, microwaves rapidly elevate
the sample temperature, increasing solubility, mass transfer, and the desorption of targeted
molecules from the matrix, resulting in improved extraction efficiency [169]. One study
examined the impact of ultrasonic pretreatment on microwave extraction for extracting
pectin from grapefruit peel. The results demonstrated that the pectin yield using the UMAE
technique (31.88%) surpassed conventional (19.26%), MAE (27.81%), and UAE (17.92%)
methods. Additionally, the qualitative properties of the pectin obtained with UMAE were
superior to those obtained with ultrasound, microwave, and traditional methods [170].

4.1.2. Microwave-Assisted Enzymatic Extraction (MAEE)

EAE and MAE techniques are emerging as promising approaches for phytochemi-
cal compound extraction. These methods offer advantages such as enhanced extraction
efficiency, simplified handling, reduced energy consumption, and minimized solvent us-
age. In MAEE, the synergy of microwave treatment and enzymolysis effectively breaks
down cell walls, improving cell wall permeability. This, in turn, facilitates the efficient
transfer of desired molecules from targeted cells into the solvent [171]. In the process of
obtaining grapefruit peel soluble dietary fiber, a combined MAEE approach, involving
the synergy of microwave and cellulase enzyme (at a ratio of 3000 µg/g), was used. The
dietary fiber’s structural and functional properties were both improved with this method.
Specifically, the dietary fiber showed enhanced cholesterol, water, oil, and nitrite ion bind-
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ing capabilities. These advancements highlight the significant potential of MAEE for the
extraction of functional dietary fiber from grape peel, with promising applications in the
food industry [172].

4.1.3. Ultrasound-Assisted Enzymatic Extraction (UAEE)

To date, researchers have explored the combination of EAE and UAE methods, com-
monly known as UAEE, for the extraction of phytochemicals [173]. UAEE is considered a
synergistic approach that combines two extraction techniques to enhance overall efficiency.
UAEE has demonstrated the accelerated extraction of phytochemicals from various plant
tissues, as reported by several researchers. Its use has expanded to include the extraction
of bioactive NPs from a variety of plant materials, such as wheat bran, fruits, peels, and
leaves [174–176]. UAEE was proven to enhance extract yields in these studies. For example,
a recent study used UAEE to extract a water-soluble polysaccharide from the peel of dragon
fruit. The results indicated significantly higher recovery when ultrasound and enzymes
were applied simultaneously or sequentially compared with EAE or UAE alone [177].

4.1.4. Supercritical Fluid Extraction and Pressurized Fluid Extraction (SFE-PLE)

The application of innovative extraction strategies, specifically SFE and PLE, holds
significant promise when used in an extraction configuration that is sequential or in situ. A
notable advancement in this regard is the development of home-built equipment in 2014
that is capable of performing both SFE and PLE. A significant improvement in extraction
yield was achieved by using this apparatus to sequentially extract curcuminoids from
Curcuma longa L. rhizomes. Moreover, this extraction was completed in half the time
or 2.5 times faster compared with traditional methods. The study highlights the cost-
effectiveness and practicality of this approach for SFE and PLE [178].

4.1.5. Supercritical Fluid Extraction Assisted with Ultrasound (SFE–UAE)

A recent study reported the effectiveness of an integrated approach to extract capsai-
cinoids and phenolic compounds from Capsicum frutescens L. In this study, the extraction
process involved both ultrasound and supercritical fluid. A study was conducted to com-
pare SFE with and without ultrasonic irradiation, focusing at the global yield and SFE
kinetics of the extraction. Compared with SFE alone, the extraction yield of SFE-UAE
increased by 35% due to the marked improvement in kinetics brought about by ultrasound
treatment. The enhanced permeability was attributed to increased matrix permeability
induced with ultrasound irradiation, along with the acoustic streaming and mechanical
vibration effects [179].

4.1.6. Ultrasonic Assisted Extraction and Pressurized Liquid Extraction (UAE-PLE)

To extract phenolic compounds from pomegranate peels, ultrasound and PLE were
used in a synergistic approach, resulting in improved extraction efficiency. The utilization
of ultrasonic enhanced extraction in conjunction with these two techniques made it easier
to extract particles larger than a certain size range. Notably, the efficient use of UAE-PLE
combined with the shortened extraction period allowed water to be used as the extraction
solvent, which increased the extraction yield [180].

In summary, the application of innovative and combined technologies enhances ex-
tractability, leading to higher extraction rates, reduced impurities in the final extract,
preservation of thermo-sensitive compounds, utilization of various inorganic solvents, and
overall lower energy consumption [181].

4.2. Green Extraction Solvents

There has been a notable shift in the extraction processes field toward the use of
green solvents in an effort to pursue environmentally friendly and sustainable practices.
Green extraction solvents are characterized by their minimal environmental impact, low
toxicity, and potential for efficient extraction of bioactive NPs. These solvents aim to replace
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traditional, often harmful, extraction agents with alternatives that align with the principles
of sustainability. Among the notable green extraction solvents are supercritical fluids,
deep eutectic solvents, and biobased solvents. Supercritical solvents, such as supercritical
CO2 (already discussed in Section 3.1), offer unique properties at specific temperature
and pressure conditions. Deep eutectic solvents (DESs), composed of natural components,
provide a sustainable alternative. Biobased solvents, derived from renewable resources,
further contribute to the eco-friendly landscape of extraction processes [182].

4.2.1. Deep Eutectic Solvents (DESs)

DESs are typically created by combining two solid components capable of interacting
through hydrogen bonding [183]. The standard process for producing a DES involves
precisely mixing specific amounts of salt and a Hydrogen Bond Donor (HBD) in a moisture-
free environment. The mixture is then heated to the desired temperature until the solid
components liquefy, resulting in the formation of a homogeneous liquid [184]. Choline
chloride (ChCl) stands out as the favored salt for crafting DESs, particularly in combination
with carboxylic acids, glycerol, or urea as the Hydrogen Bond Donor (HBD) [185]. The
beneficial properties of ChCl, including its biodegradability, cost-effectiveness, non-toxicity,
and widespread availability, make it a popular choice for DES formulations [182,183].

DESs have proven to be more effective than traditional solvents because of their
remarkable qualities and adaptable interactions with bioactive analytes, such as “hydrogen
bonding, electrostatic forces, and π-π interactions” [186,187]. Bioactive molecules are
more easily soluble and transferred in large quantities when exposed to DES because of
their increased efficacy in disrupting the organized structures of biomass. As an example,
DES-assisted MAE with ChCl/glycerol (1:2) and 20% water was able to extract phenolic
compounds from mulberry leaves at a higher yield (0.83 wt.%) than both ethanol-based
MAE (0.78 wt.%) and methanol-based MAE (0.71 wt.%) [187]. A review of current research
on the use of DES for bioactive NP extraction is presented in Table 7.

4.2.2. Bio-Based Solvents

Bio-based solvents, derived from renewable sources such as plant biomass, are com-
monly produced with methods like the fermentation of vegetable oils and carbohydrates
and the steam distillation of wood [182,188]. Various crops, agroforestry, agricultural
residues, and waste materials like sugar cane bagasse, wheat straw, corn cubs, and timbers
serve as feedstock for bio-derived solvents. Notable features of these solvents include
low toxicity, renewability, and biodegradability [182,189]. Bio-based solvents, such as
“2-methyl tetrahydrofuran (2-MeTFH), glycerol, ethanol, γ-valerolactone (GVL), p-cymene,
and D-limonene”, are commonly used in various applications. These solvents are sourced
from renewable materials like cellulose, hemicellulose, lignin, and starch, highlighting their
sustainable and eco-friendly nature [182].

Recent studies have tested bio-based solvents in the extraction of bioactive NPs from
various sources, revealing notable improvements in the extraction process. To illustrate
this point, a recent study showed that by combining bio-based solvents, especially GVL,
with other extraction methods, phenolic compounds from kiwifruit by-products could be
effectively recovered. This approach showed promise in extracting phenolic compounds,
and the results demonstrated the synergy between bio-based solvents and alternative
extraction methods [190]. The other studies on bio-based solvent usage in NP extraction
have been summarized in Table 7.
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Table 7. Recent studies on bioactive NP extraction with green extraction solvents.

Feedstock Green Extraction Final Products and Classifications Remarks ReferenceSource Type Technique Solvent Target Bioactive NPs Class Yield (%, w/w)

Tea Seeds Solid Liquid
Extraction (SLE) ChCl-Gly Phenolic compounds Phytochemicals 0.01

93.2% higher than those
extracted with
methanol/water

[191]

Morus alba L. Leaves UAE ChCl-Ca Phenolic compounds Phytochemicals 2.26
48.20% higher than those
extracted with conventional
extraction

[192]

Allium cepa L. Onion peel MAE ChCl:U Phenolic compounds Phytochemicals 22.29 Similar results with the
methanol extraction solvent [193]

Grape Pomace UMAE ChCl-Ca Anthocyanins Phytochemicals 0.177 --- [194]

Actinidia
deliciosa Fruit peel MAE GVL Phenolic compounds Phytochemicals 2.97

The extraction yield
followed by GVL:ethanol >
acetone > ethanol:water.

[190]

Aqueous
matrices -- Liquid -Liquid

Extraction (LLE) 2-MeTFH Phenolic compounds Phytochemicals 100 ---- [195]

The information summarized in Table 7 underscores the impactful role of DESs and
bio-based solvents in the extraction of bioactive NPs. The results showcase a substantial
increase in extraction yields, ranging from 48% to 98%, when compared with conventional
extraction solvents. This notable enhancement highlights the potential of DES and bio-
based solvents as effective alternatives, contributing significantly to the field of green
extraction techniques for NPs [196]. While these solvents exhibit promising results, it is
crucial to acknowledge that all green extraction techniques and methods, including DES
and bio-based solvents, are not without limitations and challenges. These limitations are
thoughtfully detailed below, emphasizing the need for continued research and refinement
in the quest for sustainable and efficient extraction processes.

5. Challenges and Future Perspectives

Green extraction techniques for bioactive NPs present numerous advantages, but they
are not exempt from challenges and limitations. Some of the key challenges include:

• Standardization and reproducibility: Achieving consistent and reproducible results
across different studies and laboratories remains a challenge. The standardization of
extraction protocols is essential to ensure the reliability and comparability of results.

• Selectivity: Green extraction techniques may not always provide sufficient selectivity,
leading to the co-extraction of unwanted compounds. Enhancing the selectivity of
these techniques for specific bioactive NPs is an ongoing challenge.

• Optimization: There is a need for further optimization of extraction parameters, in-
cluding temperature, pressure, time, and solvent composition. Fine-tuning these
parameters is essential for maximizing yield and maintaining the integrity of bioac-
tive NPs.

• Scalability: While these techniques show promise at the laboratory scale, translating
them to larger industrial scales may pose challenges. Scaling up without compromising
efficiency and sustainability is a critical consideration.

• Solvent compatibility: The compatibility of green solvents with specific bioactive
compounds needs careful assessment. Some bio-based and deep eutectic solvents may
not be suitable for the extraction of certain classes of NPs.

• Economic viability: The cost-effectiveness of green extraction methods compared with
traditional techniques is a significant consideration. Developing economically viable
and sustainable processes is crucial for widespread adoption.

• Understanding the mechanisms: A deeper understanding of the mechanisms involved
in green extraction processes is needed. This includes elucidating the interactions
between solvents and bioactive NPs to optimize extraction efficiency.

• Waste management: Addressing the issue of waste generated during the extraction pro-
cess is vital. Ensuring that the by-products or waste are environmentally friendly and
can be appropriately managed is essential for the overall sustainability of the process.
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Future Research

Despite these challenges, the future of green extraction techniques for bioactive NPs
is promising. Continued research efforts should focus on overcoming these limitations
with innovative approaches, advanced technologies, and interdisciplinary collaborations.
Integrating artificial intelligence and machine learning for process optimization, exploring
new green solvents, and developing modular and versatile extraction systems are potential
avenues for future advancements in the field. Additionally, fostering dialogue between
researchers, industry stakeholders, and policymakers will contribute to the successful
integration of green extraction techniques into diverse applications, ensuring sustainable
and eco-friendly practices in the extraction of bioactive NPs.

6. Conclusions

In conclusion, this comprehensive review highlights the significant advancements and
potential of green extraction techniques for obtaining bioactive NPs from various natural
sources. The exploration of methods such as SFE, SWE, PLE, UAE, MAE, and EAE, among
others, underscores the evolving landscape of sustainable and eco-friendly approaches in
the field of nanotechnology.

The use of green solvents, including DESs and bio-based solvents, has emerged as a
key component in enhancing the sustainability of extraction processes. These solvents, with
their low toxicity, renewability, and biodegradability, contribute to the environmentally
conscious ethos of green extraction. Additionally, the combination of different techniques,
such as UMAE, MAEE, UAEE, and sequential SFE-PLE, demonstrates the potential for
synergistic effects and improved extraction efficiencies.

While the results presented in various studies showcase the promise of green ex-
traction techniques, it is crucial to acknowledge the existing challenges and limitations.
Standardization, selectivity, optimization, scalability, solvent compatibility, economic viabil-
ity, and waste management are critical areas that demand ongoing attention and research
efforts. Overcoming these challenges will be instrumental in realizing the full potential of
green extraction for bioactive NPs.

Looking forward, future research directions should focus on refining extraction proto-
cols, developing novel green solvents, and advancing the understanding of the underlying
mechanisms governing these techniques. The integration of cutting-edge technologies,
such as artificial intelligence and machine learning, holds promise for optimizing extraction
parameters and enhancing reproducibility.
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