
Citation: Song, L.; Li, Y.; Xu, J.

Dynamic Job-Shop Scheduling Based

on Transformer and Deep

Reinforcement Learning. Processes

2023, 11, 3434. https://doi.org/

10.3390/pr11123434

Academic Editors: Iqbal M. Mujtaba

and Jie Zhang

Received: 28 October 2023

Revised: 11 December 2023

Accepted: 12 December 2023

Published: 15 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Dynamic Job-Shop Scheduling Based on Transformer and Deep
Reinforcement Learning
Liyuan Song 1, Yuanyuan Li 1,* and Jiacheng Xu 2

1 School of Electrical & Electronic Engineering, Shanghai University of Engineering Science,
Shanghai 201620, China; m320121203@sues.edu.cn

2 School of Computer Science and Technology, Fudan University, Shanghai 200437, China;
jcxu22@m.fudan.edu.cn

* Correspondence: liyuanyuan@sues.edu.cn

Abstract: The dynamic job-shop scheduling problem is a complex and uncertain task that involves
optimizing production planning and resource allocation in a dynamic production environment. Tradi-
tional methods are limited in effectively handling dynamic events and quickly generating scheduling
solutions; in order to solve this problem, this paper proposes a solution by transforming the dynamic
job-shop scheduling problem into a Markov decision process and leveraging deep reinforcement
learning techniques. The proposed framework introduces several innovative components, which
make full use of human domain knowledge and machine computing power, to realize the goal
of man–machine collaborative decision-making. Firstly, we utilize disjunctive graphs as the state
representation, capturing the complex relationships between various elements of the scheduling
problem. Secondly, we select a set of dispatching rules through data envelopment analysis to form the
action space, allowing for flexible and efficient scheduling decisions. Thirdly, the transformer model
is employed as the feature extraction module, enabling effective capturing of state relationships and
improving the representation power. Moreover, the framework incorporates the dueling double
deep Q-network with prioritized experience replay, mapping each state to the most appropriate
dispatching rule. Additionally, a dynamic target strategy with an elite mechanism is proposed.
Through extensive experiments conducted on multiple examples, our proposed framework con-
sistently outperformed traditional dispatching rules, genetic algorithms, and other reinforcement
learning methods, achieving improvements of 15.98%, 17.98%, and 13.84%, respectively. These
results validate the effectiveness and superiority of our approach in addressing dynamic job-shop
scheduling problems.

Keywords: deep reinforcement learning; Markov decision process; dynamic job-shop scheduling
problem; transformer; dispatching rules

1. Introduction

With the development of economic globalization, manufacturing industries are facing
fierce market competition. Production scheduling plays a central role in the manufacturing
process, and the traditional shop scheduling problem is static and deterministic, which is
suitable for a single production environment and mode. However, with the development
of acquisition hardware and the advancement of processing technology, the scheduling
events in a workshop can be captured in real-time, which puts forward higher requirements
for the real-time response of scheduling, making it a challenging task to quickly obtain
high-quality scheduling schemes.

The machining sequence of workpieces in a workshop is constrained by multiple crite-
ria, which is a typical combinatorial optimization problem. When the number of machines
is greater than two, this kind of problem is proven to be non-deterministic polynomial-time
hard (NP-hard) [1]. However, in the existing solutions for job-shop scheduling problems,

Processes 2023, 11, 3434. https://doi.org/10.3390/pr11123434 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11123434
https://doi.org/10.3390/pr11123434
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr11123434
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11123434?type=check_update&version=1

Processes 2023, 11, 3434 2 of 23

the accurate algorithm is only suitable for small-scale problems and has no advantage in
calculation time, which is not suitable for dynamic scheduling. In addition, the swarm
intelligence algorithm cannot generate the optimal solution in a reasonable calculation time
and cannot deal with the complex uncertainties of a workshop. Furthermore, dispatching
rules [2] have low time complexity in the process of solving and can handle the dynamic
changes of the workshop but lack adaptive adjustment ability. So far, due to the different
actual production conditions and the different scale of scheduling problems, no algorithm
is completely superior to one algorithm, and most methods have low adaptability and
strong subjectivity and can only be applied to the current production environment.

In order to solve the above problems, researchers began to apply reinforcement learn-
ing [3] to the study of job-shop scheduling. Some scholars adopted reinforcement learning
algorithms based on value functions to solve job-shop scheduling problems. Samsonov
et al. [4] proposed an action space independent of the problem dimension, which is in-
dependent of the number of machines and orders and is applicable to both discrete and
continuous action spaces. In addition, a new reward mechanism was introduced to obtain
the optimal solution through a higher reward gradient. Bouazza et al. [5] decomposed
job-shop scheduling into machine allocation problems and job allocation problems and
proposed a new type of reward shaping in which the action space is divided into machine al-
location rules and job selection rules. Experiments showed that the scheduling performance
was improved by 27% compared with the usual heuristic method. In addition to single-
agent learning, reinforcement learning also includes multi-agent learning. He et al. [6]
proposed a multi-agent reinforcement learning (MARL) framework that transformed the
optimization process into a random game and introduced a deep Q-network algorithm
to train multi-agents. In each state, the interruption of a multiple equilibrium is avoided
so as to achieve the relevant equilibrium optimal solution of the optimization process.
In addition, Wang et al. [7] proposed an algorithm for job-shop scheduling in a resource
preemption environment using multiple agents to learn the decision-making strategy of
each agent and the cooperation between agents. Lang et al. [8] trained two DQN agents,
one to select the sequence of operations and the other to select the assignment of work to
the machine, which, combined with a discrete event simulation model of the problem, were
able to quickly predict and evaluate new scheduling schemes in less than 0.2 s.

Job-shop scheduling is highly complex, and using reinforcement learning alone has
some shortcomings, such as slow convergence, easy falling into local optimal solutions,
etc. Therefore, many researchers have combined reinforcement learning with other al-
gorithms to solve the above problems. Chen et al. [9] proposed a self-learning genetic
algorithm (SLGA) that takes the genetic algorithm as the basic optimization method and
uses reinforcement learning to intelligently adjust its key parameters. Experiments showed
that the learning effect and performance of the algorithm were significantly better than
that of similar algorithms. Junyoung Park et al. [10] proposed a framework using a graph
neural network and reinforcement learning to solve the scheduling job-shop problem, using
the GNN to learn the node features embedded in the spatial structure, and mapping the
features to the best actions to obtain the optimal scheduling strategy. They empirically
demonstrated that the GNN scheduler outperformed the favored dispatching rules and
RL-based schedulers on various benchmark JSSPs.

The scheduling of a static job shop is predetermined, unable to flexibly respond
to changing production needs, and the environmental conditions’ lack of flexibility, the
occurrence of equipment failure, and other dynamic factors will interfere with the original
plan, resulting in low production efficiency and a waste of resources. Therefore, researchers
began to study reinforcement learning algorithms based on the value function to solve job-
shop scheduling problems under dynamic perturbations; in recent years, deep learning and
reinforcement learning have been combined to form the field named deep reinforcement
learning [11] which can make comprehensive real-time responses to dynamic events. Table 1
shows some existing methods for DRL-based dynamic job-shop scheduling.

Processes 2023, 11, 3434 3 of 23

Aiming at the dynamic job-shop scheduling problem (DJSP) of machine failure,
Bar et al. [12] proposed a method to solve the dynamic job-shop scheduling problem by
combining multi-agents and DQN. Multiple agents share an experience pool and cooperate
through reinforcement learning, and each agent considers each other’s requirements to
optimize the overall goal. Zhao et al. [13] proposed an improved Q-learning algorithm in
which the agent can simultaneously select the operation to be processed and the executing
machine when the machine fails, with the initial scheduling scheme being formulated
by a genetic algorithm. The experimental results showed that this method can effectively
reduce the operation delay time.

Aiming at the dynamic scheduling job-shop problem of the random arrival of new
jobs, Luo et al. [14] proposed a double-loop DQN algorithm, DLDQN, which combines
the exploration cycle and the exploitation cycle and has both global exploration and local
convergence capabilities. Experimental results showed that DLDQN performed better
than deep reinforcement learning based on standard Q-learning and dispatching rules. In
addition, Turgut et al. [15] applied DQN to solve the job-shop scheduling problem, with
the goal of minimizing job delay time, and compared it with two common dispatching
rules (minimum processing time and earliest due date) to further verify the performance
of the model. Chang et al. [16] proposed a double DQN (DDQN) architecture to solve the
dynamic flexible job-shop scheduling problem (DFJSP), and experimental results showed
that this method was superior to other reinforcement learning algorithms in terms of
solution quality and generalization. In addition, Wang et al. [17] constructed a dynamic
scheduling system model based on multiple agents, set machine, buffer, state, and job
as agents, used weighted Q-learning to determine the processing order of jobs on the
machine, defined four state features, reduced the dimension of state space by clustering,
and proposed a dynamic greedy search strategy to avoid the blind search of traditional
strategies. Bouazza et al. [5] used a Q-learning algorithm to solve part of the flexible
job-shop scheduling problem with new job insertion where one Q matrix is used to select
machine selection rules and the other Q matrix is used to select specific scheduling rules.
Shahrabi et al. [18] obtained the appropriate VNS parameters at any rescheduling point
and used the Q-learning algorithm for reinforcement learning. In this method, the action is
selected using the e-greedy policy based on the workshop condition defined as the state. It
significantly improved the performance of scheduling methods. The proposed method not
only solved the dynamic nature of the actual production environment but also dynamically
updated the optimization strategy.

Aiming at the dynamic scheduling workshop problem of new job insertion, Luo
et al. [19] extracted seven general features, with values from 0 to 1 to represent the state of
each rescheduling point, and proved the superiority of DQN in comparing each combina-
tion rule, distributed rule and standard Q-learning through experiments. In addition, Luo
et al. [20] also proposed a two-layer DQN online rescheduling framework which included
two DQN-based agents. The upper DQN is used to control the temporary optimization
objectives of the lower DQN, and at each rescheduling point, the behavior of the lower
DQN is guided according to the current state characteristics. The lower DQN takes the
state characteristics and the optimization objectives passed from the upper DQN as inputs
and selects feasible dispatching rules by calculating the Q value of each scheduling rule.
The effectiveness and universality of the proposed THDQN were proved by experiments.

In addition to directly using scheduling rules, custom rules, and scheduling operations
as action spaces, some researchers chose to use tools to select the scheduling rules based
on evidence, which can be more in line with the scheduling production environment
and greatly improve scheduling efficiency. For example, Marcello Braglia et al. [21] used
data enveloping analysis (DEA) to measure and compare the performance of scheduling
rules according to several possible evaluation criteria. Amar Oukil et al. [22] proposed
a scheduling rule ranking method for a multi-objective dynamic flow shop scheduling
system based on data envelopment analysis and a basic scheduling strategy that can switch
between different preferred rules according to the average deadline closeness of the current

Processes 2023, 11, 3434 4 of 23

work portfolio in the shop. In addition, he proposed an integrated data envelopment
analysis (DEA) and ordered weighting average (OWA) model [23], which was applied to
28 scheduling rules for scheduling jobs that continuously reach random time points in the
production cycle. The calculation results highlighted the influence of energy cost on the
overall ranking of scheduling rules and revealed the superiority of some rules under multi-
objective performance criteria, whose application background is energy-saving scheduling.
It can be seen that, based on the simulation data of the dynamic job-shop scheduling
rules studied in the above literature, the DEA method is suitable for sorting competitive
scheduling rules according to a selected set of performance criteria and plays a great
auxiliary role in the selection of scheduling rules.

Table 1. The reinforcement learning algorithm based on the value function solves the dynamic
job-shop scheduling problem.

Work State
Representation Action Space Dynamic Factors Problems Objective Algorithm

Turgut et al. [15] Matrix Eligible operations Random job arrival DJSP Tardiness DQN

Chang et al. [16] Self-designed Self-designed rules Random job arrival DFJSP Earliness penalty
and tardiness DDQN

Wang et al. [17] Matrix Dispatching rules Random job arrival DJSP Premature completion
and tardiness Q-learning

Bouazza et al. [5] Vector Dispatching rules Random job arrival DFJSP Makespan and total
weighted completion time Q-learning

Luo et al. [19] Matrix Operations Random job arrival DFJSP Tardiness DDQN

Luo et al. [20] Matrix Self-designed rules Random job arrival DJSP Tardiness and utilization
rate of machine DDQN

Shahrabi et al. [18] Variables Actions Random job arrival DJSP Mean flow time Q-learning

Ours Transformer Dispatching rules-DEA Random job arrival DJSP Makespan D3QPN

In summary, when solving dynamic job-shop scheduling problems, the existing meth-
ods rely on the knowledge and experience of domain experts in setting state characteristics
and action spaces, which leads to the fact that they are easily affected by subjective factors in
the actual production process. Moreover, some studies lack comparative experiments with
other reinforcement learning methods and do not have the ability of adaptive adjustment;
therefore, it is difficult to judge whether the scheduling effect is good. Thus, this paper
proposes a dynamic job-shop scheduling method based on deep reinforcement learning
combined with a transformer, and its contributions are as follows:

(1) This paper proposes an innovative deep reinforcement learning framework to solve
the scheduling problem of both static and dynamic events. Taking the disjunctive
graph as a state space, and using the transformer model to extract graph features,
the state is mapped to the most appropriate dispatching rules through the double
dueling Q-network with prioritized experience replay (D3QPN) which can select the
job with the highest priority to execute. A reward function equivalent to minimizing
the makespan is designed to evaluate the scheduling results.

(2) This paper uses data envelopment analysis to select the appropriate dispatching rules
from the general dispatching rules to compose the action space, aiming at minimizing
the makespan and maximizing machine utilization. It also proposes a dynamic target
strategy with an elite strategy, in which an objective function L with values between
0 and 1 is introduced. The experimental results show that the scheduling performance
is improved by 15.93% under this strategy.

(3) Taking the OR-Library as the dataset, this paper comprehensively compares the pro-
posed method with various dispatching rules, the genetic algorithm (GA), and other
reinforcement learning methods. The experimental results show that the proposed
method reaches the best level of scheduling effect compared with other methods.

The rest of this paper is organized as follows: Section 2 gives the problem formulation
and establishes the mathematical model of DJSP; Section 3 introduces the methodology

Processes 2023, 11, 3434 5 of 23

and gives the details of the proposed method; Section 4 provides the results of numerical
experiments; and Section 5 draws a conclusion.

2. Problem Formulation
2.1. DJSP Description

Dynamic job-shop scheduling refers to a process in which multiple jobs need to be
processed on multiple machines in a workshop. The processing sequence of these jobs,
and the allocation of machines, needs to have scheduling decisions made according to
real-time situations and constraints. The dynamic job-shop scheduling problem (DJSP) is a
classic combinatorial optimization problem. Its goal is to minimize the job makespan and
optimize resource utilization through a reasonable scheduling strategy. Factors such as job
sorting and the constraints between machines can be uncertain and dynamic, leading to
complexity in scheduling problems.

We describe the dynamic flexible job-shop scheduling problem with random job
arrival using the symbols defined as follows: suppose there are n successively arriving
jobs J = {J1, J2 . . . Jn} and m machines in the workshop m = {M1, M2 . . . Mm}, with each
job having k operations to be processed. The job Ji operation sequence is then defined
as Oi = {Oi1, Oi2 . . . Oik} and the machine matrix is M = {Mil |Mil = 0, M1, M2 . . . Mm}
(i = 1, 2, . . . , n , l = 1, 2, . . . , k), indicating that Oil should be handled by Mil ; the processing
time matrix is Til ≥ 0 (i = 1, 2, . . . , n , l = 1, 2, . . . , k), which represents the time required
to process Oil , if Mil = 0, then Til = 0, indicating that job Ji does not need to process operation
Oil . This paper takes minimizing the makespan as the scheduling goal, that is min{Cmax}.

Cmax = max
(

Ci(l−1), ClastO

)
+ Tw + Til (1)

where Cil is the completion time of the operation Oil on the machine Mil , which consists
of three parts, namely, Ci(l−1) the completion time of the previous operation of the same
job, ClastO the completion time of the previous operation on the same machine, and Tw the
waiting time when the machine is idle (in most cases, it is ineffective and negligible).

The processing time of each operation in the workshop is set, the processing machine
for each operation is specified, and, before any dynamic events occur, the processing is
carried out according to the specified process route. Note the following points:

(1) Each machine can only perform one operation every time;
(2) Each operation of the job can only be performed by one machine every time;
(3) All operations of the same job must be performed in a predetermined order;
(4) An operation that has been started cannot be interrupted or terminated;
(5) The conversion time and setup time between machines are ignored.

2.2. MDP Formulation for DJSP

The goal of DJSP is to determine the order of operations in a dynamic environment,
which is essentially a sequential decision problem. This paper formulates it as Markov
decision process (MDP), which was originally proposed by Richard Bellman [24] in the
1950s. It is composed of a state set S, behavior set A, state transition probability matrix,
reward function R, and discount factor γ, as shown in Equation (2). At each step of the
state transition, the agent can choose one of several possible actions, and the transition
probability depends on the chosen action.

MDP = (S, A, P, R, γ) (2)

The state set S = S1, S2 . . . St represents the set of various possible states, including
the features related to the environment and scheduling goals. The state St at any time
will become a specific state contained in the state set S. The action set A = a1, a2 . . . at
represents the set of all actions that the agent can perform. The state transition probability
Pa

s,s′ represents the probability of changing to state s′ when the agent takes action a in state

Processes 2023, 11, 3434 6 of 23

s. The reward function Ra
s is used to return the reward expectation value when performing

action a under state s, which is set according to the scheduling goal. The discount factor is
used to measure the importance of future rewards, with values ranging from 0 to 1, and is
used to balance the weight of current and future rewards.

2.3. Disjunctive Graph

The disjunctive graph model [25] is a general expression method for scheduling
problems which can be combined with deep reinforcement learning to deeply mine data
and promote more scientific decision-making. The disjunctive graph is a directed graph
G = (V, C ∪ D), where V is the set of operational vertices, containing two virtual vertices
representing the start and end, and their processing time is zero; C is the combinatorial arc,
representing the priority constraint relationship between two consecutive operations in the
same job; and D consists of undirected disjunctive edges connected to mutually disordered
tasks performed on the same machine. Figure 1 shows an example of a simple disjunctive
graph, where each circle represents an operation with its name and processing time. Oper-
ating vertices on the same machine are represented by the same color, with the solid and
dashed arrows representing conjunctive and disjunctive arcs, respectively. The initial state
is unsolved and needs to be scheduled by transforming each undirected disjunctive edge
into a directed conjunctive edge. Determining the direction of all disjunctive edges decides
the processing order of all competing tasks on the same machine. When the disjunctive
graph becomes an acyclic graph, a feasible scheduling scheme is obtained.

Processes 2023, 11, x FOR PEER REVIEW 7 of 25

Figure 1. Example of a disjunctive graph.

The overall idea of the disjunction-based scheduling scheme is to first initialize the

dataset, assign the task with the highest priority to the available machines, and remove

the task from the task set, while adding the subsequent operations of the task to the task

set, and repeat the process until all the task sets are empty, that is, all the tasks have been

scheduled to complete. In this way, tasks can be assigned and executed in order of priority

and operation, minimizing the waiting time for jobs and achieving efficient scheduling.

3. Methodology
3.1. Overall Framework

This paper proposes a framework, shown in Figure 2, which combines deep rein-

forcement learning based on value functions and disjunctive graphs to transform the

scheduling problem into a sequential decision problem by defining the environment,

state, action, reward, and strategy. As shown in Algorithm 1, optimal scheduling schemes

can be solved by learning and optimizing the strategy. The advantage of this framework

is that it can make full use of the ability of deep reinforcement learning for decision learn-

ing and combine the characteristics of disjunctive graphs to describe and solve scheduling

problems.

The traditional state representation methods usually use discrete or continuous fea-

tures to represent the state information of the workpiece, machine, time, etc., resulting in

a high dimension of the state space, which increases the complexity of the calculation and

search. There are some defects such as the dimension disaster, difficulty in feature selec-

tion, inability to adequately express the accurate value of the state, information loss, and

so on. In view of the above problems, this paper adopts a more advanced representation

method to model the scheduling environment, that is, a disjunctive graph. This models

the shop scheduling problem in a structured way, representing jobs, machines, and pro-

cesses as nodes in the diagram to capture the long-term dependence relationship between

jobs, has high adaptability and scalability to better capture the relationship between states

and dynamic changes, and provides a more flexible, accurate, and adaptable state repre-

sentation.

Figure 1. Example of a disjunctive graph.

Generally, disjunctive graphs contain only static information, such as machine sharing
and operation priority, but not dynamic information. In order to solve the dynamic
scheduling problem, this paper defines the vertex features of disjunctive graphs based on
dynamic scheduling, including the following: 1. Job id: Indicates the job identifier to which
the operation belongs; 2. Operation sequence id: Indicates the operation identifier; 3. Node
state: Indicates the status of the operation node (incomplete, processing, and completed);
4. Machine id: Indicates the identifier of the machine that can perform the operation;
5. Waiting time: Indicates the waiting time between the start of the job and the time when
the operation can be performed. 6. Number of remaining operations: Indicates the number
of remaining operations to be performed in the job; and 7. Completion rate: Indicates the
completion rate of the entire job when the operation is completed. By introducing these
dynamic features, key information such as the job execution state, machine assignment, and
job completion can be provided to describe the vertex information more comprehensively
so as to better support the analysis and decision-making of dynamic scheduling.

The overall idea of the disjunction-based scheduling scheme is to first initialize the
dataset, assign the task with the highest priority to the available machines, and remove
the task from the task set, while adding the subsequent operations of the task to the task
set, and repeat the process until all the task sets are empty, that is, all the tasks have been
scheduled to complete. In this way, tasks can be assigned and executed in order of priority
and operation, minimizing the waiting time for jobs and achieving efficient scheduling.

Processes 2023, 11, 3434 7 of 23

3. Methodology
3.1. Overall Framework

This paper proposes a framework, shown in Figure 2, which combines deep reinforce-
ment learning based on value functions and disjunctive graphs to transform the scheduling
problem into a sequential decision problem by defining the environment, state, action, re-
ward, and strategy. As shown in Algorithm 1, optimal scheduling schemes can be solved by
learning and optimizing the strategy. The advantage of this framework is that it can make
full use of the ability of deep reinforcement learning for decision learning and combine the
characteristics of disjunctive graphs to describe and solve scheduling problems.

Processes 2023, 11, x FOR PEER REVIEW 8 of 25

…

…

…

Feature

V(s)

A(s,a) Q(s,a)

…

…

…

Feature

V(s)

A(s,a) Q(s,a)

Start End

2 3 5

6 3 5

M1

M2

M3

Feature Extraction Module-Transformer

Action at

DEA-Action space

Estimated Q

Dynamic Exploration &

Exploitation

Balancing Strategy

Adam

Simulation Environment

Prioritized replay buffer

Loss function

,

,

,

,

Rt

st+1

(st, at)

Replace target parameters every C steps

Model

2 3 7

Figure 2. Overall framework diagram.

In this paper, each state is mapped to the most suitable scheduling rule through

D3QPN, and the job with the highest priority is selected from the current job. After the

action is executed, the disjunctive graph state is updated in real-time, and the experience

is stored in the experience pool in the form of a quadruple. Experience is put into the

network through the prioritized experience replay mechanism during training until the

set epoch is reached.

Algorithm 1 Proposed framework D3QPN and transformer

Input: Environment and set of network random variables

1. Initialize Feature Extraction module; replay buffer; prioritized replay exponent;

minibatch

2. Formularize the DJSP as MDP 𝑀𝐷𝑃 = (𝑆, 𝐴, 𝑃, 𝑅, 𝛾)

3. for epoch number 𝑒𝑝𝑜𝑐ℎ = 1,2, … , 𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ do

4. Extract the state𝑠𝑡 from s using Feature Extraction module

5. Select the dispatching rule using DEA

6. for schedule cycle 𝑖 = 1,2, … 𝑘 do

7. Execute dispatching rule 𝑎𝑡 and observe new disjunctive graph 𝑠𝑡

8. Execute the state 𝑠𝑡+1 from 𝑠𝑡

9. end for

10. Store (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in replay buffer with maximal priority

11. Sample the minibatch of transitions with probability

12. Update the learning algorithm and Feature Extraction module using Algorithm

2

13. end for

Output: The learned DRL module and the Feature Extraction module

Figure 2. Overall framework diagram.

The traditional state representation methods usually use discrete or continuous fea-
tures to represent the state information of the workpiece, machine, time, etc., resulting
in a high dimension of the state space, which increases the complexity of the calculation
and search. There are some defects such as the dimension disaster, difficulty in feature
selection, inability to adequately express the accurate value of the state, information loss,
and so on. In view of the above problems, this paper adopts a more advanced represen-
tation method to model the scheduling environment, that is, a disjunctive graph. This
models the shop scheduling problem in a structured way, representing jobs, machines,
and processes as nodes in the diagram to capture the long-term dependence relationship
between jobs, has high adaptability and scalability to better capture the relationship be-
tween states and dynamic changes, and provides a more flexible, accurate, and adaptable
state representation.

In this paper, each state is mapped to the most suitable scheduling rule through
D3QPN, and the job with the highest priority is selected from the current job. After the
action is executed, the disjunctive graph state is updated in real-time, and the experience is
stored in the experience pool in the form of a quadruple. Experience is put into the network

Processes 2023, 11, 3434 8 of 23

through the prioritized experience replay mechanism during training until the set epoch
is reached.

Algorithm 1 Proposed framework D3QPN and transformer

Input: Environment and set of network random variables
1. Initialize Feature Extraction module; replay buffer; prioritized replay exponent; minibatch
2. Formularize the DJSP as MDP MDP = (S, A, P, R, γ)
3. for epoch number epoch = 1, 2, . . . , max_epoch do
4. Extract the statest from s using Feature Extraction module
5. Select the dispatching rule using DEA
6. for schedule cycle i = 1, 2, . . . k do
7. Execute dispatching rule at and observe new disjunctive graph st
8. Execute the state st+1 from st
9. end for
10. Store (st, at, rt, st+1) in replay buffer with maximal priority
11. Sample the minibatch of transitions with probability
12. Update the learning algorithm and Feature Extraction module using Algorithm 2
13. end for
Output: The learned DRL module and the Feature Extraction module

3.2. D3QN with Prioritized Experience Replay

Q-learning [26] is one of the classical algorithms in reinforcement learning that learns
the optimal strategy based on the value function. By exploring the environment and
updating the value function by using empirical data, the algorithm selects the action
with the maximum reward according to the Q table and thus learns the optimal strategy.
However, Q-learning has some problems. For a high-dimensional state space, the storage
and updating of value functions require a lot of computing resources. In practical problems,
it is also necessary to deal with both continuous actions and continuous states, which limits
the application of the algorithm.

In order to overcome these problems, this paper adopts deep reinforcement learn-
ing (DRL) to replace traditional Q-learning, and the basic idea of DRL is to use deep
neural networks to approximate the valuation function. Among them, DQN [11] is a
Q-learning algorithm based on a neural network, which has advantages in dealing with
high-dimensional state space and continuous action problems. DQN solves the problem of
dimensionality disaster by using a deep neural network to fit the value function in the Q
table. The stability and convergence of the network are greatly improved by introducing
the target network to calculate the target Q value and using the delayed update. In addition,
the introduction of an experience replay mechanism breaks the correlation between data,
ensuring that the input data are independent and equally distributed when the network
is updated.

However, DQN has defects in solving decision-making ability and convergence speed
in large-scale scenes, which may lead to a too high or too low Q value. In order to solve this
problem, this paper combines double DQN (DDQN) [27] with the Dueling network [28],
D3QN, to estimate the action value function. The target value yt is shown in Equation (3),
where rt+1 is the reward for the next moment, st+1 is the state of the next moment, at+1 is the
action of the next moment, and γ is the discount factor, γ ∈ (0, 1] . The dueling structure
decomposes the Q value function into the state value function and action advantage
function, which represent the value of the state and the advantages of different actions
over other actions, respectively. It can eliminate some unnecessary variance in the learning
process, enable the network to converge faster to control the estimation error, and improve
learning efficiency and stability.

yt = rt+1 + γQ
(
st+1, argmaxaQ(st+1, at; θ); θ−

)
(3)

In traditional experience replay, all experience samples are randomly selected for train-
ing with equal probability, but this random sampling method will cause some important
experience samples to be submerged in a large number of unimportant experience samples,
lead to a slow convergence of the algorithm, and create a performance that is not ideal. In
order to overcome the instability of learning, this paper adopts the prioritized experience

Processes 2023, 11, 3434 9 of 23

replay mechanism [29] to break the uniform sampling and assign greater sampling weights
to the samples with a high learning efficiency, as shown in Algorithm 2. During training,
the new data are stored in the experience pool in the form of a quadruple (st, at, rt, st+1)
and the experience is sorted by the time difference (TD) from highest to lowest, as shown
in Equation (4). When the experience pool is full, the new data overwrites the old data. The
network not only learns from the current data but also samples small batches of data from
the experience pool for training.

δj =
(
yj −Q

(
sj, aj; θ

))2 (4)

The sampling probability corresponding to each experience is shown in Equations (5)
and (6) to ensure model convergence and more efficient training.

Pi =
1

rank(i)
(5)

P(i) =
Pi

∑k Pk
(6)

Algorithm 2 The training procedure of D3QPN

1. Initialize minibatch k, step-size η, exponents α and β, replay memory D, replay period K and capacity N, budget T.
2. Initialize target network Q̂ with random weights θ− = θ.
3. Initialize the Feature Extraction module.
4. for e = 1 to M do
5. Reset schedule scheme and observe state s1
6. for t = 1 to T do
7. Select and execute action at based on proposed strategy.
8. Observe reward rt and next state st+1.
9. Store transition (st , at , rt , st+1) in D with maximal priority pt = maxi<t pi .
10. if t ≡ 0 mod K then
11. for j = 1 to K do
12. Compute importance-sampling weight wj = (N·per(j))−β/maxiwi .

13. Set yi =

{
rj terminal
rj + γQ̂

(
sj+1, argmaxaQ

(
sj+1, a; θ

)
; θ−

)
non-terminal

14. Compute TD-error δj =
(
yj −Q

(
sj , aj ; θ

))2.
15. Update transition priority pj ←

∣∣δj
∣∣ .

16. Accumulate weight-change ∆← ∆ + wi ·δj ·∇θ Q
(
sj , aj

)
17. end for
18. Update weights θ ← θ + η·∆, reset ∆ = 0 .
19. Every C steps reset Q̂ = Q.
20. end if
21. end for
22. end for

3.3. Feature Extraction—Transformer

This paper uses a disjunctive graph to represent the various information about the
scheduling environment, including local, global, and dynamic information. The disjunctive
graph contains digitized state attributes that can describe all states of different scheduling
problems. The state feature extraction can be performed manually or automatically.

With the disjunctive graph, this paper transforms the problem by extracting useful
feature information from the relationship between different nodes and sets up a feature
extraction module in which a transformer is used to extract feature information [30]. This
module includes a multi-head attention mechanism, position-wise feed-forward networks
(FFNs), residual connection, and layer normalization (LN). The structure of the feature
extraction module is shown in Figure 3. Specifically, the transformer maps all operation
sequences in the input disjunctive graph to the extracted feature sequence through the
self-attention mechanism, takes the embedding vector between nodes in the disjunctive
graph as input, performs a self-attention calculation on the embedding vector of each node,
encodes the relationship information between nodes, and calculates the product between
the node embedding vector and the relational adjacency matrix.

Processes 2023, 11, 3434 10 of 23Processes 2023, 11, x FOR PEER REVIEW 11 of 25

Input

Embedding

Multi-Head

Attention

Add&Norm

Feed

Forward

Add&Norm

Linear

Softmax

Inputs

Positional

Encoding

LayerNorm

Figure 3. Feature extraction module.

With self-attention, the three matrices, Q (Query), K (Key), and V (Value), are all from

the same input, and are computed as follows: 1. First the dot product between Q and K is

calculated; with the aim to prevent the result from being too large, the value is divided by

√𝑑𝑘, where 𝑑𝑘 is the dimension of the Key vector and 2. The 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 operation is used

to normalize the result into a probability distribution and the matrix V is multiplied to

obtain a representation of the sum of the weights. The calculation process is expressed as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 (7)

The multi-head attention mechanism further improves the self-attention layer, first

mapping the Query, Key, and Value through h different linear transformations, concate-

nating different attentions, and finally performing a linear transformation. Each set of at-

tention is used to map the input to a different subrepresentation space, allowing the model

to focus on different locations in different subrepresentation spaces. The entire calculation

process can be expressed as:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 (8)

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄

, 𝐾𝑊𝑖
𝐾 , 𝑉𝑊𝑖

𝑉) (9)

where, 𝑊𝑖
𝑄 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘, 𝑊𝑖

𝐾 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝑖
𝑉 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘, and 𝑊𝑂 ∈ ℝℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙 are

the parameter matrices.

FFN is a fully connected feed-forward network, in which the words of each position

separately pass through this exact same feed-forward neural network, consisting of two

linear transformations, that is, two fully connected layers, connected by the ReLU activa-

tion function, expressed as:

𝐹𝐹𝑁(𝑥) = 𝑚𝑎𝑥(0, 𝑥𝑤1 + 𝑏1)𝑤2 + 𝑏2 (10)

where 𝑤1, 𝑏1, 𝑤2, and 𝑏2 are trainable parameters.

Figure 3. Feature extraction module.

With self-attention, the three matrices, Q (Query), K (Key), and V (Value), are all from
the same input, and are computed as follows: 1. First the dot product between Q and K is
calculated; with the aim to prevent the result from being too large, the value is divided by√

dk, where dk is the dimension of the Key vector and 2. The so f tmax operation is used to
normalize the result into a probability distribution and the matrix V is multiplied to obtain
a representation of the sum of the weights. The calculation process is expressed as:

Attention(Q, K, V) = so f tmax(
QKT√

dk
)V (7)

The multi-head attention mechanism further improves the self-attention layer, first
mapping the Query, Key, and Value through h different linear transformations, concatenat-
ing different attentions, and finally performing a linear transformation. Each set of attention
is used to map the input to a different subrepresentation space, allowing the model to focus
on different locations in different subrepresentation spaces. The entire calculation process
can be expressed as:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (8)

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(9)

where, WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dk , and WO ∈ Rhdv×dmodel are the

parameter matrices.
FFN is a fully connected feed-forward network, in which the words of each position

separately pass through this exact same feed-forward neural network, consisting of two

Processes 2023, 11, 3434 11 of 23

linear transformations, that is, two fully connected layers, connected by the ReLU activation
function, expressed as:

FFN(x) = max(0, xw1 + b1)w2 + b2 (10)

where w1, b1, w2, and b2 are trainable parameters.
Both multi-head attention and FFN use a residual connection to alleviate the problem

of a disappearing gradient and then perform LN after the residual connection. The whole
calculation process can be expressed as follows:

sub_layer_output = LayerNorm(x + SubLayer(x)) (11)

3.4. Action Space under Data Envelopment Analysis

A single dispatching rule is limited and lacks adaptive adjustment ability. It is only
applicable to a specific scenario and may not be effective in other scenarios. Therefore, this
paper uses multiple dispatching rules as the action space and selects the most appropriate
dispatching rule according to the current state and scheduling target. In the past, the action
space composed of dispatching rules depended on the prior knowledge and parameter
design experience of designers, so it was challenging to design and select appropriate
dispatching rules to achieve optimization goals.

In order to solve the problem, this paper chooses data envelopment analysis [31] to
select dispatching rules. Data envelopment analysis is a multi-objective decision-making
method that can help decision-makers choose the most suitable dispatching rule for the
current state by evaluating the performance of each dispatching rule under different
objectives to minimize the makespan and maximize the machine load rate. In our study,
the input of the DEA model is the predefined condition of the corresponding simulation
model, which imitates the behavior of the real workshop; that is, we need to input the state
characteristics of the workshop environment. Finally, each candidate scheduling rule is
regarded as a separate DMU, and its production performance relative to various targets
(machine load and completion time) obtained by simulation experiments is regarded as the
output value of the DEA model.

This paper selects 20 general dispatching rules. They are FIFO (first in, first out),
LSO (longest processing time for the next step), LPT (longest processing time), OMCT
(ordered minimum completion time), SIS (shortest total time for upcoming operation), LI
(maximum imminent operation time), SRPT (shortest remaining processing time), SSO
(shortest time for the next step), MOR (most remaining operations), FHALF (more than
half of the total number of operations), NINQ (shortest queue), WINQ (least amount of
work), LIFO (last in, first out), SJF (shortest job), WSPT (weighted shortest processing time),
Random, LSPON (longest follow-up time), MS (minimum slack), WQ (work queue), and
MCT (minimum completion time). Each dispatching rule defines two outputs, Obj1 and
Obj2, the completion time and machine load related to each scheduling rule, respectively,
and the strong efficiency dispatching rule and weak efficiency dispatching rule are obtained
according to the efficiency score. This paper evaluated and sorted 20 general dispatching
rules through data envelopment analysis and finally selected 12 optimal dispatching rules,
FIFO, LSO, LPT, SRPT, SSO, MOR, FHALF, NINQ, WINQ, LIFO, LRPT, and LOR, as shown
in Figure 4.

Considering the two factors of the job (operation time and number of operations) and
the priority factor of the machine, this paper selected 12 dispatching rules. In order to
achieve better scheduling performance, this paper also adds SPT and LSO, totaling 14 rules.
They are FIFO, LIFO, LPT, SPT, LRPT, SRPT, LSO, SSO, LOR, MOR, LHALF, FHALF, NINQ,
and WINQ, and their descriptions are shown in Table 2. The design of the action space can
provide more flexible and diversified scheduling strategies, which helps to improve the
scheduling effect and adaptation to different application scenarios.

Processes 2023, 11, 3434 12 of 23

Processes 2023, 11, x FOR PEER REVIEW 12 of 25

Both multi-head attention and FFN use a residual connection to alleviate the problem

of a disappearing gradient and then perform LN after the residual connection. The whole

calculation process can be expressed as follows:

𝑠𝑢𝑏_𝑙𝑎𝑦𝑒𝑟_𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟(𝑥)) (11)

3.4. Action Space under Data Envelopment Analysis

A single dispatching rule is limited and lacks adaptive adjustment ability. It is only

applicable to a specific scenario and may not be effective in other scenarios. Therefore, this

paper uses multiple dispatching rules as the action space and selects the most appropriate

dispatching rule according to the current state and scheduling target. In the past, the ac-

tion space composed of dispatching rules depended on the prior knowledge and param-

eter design experience of designers, so it was challenging to design and select appropriate

dispatching rules to achieve optimization goals.

In order to solve the problem, this paper chooses data envelopment analysis [31] to

select dispatching rules. Data envelopment analysis is a multi-objective decision-making

method that can help decision-makers choose the most suitable dispatching rule for the

current state by evaluating the performance of each dispatching rule under different ob-

jectives to minimize the makespan and maximize the machine load rate. In our study, the

input of the DEA model is the predefined condition of the corresponding simulation

model, which imitates the behavior of the real workshop; that is, we need to input the

state characteristics of the workshop environment. Finally, each candidate scheduling rule

is regarded as a separate DMU, and its production performance relative to various targets

(machine load and completion time) obtained by simulation experiments is regarded as

the output value of the DEA model.

This paper selects 20 general dispatching rules. They are FIFO (first in, first out), LSO

(longest processing time for the next step), LPT (longest processing time), OMCT (ordered

minimum completion time), SIS (shortest total time for upcoming operation), LI (maxi-

mum imminent operation time), SRPT (shortest remaining processing time), SSO (shortest

time for the next step), MOR (most remaining operations), FHALF (more than half of the

total number of operations), NINQ (shortest queue), WINQ (least amount of work), LIFO

(last in, first out), SJF (shortest job), WSPT (weighted shortest processing time), Random,

LSPON (longest follow-up time), MS (minimum slack), WQ (work queue), and MCT

(minimum completion time). Each dispatching rule defines two outputs, Obj1 and Obj2,

the completion time and machine load related to each scheduling rule, respectively, and

the strong efficiency dispatching rule and weak efficiency dispatching rule are obtained

according to the efficiency score. This paper evaluated and sorted 20 general dispatching

rules through data envelopment analysis and finally selected 12 optimal dispatching rules,

FIFO, LSO, LPT, SRPT, SSO, MOR, FHALF, NINQ, WINQ, LIFO, LRPT, and LOR, as

shown in Figure 4.

Figure 4. Dispatching rules selected by data envelopment analysis. Figure 4. Dispatching rules selected by data envelopment analysis.

Table 2. Definition of action space.

Dispatching Rules Description

FIFO First in, first out
LPT The longer the processing time, the more priority

LRPT Select the job with the longest remaining processing time
LSO Select the job with the longest processing time for the next step
LOR Select the job with the fewest remaining operations

LHALF Select the job that has less than half of the total number of operations that have not been performed
NINQ Select the job with the shortest queue to the next operating machine
WINQ Select the next job with the least amount of work to operate the machine
LIFO Last in, first out
SPT The shorter the processing time, the more priority

SRPT Select the job with the shortest remaining processing time
SSO Select the job with the shortest time for the next step

MOR Select the job with the most remaining operations
FHALF Select the job for which more than half of the total number of operations have not yet been executed

3.5. Reward Function

The definition of the reward function is closely related to the scheduling objective. The
scheduling objective in this paper is to minimize the makespan, while the objective of the
algorithm is to maximize the cumulative reward. However, in the actual production process,
different scheduling problem scales are also different. In order to unify the setting of the
reward function, this paper converts the long-term reward (minimizing the makespan) into
an immediate reward (maximizing the machine utilization rate U). This transformation
design improves the learning ability and decision quality of the agent. Not only can
the minimization goal of the scheduling problem be transformed into the maximization
goal of the cumulative reward, but the actions selected at each decision point t can also
be accurately evaluated, which improves the learning ability of the agent relative to the
complex control strategy.

The machine utilization rate U is shown in Equation (12), which is the actual use time
of the machine compared with the total available time of the equipment:

U =
1
M

M

∑
m=1

∑N
i=1 ∑Ki

k=1 Eikm

Cmax
=

E
M·Cmax

(12)

where Ki is the total number of operations in job i, M is the total number of machines, and
N is the total number of jobs.

Processes 2023, 11, 3434 13 of 23

Cumulative rewards are calculated as follows:

R =
T

∑
t=1

rt =
T

∑
t=1

U(t + 1)−U(t) = U(t) =
E

M·Cmax
(13)

where t is the counter, understood as the discrete-time step in reinforcement learning, U(t)
is the average machine utilization of time step t, and Cmax(t) is the maximum completion
time of time step t.

3.6. Strategy

Traditional reinforcement learning methods usually use ε-greedy strategies to bal-
ance exploration and exploitation [32]. Specifically, ε-greedy strategies conduct random
exploration (exploration) with the probability of ε and select actions with the maximum
current Q value (exploitation) with the probability of 1-ε. The method is simple and easy,
but the value of ε needs to be adjusted manually. If the value is too large, it will lead to a
lot of unnecessary exploration and reduce learning efficiency. If the value is too small, the
optimal strategy cannot be explored.

In order to overcome this problem, the academic community has proposed many
methods of balanced exploration and exploitation, such as the upper confidence bound
(UCB) [33], Thompson sampling [34], bootstrapped DQN [35], and noisy net [36] methods.
These methods are able to balance exploration and exploitation adaptively and are often
more effective than traditional ε-greedy strategies.

This paper proposes a dynamic target strategy with an elite mechanism that retains
some of the best-performing actions or strategies when the strategy is updated to ensure
that these excellent actions or strategies will not be prematurely eliminated. By introducing
the elite mechanism, reinforcement learning can strike a balance between exploration and
exploitation, avoiding premature convergence and creating local optimal solutions. The
strategy proposed in this paper, similar to the idea of the ε-decreasing strategy, as shown
in Equations (14) and (15), relies on the scoring function L, that is, maximizing machine
utilization, and normalizing the result of the function.

L = U(t)max =
E

M·Cmax
(14)

a =

{

argmaxa′Q(a′) with probability 0.5 ∗L
πbest(s) with probability 0.5 ∗L

random with probability 1−L
(15)

Over time, with more experience, the value of the scoring function will increase,
gradually shifting from exploration to exploitation so as to achieve a better balance. The
introduction of a dynamic target strategy can improve the stability and convergence of
the reinforcement learning algorithm so that it can better cope with the needs of different
environments and problems.

4. Experiments
4.1. Dataset

The OR-Library is a standard dataset widely used in the field of operations research
and optimization and contains instances and descriptions of various types of problems, in-
cluding scheduling, path planning, traveling salesman problems, vehicle routing problems,
and other fields, for evaluating and comparing the performance of different optimization
algorithms. In the field of scheduling, instances of this dataset typically include infor-
mation such as the number of jobs and machines, the processing time of jobs, and so on.
The advantage of the OR-Library is that it provides standardized datasets and evaluation
indicators, and different researchers can use the same benchmark to compare and verify
their own algorithms, ensuring the objectivity and reliability of the algorithm evaluation.

Processes 2023, 11, 3434 14 of 23

As shown in Figure 5, in the case of la21, the scale is 15 × 10, which means that there
are 15 jobs and 10 machines. Taking the first line as an example, the first operation O11 of the
first job J1 is performed on machine M2 with a processing time of 34, the second operation
O12 is performed on machine M3 with a processing time of 55, and so on. Similarly, the
operations, corresponding machines, and processing times of other jobs can also be found
in the description of the example. This information can help researchers and developers
understand the characteristics of instances and provide a basis for the design and evaluation
of scheduling algorithms.

Processes 2023, 11, x FOR PEER REVIEW 15 of 25

verify their own algorithms, ensuring the objectivity and reliability of the algorithm eval-

uation.

As shown in Figure 5, in the case of la21, the scale is 15 × 10, which means that there

are 15 jobs and 10 machines. Taking the first line as an example, the first operation 𝑂11 of

the first job 𝐽1 is performed on machine 𝑀2 with a processing time of 34, the second op-

eration 𝑂12 is performed on machine 𝑀3 with a processing time of 55, and so on. Simi-

larly, the operations, corresponding machines, and processing times of other jobs can also

be found in the description of the example. This information can help researchers and

developers understand the characteristics of instances and provide a basis for the design

and evaluation of scheduling algorithms.

Figure 5. la21 scheduling instance.

4.2. Training Environment

This paper uses tensorflow2.0 and the neural network optimizer Adam, running on

Windows 11, 64 RAM, Intel i7 2.50 GHz CPU PC platform. The dynamic interference fac-

tor is that the job arrives randomly, so the release time of the job is set randomly. The

Dueling network is divided into two fully connected layers; the final hidden layer is fully

connected, the value stream has one output, and the advantage stream has many outputs.

In addition, batch normalization techniques are used in all convolution layers and fully

connected layers except for the output layers of the two streams. In reinforcement learn-

ing, determining the value of hyperparameters is critical to the performance of the Q-net-

work, but finding the optimal value is a challenge due to the large search space for hy-

perparameters. Thus, by performing a random search, this paper finds the values that

produce the best performance for all instances, as shown in Table 3.

Table 3. Hyperparameters.

Hyperparameter Value

Number of episodes 8000

Schedule cycle 10

Buffer size 100,000

Discount factor γ 0.95

Target Q update frequency 200

Batch size 128

Prioritized replay α 0.6

Prioritized replay β 0.4

Number of layers of feature extraction module 3

Figure 5. la21 scheduling instance.

4.2. Training Environment

This paper uses tensorflow2.0 and the neural network optimizer Adam, running on
Windows 11, 64 RAM, Intel i7 2.50 GHz CPU PC platform. The dynamic interference factor
is that the job arrives randomly, so the release time of the job is set randomly. The Dueling
network is divided into two fully connected layers; the final hidden layer is fully connected,
the value stream has one output, and the advantage stream has many outputs. In addition,
batch normalization techniques are used in all convolution layers and fully connected layers
except for the output layers of the two streams. In reinforcement learning, determining the
value of hyperparameters is critical to the performance of the Q-network, but finding the
optimal value is a challenge due to the large search space for hyperparameters. Thus, by
performing a random search, this paper finds the values that produce the best performance
for all instances, as shown in Table 3.

Table 3. Hyperparameters.

Hyperparameter Value

Number of episodes 8000
Schedule cycle 10

Buffer size 100,000
Discount factor γ 0.95

Target Q update frequency 200
Batch size 128

Prioritized replay α 0.6
Prioritized replay β 0.4

Number of layers of feature extraction module 3
Number of attention heads 5

Learning rate 10−5

Processes 2023, 11, 3434 15 of 23

4.3. Performance Evaluation

This section aims to explore the advantages of the proposed framework over tradi-
tional dispatching rules and other deep reinforcement learning methods. The framework
proposed in this paper can dynamically select appropriate dispatching rules according to
the environment, which is obviously more advantageous than any single scheduling rule.
In addition, in order to evaluate the performance of the proposed method, it is compared
with 14 single dispatching rules, the genetic algorithm (GA), and four reinforcement learn-
ing algorithms. In this paper, 14 scheduling instances in the OR-Library dataset are selected
to prove the validity of the proposed method, including ft06, ft10, swv01, swv06, abz5,
abz7, la01, la06, la21, la31, orb01, orb02, yn01, and yn02, which cover different scheduling
problems. Compared with the traditional single scheduling rule, we can evaluate whether
the framework can provide better scheduling performance in various scenarios, and prove
the advantages of the framework in the learning and decision-making process compared
with the genetic algorithm and four effective deep reinforcement learning methods in the
scheduling field:

(1) A total of 14 dispatching rules, including FIFO, LIFO, LPT, SPT, LRPT, SRPT, LSO,
SSO, LOR, MOR, LHALF, FHALF, NINQ, and WINQ;

(2) GA: a search algorithm that simulates the principles of natural selection and genetic
inheritance. Its basic idea is to find the optimal solution to the problem by sim-
ulating the evolutionary process. The core steps of the genetic algorithm include
selection, crossover, and mutation. Using the genetic algorithm to solve job-shop
scheduling problem necessitates defining a coding strategy, fitness function, and
genetic operation;

(3) Advantage actor-critic (A2C): a reinforcement learning method, based on the policy
gradient and value function, which is usually used to solve reinforcement learning
problems in continuous-action space and high-dimensional state space. The algorithm
combines an Actor network and a Critic network, generates action through the Actor
network, estimates the state-value function or state-action value function through the
Critic network, and finally trains the Actor network and Critic network through the
strategy gradient algorithm;

(4) Proximal policy optimization (PPO): has some advantages over the policy gradient
and trust region policy optimization (TRPO). It alternates between sampling data and
using the random gradient ascending method to optimize instead of the objective
function. Although the standard strategy gradient method performs a gradient update
for each data sample, the PPO proposes a new objective function, which can realize
small-batch updates;

(5) DQN: is one of the first widely used algorithm models for reinforcement learning
in the field of deep learning. It was proposed by the research team of DeepMind in
2013 by combining deep neural networks with the classical reinforcement learning
algorithm Q-learning. It realizes the processing of high-dimensional and continuous
state space and has the ability to learn and plan;

(6) Rainbow DQN: is a deep reinforcement learning method proposed by DeepMind that
integrates six improvements on the basis of the DQN. Rainbow DQN combines six
extended improvements to the DQN algorithm, integrating them on the same agent,
including DDQN, dueling DQN, and DQN, as well as the prioritized replay, multistep
learning, distributional RL, and noisy net methods.

The experimental results are shown in Tables 4 and 5. Compared with traditional
dispatching rules, the method proposed in this paper has less completion time and the
average performance is improved by 15.98%, which means that our method can arrange jobs
and resources more effectively, thus shortening the overall completion time and improving
production efficiency. Compared with the genetic algorithm, it has a smaller completion
time and the average performance is improved by 17.98%, which indicates that our method
has advantages in searching and optimizing scheduling strategies, and can find efficient
scheduling schemes more accurately. In addition, compared to PPO, A2C, DQN, and

Processes 2023, 11, 3434 16 of 23

Rainbow-based reinforcement learning, the completion time is smaller and the average
performance is improved by 13.84%.

Table 4. Experimental results with different dispatching rules.

Instance Scale Ours
Dispatching Rules

FIFO LIFO LPT SPT LTPT STPT MOR LOR LSO SSO LHALF FHALF NINQ WINQ

ft06 6 × 6 59 68 70 77 88 68 83 61 68 61 87 79 66 67 68
ft10 10 × 10 1052 1262 1281 1295 1074 1190 1262 1163 1352 1424 1471 1366 1253 1341 1262

swv01 20 × 10 1718 1889 2123 2145 1737 1961 1751 1971 1838 1997 2027 1989 2011 1977 1889
swv06 20 × 15 2042 2243 2331 2542 2140 2327 2360 2287 2383 2488 2452 2684 2751 2133 2243
abz5 10 × 10 1338 1388 1605 1586 1352 1483 1624 1336 1559 1725 1855 1735 1466 1564 1370
abz7 20 × 15 806 902 946 903 849 918 923 775 933 971 1101 984 951 914 900
la01 10 × 5 695 830 764 822 751 835 933 763 941 808 843 865 896 836 830
la06 15 × 5 926 1078 1031 1125 1200 1098 1012 926 1095 1011 1211 1234 1053 1134 1078
la21 15 × 10 1198 1417 1479 1451 1324 1278 1541 1251 1547 1419 1965 1763 1877 1563 1417
la31 30 × 10 1764 2148 2256 2245 1951 2083 2270 1836 2129 2147 2296 2345 1988 2238 2148

orb01 10 × 10 1163 1456 1495 1410 1478 1308 1458 1307 1410 1383 1294 1326 1671 1504 1456
orb02 10 × 10 933 1157 1264 1293 1175 1067 1166 1047 1194 1265 1347 1096 1255 1244 1157
yn01 20 × 20 1009 1158 1177 1115 1196 1177 1188 1045 1205 1314 1361 1198 1358 1146 1123
yn02 20 × 20 1074 1356 1283 1195 1256 1225 1199 1098 1446 1364 1679 1612 1421 1489 1356

Table 5. Comparison of different algorithms.

Instance Scale GA
Reinforcement Learning

PPO A2C DQN Rainbow Ours

ft06 6 × 6 59 67 69 65 63 59
ft10 10 × 10 1061 1139 1276 1223 1231 1052

swv01 20 × 10 2331 1986 1979 1962 2061 1718
swv06 20 × 15 2971 2354 2369 2311 2333 2042
abz5 10 × 10 1377 1755 1477 1635 1552 1338
abz7 20 × 15 807 985 961 897 904 806
la01 10 × 5 741 828 830 785 935 695
la06 15 × 5 994 1021 1043 984 1066 926
la21 15 × 10 1511 1345 1334 1347 1494 1198
la31 30 × 10 2443 2047 2075 1958 1846 1764

orb01 10 × 10 1463 1343 1344 1327 1473 1165
orb02 10 × 10 1010 1311 1154 1230 1098 933
yn01 20 × 20 1488 1132 1250 1109 1110 1009
yn02 20 × 20 1131 1261 1312 1455 1354 1074

Even though Rainbow integrates six extended improvements of DQN, including
DDQN, dueling DQN, prioritized replay, multistep learning, distributional RL, and noisy
net, the experimental results show that the method proposed in this paper exceeds the
integration of these six extended algorithms in practical effect. The ablation experiment is
detailed in Section 4.4. These results validate the effectiveness of the proposed method and
prove its superiority in solving scheduling problems; it can adapt to different scheduling
scenarios and provide better scheduling performance in numerous cases, which means that
the method has wide applicability and feasibility in practical applications, and can provide
effective solutions for scheduling problems in different industries and fields.

Using the framework proposed in this paper, la21 in the OR-Library dataset is taken
as an example to generate a scheduling scheme. The instance scale is 15 × 10, that is, there
are 15 jobs and 10 machines, and the job arrangement is shown through a Gantt chart, as
shown in Figure 6. The Gantt chart shows the processing of 15 jobs on 10 machines, along
with their start time and end time.

By observing the Gantt chart, it can be seen that, under the framework proposed in this
paper, the makespan of this instance is 1198. Compared with other methods, the framework
in this paper achieves the best scheduling performance in this instance, which can more
effectively arrange the execution sequence of jobs and the utilization of resources so that all
jobs can be completed in the shortest time. Through the intuitive display of the Gantt chart,
we can clearly observe the arrangement of jobs, the processing time required for each job,
and the utilization of machines, which has an important reference value for evaluating the
effect of scheduling schemes and optimizing the scheduling process.

Processes 2023, 11, 3434 17 of 23

Processes 2023, 11, x FOR PEER REVIEW 18 of 25

means that the method has wide applicability and feasibility in practical applications, and

can provide effective solutions for scheduling problems in different industries and fields.

Using the framework proposed in this paper, la21 in the OR-Library dataset is taken

as an example to generate a scheduling scheme. The instance scale is 15 × 10, that is, there

are 15 jobs and 10 machines, and the job arrangement is shown through a Gantt chart, as

shown in Figure 6. The Gantt chart shows the processing of 15 jobs on 10 machines, along

with their start time and end time.

Figure 6. la21 scheduling scheme Gantt chart.

By observing the Gantt chart, it can be seen that, under the framework proposed in

this paper, the makespan of this instance is 1198. Compared with other methods, the

framework in this paper achieves the best scheduling performance in this instance, which

can more effectively arrange the execution sequence of jobs and the utilization of resources

so that all jobs can be completed in the shortest time. Through the intuitive display of the

Gantt chart, we can clearly observe the arrangement of jobs, the processing time required

for each job, and the utilization of machines, which has an important reference value for

evaluating the effect of scheduling schemes and optimizing the scheduling process.

As shown in Figure 7, it can be seen that the framework proposed in this paper shows

excellent scheduling performance on the la21 instance and minimizes the makespan

through an optimal scheduling scheme, which verifies the effectiveness and feasibility of

the proposed method and provides support for solving practical scheduling problems. In

summary, the method proposed in this paper can improve scheduling efficiency and re-

duce completion time and is expected to provide reliable support for scheduling optimi-

zation in actual production and operation processes and provide valuable references for

research in related fields.

Figure 6. la21 scheduling scheme Gantt chart.

As shown in Figure 7, it can be seen that the framework proposed in this paper
shows excellent scheduling performance on the la21 instance and minimizes the makespan
through an optimal scheduling scheme, which verifies the effectiveness and feasibility of
the proposed method and provides support for solving practical scheduling problems. In
summary, the method proposed in this paper can improve scheduling efficiency and reduce
completion time and is expected to provide reliable support for scheduling optimization in
actual production and operation processes and provide valuable references for research in
related fields.

Processes 2023, 11, x FOR PEER REVIEW 19 of 25

Figure 7. Comparison of methods in the la21 instance.

4.4. Ablation Experiment

The performance evaluation experiment results in the previous section show that the

performance of D3QPN is significantly better than DQN and Rainbow. Rainbow inte-

grates six extended improvements of DQN, including DDQN, dueling DQN, prioritized

replay, multistep learning, distributional RL, and noisy net. To verify the contribution of

each part of the proposed method, ablation experiments were conducted in this paper,

and the experimental results are shown in Table 6.

The results show that not all improvements on DQN in Rainbow are better than DQN

itself, which indirectly indicates that not all DQN variants are suitable for DJSP; for exam-

ple, distributed DQN can take less time than DQN on some events. However, it can be

seen from the experimental results in the table that the overall effect is not as good as

DQN. In addition, the experimental results show that distributed DQN is a negative factor

used by Rainbow in DJSP. After analysis, it is found that distributed DQN adopts a dis-

tributed perspective to model the deep reinforcement learning model and selects equidis-

tant value sampling points for decision-making, but in DJSP, there are relatively few op-

erations to choose from. Therefore, distributed DQN has certain interference in decision-

making, resulting in an increase in the completion time.

Table 6. Ablation experimental results.

Instance

Makespan

DQN DDQN
Dueling

DQN

Prioritized

Replay

Multistep

Learning
Distributional RL Noisy Net Ours

ft06 65 63 61 62 62 64 60 59

ft10 1223 1310 1307 1321 1421 1334 1294 1052

swv01 1962 1812 1785 1801 1894 1981 1794 1718

swv06 2311 2216 2177 2183 2197 2431 2274 2042

abz5 1635 1469 1397 1401 1557 1463 1576 1338

Figure 7. Comparison of methods in the la21 instance.

Processes 2023, 11, 3434 18 of 23

4.4. Ablation Experiment

The performance evaluation experiment results in the previous section show that the
performance of D3QPN is significantly better than DQN and Rainbow. Rainbow integrates
six extended improvements of DQN, including DDQN, dueling DQN, prioritized replay,
multistep learning, distributional RL, and noisy net. To verify the contribution of each
part of the proposed method, ablation experiments were conducted in this paper, and the
experimental results are shown in Table 6.

Table 6. Ablation experimental results.

Instance

Makespan

DQN DDQN Dueling DQN Prioritized
Replay

Multistep
Learning

Distributional
RL Noisy Net Ours

ft06 65 63 61 62 62 64 60 59
ft10 1223 1310 1307 1321 1421 1334 1294 1052

swv01 1962 1812 1785 1801 1894 1981 1794 1718
swv06 2311 2216 2177 2183 2197 2431 2274 2042
abz5 1635 1469 1397 1401 1557 1463 1576 1338
abz7 897 952 904 881 991 895 975 806
la01 785 761 752 779 757 804 743 695
la06 984 973 943 951 1064 972 958 926
la21 1347 1254 1269 1240 1367 1575 1276 1198
la31 1958 1951 1901 1876 1864 1934 1802 1764

orb01 1327 1371 1298 1366 1365 1631 1309 1165
orb02 1230 993 964 959 1074 1361 1001 933
yn01 1109 1127 1118 1123 1216 1398 1109 1009
yn02 1455 1278 1275 1307 1254 1462 1241 1074

Average 1306 1252 1225 1233 1292 1379 1244 1127

The results show that not all improvements on DQN in Rainbow are better than DQN
itself, which indirectly indicates that not all DQN variants are suitable for DJSP; for example,
distributed DQN can take less time than DQN on some events. However, it can be seen
from the experimental results in the table that the overall effect is not as good as DQN. In
addition, the experimental results show that distributed DQN is a negative factor used
by Rainbow in DJSP. After analysis, it is found that distributed DQN adopts a distributed
perspective to model the deep reinforcement learning model and selects equidistant value
sampling points for decision-making, but in DJSP, there are relatively few operations to
choose from. Therefore, distributed DQN has certain interference in decision-making,
resulting in an increase in the completion time.

In contrast, both dueling DQN and prioritized replay are superior to DQN in the
proposed method, indicating that improving these parts on DQN and using them to deal
with DJSP problems has an improved effect. Through the results of ablation experiments,
we can better understand the roles and contributions of each part of the proposed method
and further verify its effectiveness. These experimental results provide important guidance
for us to further study and improve the dynamic job-shop scheduling problem based on
reinforcement learning.

4.5. Feature Extraction Evaluation

In order to verify the rationality of using a transformer as a feature extraction module,
this paper conducts an experimental comparison and compares the transformer with the
traditional GNN and matrix. The results are shown in Figure 8, where the ranking number
indicates the relative advantages and disadvantages of each method in terms of effect. The
smaller the number, the better the effect, with one indicating the highest ranking.

Processes 2023, 11, 3434 19 of 23Processes 2023, 11, x FOR PEER REVIEW 21 of 25

Figure 8. Comparison of feature extraction methods.

4.6. Action Space Evaluation

In the research on DJSP based on reinforcement learning, many scholars chose to dis-

patch rules as action space, but few demonstrated their advantages experimentally. In or-

der to compare different action spaces, this paper selects four kinds of action spaces for

comparison. The first scenario selects unconstrained operations, that is, any operation can

be selected at each time step. In this case, the agent may choose any operation, including

one that has already been completed, which is time-consuming and inefficient. The second

scenario selects eligible operations, that is, only the operations that satisfy the constraints

are selected in each time step. Although this scenario saves some time compared to the

first case, it still has the problem that the efficiency is still not high. The third scenario

directly selects dispatching rules as action space. By selecting the appropriate dispatching

rules, the agent can make better decisions and produce a better scheduling scheme. The

fourth scenario is an action space composed of dispatching rules under data envelopment

analysis, which are comprehensively considered and optimized to select dispatching rules

in a targeted manner, thereby greatly improving scheduling efficiency.

The experimental results are shown in Table 7; by comparing four different scenarios,

the dispatching rules based on data envelopment analysis as an action space method show

obvious advantages in improving scheduling efficiency. Compared with the candidate

dispatching rules, the scheduling performance is improved by 17.18%. These experi-

mental results further validate the superiority of selecting dispatching rules as action

space, and, compared with unconstrained operations and eligible operations selection, the

scheduling performance is improved by 91.04% and 52.97%, respectively. Selecting dis-

patching rules as action space not only improves the flexibility of scheduling but also im-

proves the efficiency of scheduling, which also shows that in dynamic job-shop schedul-

ing problems, it is very important to select the appropriate action space to improve sched-

uling performance. These experimental results provide a useful reference for the solution

1 2 3

1 3 2

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 3 2

1 3 2

1 3 2

1 3 2
1 3 2

1 3 2

Figure 8. Comparison of feature extraction methods.

The experimental results show that the method of using a transformer as the feature
extraction module achieves better performance in all instances, ranking the highest. The
transformer can model the relationship between nodes through the self-attention mecha-
nism, which is not only limited to the direct neighbors of nodes but also can capture the
long-term dependency relationship between nodes. In contrast, GNN methods typically
only consider information about local neighbor nodes and cannot capture further correla-
tions. In addition, the attention mechanism in the transformer model can be calculated in
parallel, so it has good scalability, especially when dealing with large-scale graphic data.
In contrast, the GNN method and matrix representation usually require iterative updates
node by node when calculating neighbor node information, which is relatively inefficient.

In the transformer’s attention mechanism, the shallow layers focus more on what is
next for each job and what is not complete, ignoring what is complete; furthermore, what
is complete focuses on what is complete, so you can work together to determine what each
job should be doing at the moment. In summary, the experimental results clearly show
the advantages of the transformer as a feature extraction module that can better capture
the relationship between nodes and has good scalability and efficient computing power.
The feature extraction method using a transformer has better performance and application
prospects when processing graph data.

4.6. Action Space Evaluation

In the research on DJSP based on reinforcement learning, many scholars chose to
dispatch rules as action space, but few demonstrated their advantages experimentally. In
order to compare different action spaces, this paper selects four kinds of action spaces for
comparison. The first scenario selects unconstrained operations, that is, any operation can

Processes 2023, 11, 3434 20 of 23

be selected at each time step. In this case, the agent may choose any operation, including
one that has already been completed, which is time-consuming and inefficient. The second
scenario selects eligible operations, that is, only the operations that satisfy the constraints
are selected in each time step. Although this scenario saves some time compared to the
first case, it still has the problem that the efficiency is still not high. The third scenario
directly selects dispatching rules as action space. By selecting the appropriate dispatching
rules, the agent can make better decisions and produce a better scheduling scheme. The
fourth scenario is an action space composed of dispatching rules under data envelopment
analysis, which are comprehensively considered and optimized to select dispatching rules
in a targeted manner, thereby greatly improving scheduling efficiency.

The experimental results are shown in Table 7; by comparing four different scenarios,
the dispatching rules based on data envelopment analysis as an action space method show
obvious advantages in improving scheduling efficiency. Compared with the candidate
dispatching rules, the scheduling performance is improved by 17.18%. These experimental
results further validate the superiority of selecting dispatching rules as action space, and,
compared with unconstrained operations and eligible operations selection, the scheduling
performance is improved by 91.04% and 52.97%, respectively. Selecting dispatching rules as
action space not only improves the flexibility of scheduling but also improves the efficiency
of scheduling, which also shows that in dynamic job-shop scheduling problems, it is
very important to select the appropriate action space to improve scheduling performance.
These experimental results provide a useful reference for the solution of dynamic job-shop
scheduling problems in this paper and provide important guidance for the agent to choose
the appropriate motion space in practical applications.

Table 7. Comparison of action space in different scenes.

Instance

Makespan

Dispatching
Rules-DEA

Candidate
Dispatching Rules

Eligible
Operations

Unconstrained
Operations

ft06 59 68 164 5600
ft10 1052 1352 2163 9520

swv01 1718 1838 3596 27,026
swv06 2042 2383 4124 35,196
abz5 1338 1559 2764 19,650
abz7 806 933 1726 6504
la01 695 941 1367 5699
la06 926 1095 2063 7955
la21 1198 1547 2587 11,220
la31 1894 2129 3759 29,853

orb01 1165 1410 2431 13,552
orb02 933 1194 1925 8954
yn01 1009 1205 2165 9860
yn02 1074 1446 2335 10,745

4.7. Strategy Evaluation

This paper also verifies the influence of the proposed dynamic target strategy with
the elite mechanism on scheduling performance, as shown in Figure 9, which shows the
results of two different strategies on each scheduling instance. The results show that the
proposed strategy can further improve scheduling efficiency. In the later stage of training,
the method using the ε-decreasing strategy is likely to choose greedy behavior, which may
fall into the local optimal solution, limiting the further improvement of performance. The
exploration and exploitation strategy proposed in this paper selects the global optimal
solution with the same probability, which can approach the global optimal solution.

Processes 2023, 11, 3434 21 of 23Processes 2023, 11, x FOR PEER REVIEW 23 of 25

Figure 9. Strategy comparison.

5. Conclusions

This paper proposes a DJSP scheduling-problem-solving framework based on trans-

former and deep reinforcement learning. The framework takes the disjunctive graph as

the state takes a set of scheduling rules after data envelopment analysis as action space,

mapping the state to the most appropriate scheduling rules through D3QPN. It also pro-

poses a dynamic balance exploration and exploitation strategy that verifies the effective-

ness of the proposed method through a series of comparative and ablation experiments.

The framework makes full use of human domain knowledge and machine computing

power to achieve the goal of man–machine collaborative decision-making. In addition, the

action space is divided into four scenes for comparison. The experiment shows that the

scheduling rules selected by data envelopment analysis have the shortest scheduling time.

In the feature extraction part, the transformer is compared with matrix representation and

the GNN and the experimental results show that the transformer used in this paper ranks

first in the test case. In this paper, several sets of experiments are also carried out to verify

each module one by one. The experiments show that the proposed method plays a positive

role in improving scheduling efficiency. In addition, the proposed strategy is compared

with other strategies, proving that the scheduling performance is good. Through extensive

experiments conducted on multiple examples, it was seen that our proposed framework

consistently outperforms traditional dispatching rules, genetic algorithms, and other re-

inforcement learning methods, achieving improvements of 15.98%, 17.98%, and 13.84%,

respectively.

Authors Contributions: L.S. contributed to the conception of the study; L.S. and J.X. performed the

experiment; Y.L. contributed significantly to analysis and manuscript preparation; L.S. performed

the data analyses and wrote the manuscript; and Y.L. and J.X. helped perform the analysis with

constructive discussions. All authors have read and agreed to the published version of the manu-

script.

 -

Figure 9. Strategy comparison.

By comparing the experimental results, it can be concluded that the dynamic tar-
get strategy with the elite mechanism proposed in this paper has obvious advantages
in improving scheduling performance. The implementation of this strategy enables the
algorithm to explore the space more comprehensively and effectively balance the relation-
ship between exploration and exploitation. Therefore, it can better approximate the global
optimal solution, improve scheduling efficiency, and optimize the solution of job-shop
scheduling problems, which further proves the effectiveness of the proposed strategy in
improving scheduling performance.

5. Conclusions

This paper proposes a DJSP scheduling-problem-solving framework based on trans-
former and deep reinforcement learning. The framework takes the disjunctive graph as
the state takes a set of scheduling rules after data envelopment analysis as action space,
mapping the state to the most appropriate scheduling rules through D3QPN. It also pro-
poses a dynamic balance exploration and exploitation strategy that verifies the effectiveness
of the proposed method through a series of comparative and ablation experiments. The
framework makes full use of human domain knowledge and machine computing power
to achieve the goal of man–machine collaborative decision-making. In addition, the ac-
tion space is divided into four scenes for comparison. The experiment shows that the
scheduling rules selected by data envelopment analysis have the shortest scheduling time.
In the feature extraction part, the transformer is compared with matrix representation
and the GNN and the experimental results show that the transformer used in this paper
ranks first in the test case. In this paper, several sets of experiments are also carried out to
verify each module one by one. The experiments show that the proposed method plays
a positive role in improving scheduling efficiency. In addition, the proposed strategy is
compared with other strategies, proving that the scheduling performance is good. Through
extensive experiments conducted on multiple examples, it was seen that our proposed
framework consistently outperforms traditional dispatching rules, genetic algorithms, and

Processes 2023, 11, 3434 22 of 23

other reinforcement learning methods, achieving improvements of 15.98%, 17.98%, and
13.84%, respectively.

Author Contributions: L.S. contributed to the conception of the study; L.S. and J.X. performed the
experiment; Y.L. contributed significantly to analysis and manuscript preparation; L.S. performed
the data analyses and wrote the manuscript; and Y.L. and J.X. helped perform the analysis with
constructive discussions. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China the Scientific and Technological Innovation 2030—Major Project of “New Generation Artificial
Intelligence” [2020AAA0109300].

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Garey, M.R.; Johnson, D.S.; Sethi, R. The Complexity of Flowshop and Jobshop Scheduling. Math. Oper. Res. 1976, 1, 117–129.

[CrossRef]
2. Haupt, R. A survey of priority rule-based scheduling. OR Spectr. 1989, 11, 3–16. [CrossRef]
3. Sutton, R.; Barto, A. Reinforcement learning: An introduction (Adaptive computation and machine learning). IEEE Trans. Neural

Netw. 1998, 9, 1054. [CrossRef]
4. Samsonov, V.; Kemmerling, M.; Paegert, M.; Lütticke, D.; Sauermann, F.; Gützlaff, A.; Schuh, G.; Meisen, T. Manufacturing

Control in Job Shop Environments with Reinforcement Learning. In Proceedings of the 13th International Conference on Agents
and Artificial Intelligence, Virtual, 4–6 February 2021. [CrossRef]

5. Bouazza, W.; Sallez, Y.; Beldjilali, B. A distributed approach solving partially flexible job-shop scheduling problem with
a Q-learning effect. IFAC Pap. 2017, 50, 15890–15895. [CrossRef]

6. He, Z.; Tran, K.P.; Thomassey, S.; Zeng, X.; Xu, J.; Yi, C. Multi-Objective Optimization of the Textile Manufacturing Process Using
Deep-Q-Network Based Multi-Agent Reinforcement Learning. J. Manuf. Syst. 2020, 62, 939–949. [CrossRef]

7. Wang, X.; Zhang, L.; Lin, T.; Zhao, C.; Wang, K.; Chen, Z. Solving job scheduling problems in a resource preemption environment
with multi-agent reinforcement learning. Robot. Comput. Integr. Manuf. 2022, 77, 102324. [CrossRef]

8. Lang, S.; Behrendt, F.; Lanzerath, N.; Reggelin, T.; Müller, M. Integration of Deep Reinforcement Learning and Discrete-Event
Simulation for Real-Time Scheduling of a Flexible Job Shop Production. In Proceedings of the 2020 Winter Simulation Conference
(WSC), Orlando, FL, USA, 14–18 December 2020. [CrossRef]

9. Chen, R.; Yang, B.; Li, S.; Wang, S. A Self-Learning Genetic Algorithm based on Reinforcement Learning for Flexible Job-shop
Scheduling Problem. Comput. Ind. Eng. 2020, 149, 106778. [CrossRef]

10. Park, J.; Chun, J.; Kim, S.H.; Kim, Y.; Park, J. Learning to schedule job-shop problems: Representation and policy learning using
graph neural network and reinforcement learning. Int. J. Prod. Res. 2021, 59, 3360–3377. [CrossRef]

11. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep
Reinforcement Learning. arXiv 2013, arXiv:1312.5602. [CrossRef]

12. Baer, S.; Turner, D.; Mohanty, P.; Samsonov, V.; Bakakeu, R.; Meisen, T. Multi Agent Deep Q-Network Approach for Online Job
Shop Scheduling in Flexible Manufacturing. In Proceedings of the ICMSMM 2020: International Conference on Manufacturing
System and Multiple Machines, Opfikon, Switzerland, 13–14 January 2020.

13. Zhao, M.; Li, X.; Gao, L.; Wang, L.; Xiao, M. An improved Q-learning based rescheduling method for flexible job-shops with
machine failures. In Proceedings of the 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE),
Vancouver, BC, Canada, 22–26 August 2019. [CrossRef]

14. Luo, B.; Wang, S.; Yang, B.; Yi, L. An improved deep reinforcement learning approach for the dynamic Job-Shop scheduling
problem with random job arrivals. In Proceedings of the 4th International Conference on Advanced Algorithms and Control Engineering,
Online, 21–23 February 2020; IOP Publishing Press: Bristol, UK, 2021; pp. 1–8.

15. Turgut, Y.; Bozdag, C.E. Deep Q-Network Model for Dynamic Job Shop Scheduling Problem Based on Discrete Event Simulation.
In Proceedings of the 2020 Winter Simulation Conference (WSC), Orlando, FL, USA, 14–18 December 2020. [CrossRef]

16. Chang, J.; Yu, D.; Hu, Y.; He, W.; Yu, H. Deep Reinforcement Learning for Dynamic Flexible Job Shop Scheduling with Random
Job Arrival. Processes 2022, 10, 760. [CrossRef]

17. Wang, Y.F. Adaptive job shop scheduling strategy based on weighted Q-learning algorithm. J. Intell. Manuf. 2018, 31, 417–432.
[CrossRef]

18. Shahrabi, J.; Adibi, M.A.; Mahootchi, M. A reinforcement learning approach to parameter estimation in dynamic job shop
scheduling. Comput. Ind. Eng. 2017, 110, 75–82. [CrossRef]

19. Luo, S. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning. Appl. Soft Comput. 2020,
91, 106208. [CrossRef]

https://doi.org/10.1287/moor.1.2.117
https://doi.org/10.1007/BF01721162
https://doi.org/10.1109/TNN.1998.712192
https://doi.org/10.5220/0010202405890597
https://doi.org/10.1016/j.ifacol.2017.08.2354
https://doi.org/10.1016/j.jmsy.2021.03.017
https://doi.org/10.1016/j.rcim.2022.102324
https://doi.org/10.1109/WSC48552.2020.9383997
https://doi.org/10.1016/j.cie.2020.106778
https://doi.org/10.1080/00207543.2020.1870013
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.1109/COASE.2019.8843100
https://doi.org/10.1109/WSC48552.2020.9383986
https://doi.org/10.3390/pr10040760
https://doi.org/10.1007/s10845-018-1454-3
https://doi.org/10.1016/j.cie.2017.05.026
https://doi.org/10.1016/j.asoc.2020.106208

Processes 2023, 11, 3434 23 of 23

20. Luo, S.; Zhang, L.; Fan, Y. Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning. Comput. Ind.
Eng. 2021, 159, 107489. [CrossRef]

21. Braglia, M.; Petroni, A. Data envelopment analysis for dispatching rule selection. Prod. Plan. Control. Manag. Oper. 1999, 10,
454–461. [CrossRef]

22. Oukil, A.; El-Bouri, A. Ranking dispatching rules in multiobjective dynamic flow shop scheduling: A multi-faceted perspective.
Int. J. Prod. Res. 2019, 59, 388–411. [CrossRef]

23. Oukil, A.; El-Bouri, A.; Emrouznejad, A. Energy-aware job scheduling in a multi-objective production environment—An
integrated DEA-OWA model. Comput. Ind. Eng. 2022, 168, 108065. [CrossRef]

24. Bellman, R. Dynamic Programming. Science 1966, 153, 34–37. [CrossRef]
25. Demange, M.; Paschos, V.T. Extremal values of a combinatorial optimization problem and polynomial approximation.

Mathématiques Inform. Sci. Hum. 1996, 135, 51–66. [CrossRef]
26. Watkins, C.J.C.H. Learning From Delayed Rewards. Robot. Auton. Syst. 1989, 15, 233–235. [CrossRef]
27. Hasselt, H.V.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-learning. arXiv 2015, arXiv:1509.06461. [CrossRef]
28. Wang, Z.; Freitas, N.D.; Lanctot, M. Dueling Network Architectures for Deep Reinforcement Learning. arXiv 2015,

arXiv:1511.06581. [CrossRef]
29. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized Experience Replay. arXiv 2015, arXiv:1511.05952.
30. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

arXiv 2017, arXiv:1706.03762. [CrossRef]
31. Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444.

[CrossRef]
32. Watkins, C.J.C.H.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
33. Auer, P.; Cesa-Bianchi, N.; Fischer, P. Finite-time Analysis of the Multiarmed Bandit Problem. Mach. Learn. 2002, 47, 235–256.

[CrossRef]
34. Thompson, W.R. On the Likelihood That One Unknown Probability Exceeds Another in View of the Evidence of Two Samples.

Biometrika 1933, 25, 285–294. [CrossRef]
35. Osband, I.; Blundell, C.; Pritzel, A.; Van Roy, B. Deep Exploration via Bootstrapped DQN. arXiv 2016, arXiv:1602.04621. [CrossRef]
36. Fortunato, M.; Azar, M.G.; Piot, B.; Menick, J.; Osband, I.; Graves, A.; Mnih, V.; Munos, R.; Hassabis, D.; Pietquin, O.; et al. Noisy

Networks for Exploration. arXiv 2017, arXiv:1706.10295. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.cie.2021.107489
https://doi.org/10.1080/095372899232984
https://doi.org/10.1080/00207543.2019.1696487
https://doi.org/10.1016/j.cie.2022.108065
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.4000/msh.2713
https://doi.org/10.1016/0921-8890(95)00026-C
https://doi.org/10.1609/aaai.v30i1.10295
https://doi.org/10.48550/arXiv.1511.06581
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1016/0377-2217(78)90138-8
https://doi.org/10.1007/BF00992698
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1093/biomet/25.3-4.285
https://doi.org/10.48550/arXiv.1602.04621
https://doi.org/10.48550/arXiv.1706.10295

	Introduction
	Problem Formulation
	DJSP Description
	MDP Formulation for DJSP
	Disjunctive Graph

	Methodology
	Overall Framework
	D3QN with Prioritized Experience Replay
	Feature Extraction—Transformer
	Action Space under Data Envelopment Analysis
	Reward Function
	Strategy

	Experiments
	Dataset
	Training Environment
	Performance Evaluation
	Ablation Experiment
	Feature Extraction Evaluation
	Action Space Evaluation
	Strategy Evaluation

	Conclusions
	References

