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Abstract: Although analytical solutions for the problem of diffusion-controlled drug release from
uniform formulations of simple geometries, like slabs, spheres, or cylinders, are well known, corre-
sponding exact expressions for the average release times are not widely used. However, such exact
analytical formulae are very simple and useful. When the drug is initially distributed homogeneously
within the matrix, the average time of release from a sphere of radius R is tav = (1/15) R2/D
and from a slab of thickness L is tav = (1/12) L2/D, where D is the corresponding drug diffusion
coefficient. Regarding cylindrical tablets of height H and radius R, simple analytical expressions are
obtained in the two opposite limits of either very long (H � R) or very short (H � R) cylinders. In
the former case, of practically radial release, the average release time is tav = (1/8) R2/D, while in
the latter case the same result as that of a slab with thickness H is recovered, tav = (1/12) H2/D, as
expected. These simple and exact relations are useful not only for an estimate of the average release
time from a drug carrier device when diffusion is the dominant mechanism of drug delivery, but also
for the experimental determination of the drug diffusion coefficient in a release system of interest
through the measured release profile, given the mean squared size of the formulation.

Keywords: controlled drug delivery; diffusion-limited release; average release time

1. Introduction

For the proper design of a pharmaceutical dosage form it is very important to control
the time scale at which the bioactive compound is delivered. Accurate theoretical calcula-
tions, including mathematical models with explicit analytical expressions or numerical
computations, can greatly contribute towards this goal. There are many theoretical investi-
gations aiming to estimate the properties of drug release profiles and several review articles
discuss these efforts; see, for example, [1,2]. Other reviews focus on mathematical modeling
of drug delivery from specific type of carriers, like microspheres [3], hydrogels [4], bulk
degrading polymers [5], supramolecular systems [6], or diffusion-controlled formulations
in the presence of a size distribution [7].

Depending on the physical mechanism that dominates the release process in a par-
ticular case, various analytical methods or numerical simulations have been proposed in
order to investigate the release characteristics. Therefore, different models have been devel-
oped which describe situations ranging from pure diffusion [8–17] to reaction–diffusion
systems [18–24], to hydrogel swelling [25–27], or to kinetically limited release [28,29].

The drug carriers used in relevant experiments usually have simple geometrical
shapes, like thin films or slabs [30–35], spheres or pellets [36–41], and cylindrical tablets or
fibers [42,43]. In the particular case of diffusion-controlled release from such geometries,
exact analytical formulae concerning the fractional release profiles are well known, when
the drug is homogeneously distributed initially and the formulation is uniform [44], or it
has a core–shell structure [45].

However, the aforementioned analytical expressions describing the time dependence
of fractional release are in the form of sums of infinite series and thus they are somehow
intractable for practical use. As a result, simpler empirical functions have been suggested as
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approximate expressions in order to describe a part of the release kinetics or the complete
release profile. The release profile refers to the variation with time of the cumulative relative
amount of released drug Mt/M∞, where Mt is the amount of drug that has escaped from
the formulation up to time t and M∞ denotes the total amount of initially loaded drug
which is expected to be fully released after a very long (“infinite”) time. Widely used
approximate empirical functions are the Peppas power law, Mt/M∞ = ktn [46,47], and the
stretched exponential (known also as Weibull function), Mt/M∞ = 1− e−(t/τs)b

[48–51].
The k and n in the former case, and the b and τs in the latter are free parameters to be
determined through fitting with the obtained release profile. More recently, another two-
parameter empirical function has been proposed, which interpolates between the short-time
and long-time behavior of the exact analytical solution of Mt/M∞ [52,53].

Here, instead of focusing on the entire temporal profile of the fractional release Mt
M∞

(t),
a single value characterizing this time dependence is examined, namely the average release
time tav. The purpose of this work is to discuss simple expressions for the average release
time, in the case of diffusion-controlled drug release from different matrix geometries,
like spheres, slabs, or cylinders. The exact relations considered here are directly derived
through the known analytical solutions of the corresponding diffusion equation, in the
form of infinite series. The average release time is given as a function of the parameters of
the release system, that is, the size of the formulation and the drug diffusion coefficient,
through very simple analytical formulae in the cases of spheres and slabs, as well as in the
limiting cases of either very long cylindrical rods or very short cylinders (flat discs).

Contrary to the inconvenient infinite series form of the complete release profiles, the
exact simple relations discussed here regarding the average release times can be efficiently
used for practical applications:

• To directly determine the release time scale during the design of a drug delivery
device.

• To obtain the drug diffusion coefficient within the formulation, through an experimen-
tal estimate of the average release time tav by the measured release profile, given the
size of the drug carrier (or the average squared size when there is a distribution of
carrier sizes).

Concerning the latter application, the average release time tav can be easily derived
experimentally through the area under the plot of the quantity 1− Mt

M∞
or, even simpler

in many cases, through the time instant at which a particular fraction of the drug, around
65%, has been released (see Section 3 below).

2. Methods

At the beginning of a diffusional release process there is not any drug released yet,
while at very long times the whole amount of drug enclosed in the formulation has been
released. Therefore, the fractional release Mt

M∞
(t) varies from 0 to 1 as time increases from

zero to infinity. The complement fractional release

1− Mt

M∞
(1)

which expresses the relative amount of drug still remaining within the formulation, is
then varied from 1 to 0 as time increases. As a result, the area under the plot depicting
the variation of this last quantity with time, i.e. the simple integral of the complement
fractional release over time, can be used to provide the characteristic average time of the
release process [24,52,53]:

tav =
∫ ∞

0

(
1− Mt

M∞

)
dt (2)

The method of calculation of the average release time through Equation (2) is identical
to the procedure used to obtain the average decay time characterizing an exponential
decrease e−kt from 1 to 0. In the latter case, texp

av =
∫ ∞

0 e−ktdt = 1/k, where k is the decay
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rate of the exponential decrease. Correspondingly, the average time in a process described
by a stretched exponential decay from 1 to 0, see Equation (9) of Ref. [11] or Equation (12)
of Ref. [52], is obtained in a similar way through an integral over time such as that of
Equation (2). The difference here, in the context of drug delivery, is that the complement
fractional release 1− Mt

M∞
is not decaying exponentially or through a stretched exponential

(even though it can be approximated rather well by the Weibull function [11,45,48,49]),
but in a more complicated manner as an infinite sum of exponentials, see for example
Equations (5), (12) and (21) below. However, it still decays from 1 to 0. This is a necessary
requirement for the applicability of Equation (2) in order to provide the characteristic
average time of the process.

As we see in Sections 3.1, 3.2 and 3.3.1, in the case of diffusional drug delivery, at
times equal to the corresponding average release time, i.e. for t = tav, the complement
fractional release has decayed to around 33% for spherical formulations, around 36% for
slabs, and around 34% for long cylindrical rods, in comparison to the 1/e ≈ 37% decay
of an exponential decrease at t = texp

av = 1/k. This means that the average release time
of a diffusion-controlled drug delivery process is moved towards larger reductions of the
fractional amount of drug still remaining within the formulation, as compared to the case
of a first order (exponential) release.

Through the exact analytical solutions of the diffusion equation in different drug
carrier geometries, the integral of Equation (2) is explicitly calculated in Section 3, resulting
in exact and simple relations for the corresponding average release times. For convenience,
dimensionless time units will be used in the derivation. Then, the real units, which carry the
dependence on the parameters of the system, will be restored at the end of the calculation.

3. Results

The average release times discussed below concern situations where diffusion is the
dominant drug delivery mechanism. Other assumptions regarding the validity of the
presented results are that (i) spatially uniform devices are considered, (ii) initially the
bioactive substance is distributed homogeneously, i.e. its concentration is constant across
the formulation, and (iii) sink boundary conditions are applied at the external surfaces of
the drug carriers. The drug diffusion coefficient within the matrix is denoted by D. Average
release times from matrices in the form of spheres, slabs, and cylinders are presented in
Sections 3.1, 3.2 and 3.3, respectively.

3.1. Release from a Sphere of Radius R

Considering homogeneously loaded and uniform spherical formulations or pellets of
radius R, the solution of diffusion equation yields for the fractional release profile [8,11,44]

Mt

M∞
= 1− 6

π2

∞

∑
n=1

1
n2 e−n2π2Dt/R2

(3)

Using the dimensionless time [11]

τ =
D
R2 t (4)

the complement fractional release is

1− Mt

M∞
=

6
π2

∞

∑
n=1

1
n2 e−n2π2τ (5)

The dimensionless average time, obtained from Equation (2), is

τav =
∫ ∞

0

(
1− Mt

M∞

)
dτ =

6
π2

∞

∑
n=1

1
n2

∫ ∞

0
e−n2π2τdτ =

6
π4

∞

∑
n=1

1
n4 (6)
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Taking into account the value of the sum

∞

∑
n=1

1
n4 =

π4

90
(7)

the dimensionless average time is derived

τav =
1

15
(8)

Returning now in real time units, from Equation (4) we obtain tav = (R2/D) τav
and, thus,

tav =
1
15

R2

D
(9)

is the resulting average release time from a spherical device.
Figure 1 depicts the fractional release profile for a diffusional release from a sphere

(increasing, blue continuous line), given by Equation (3), and its complement fractional
release (decreasing blue dashed line), provided by Equation (5), both as functions of the
dimensionless time τ of Equation (4). The value of the average release time τav, Equation (8),
is indicated by the blue vertical dotted line in this figure. The average release time equals
the area under the plot of the complement fractional release 1−Mt/M∞ versus time, which
is shown by the dashed blue line. At the time instant equal to the average release time,
τ = 1/15 ≈ 0.0667, the corresponding value of the fractional release Mt/M∞ is around
0.67, i.e., approximately 67% of the drug has been released. The complement fractional
release at that time has decayed to around 33%, providing the corresponding percentage of
the initially loaded drug that is still remaining within the matrix at τ = τav.

0 0.1 0.2 0.3 0.4

Dimensionless  Time

0

0.2

0.4

0.6

0.8

1

M
t /

 M
∞

  
 a

n
d

  
  

1
 -

 M
t /

 M
∞

Sphere

Slab  or  Flat Disc

Long Cylindrical Rod

Figure 1. Fractional release curves Mt/M∞ (solid lines) and their complements 1−Mt/M∞ (dashed
lines) as functions of the corresponding dimensionless time τ in each case. Blue color curves represent
release from spheres, red color release from slabs or flat discs, and green color release from long
cylindrical rods. The respective average release time τav is shown by the vertical dotted line of the
same color and it equals the area under the plot of the corresponding complement fractional release
1−Mt/M∞ versus time.
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3.2. Release from a Slab of Thickness L

In the case of diffusion-controlled release from a uniform thin film or slab of thickness
L with a homogeneous initial drug distribution, the fractional release equals [8,12,44]

Mt

M∞
= 1− 8

π2

∞

∑
n=0

1
(2n + 1)2 e−(2n+1)2π2Dt/L2

(10)

Now, the dimensionless time is defined as [12]

τ =
D
L2 t (11)

and the corresponding complement fractional release is

1− Mt

M∞
=

8
π2

∞

∑
n=0

1
(2n + 1)2 e−(2n+1)2π2τ (12)

As a result, the dimensionless average time from Equation (2) is

τav =
∫ ∞

0

(
1− Mt

M∞

)
dτ =

8
π2

∞

∑
n=0

1
(2n + 1)2

∫ ∞

0
e−(2n+1)2π2τdτ =

8
π4

∞

∑
n=0

1
(2n + 1)4 (13)

Using the value of the infinite sum

∞

∑
n=0

1
(2n + 1)4 =

π4

96
(14)

the dimensionless average time is obtained from Equation (13)

τav =
1

12
(15)

Restoring real units, from Equation (11) we have tav = (L2/D) τav and, therefore, the
average release time from a slab is equal to

tav =
1
12

L2

D
(16)

This result has also been obtained in Ref. [52] in terms of the longest relaxation time
appearing in the exponentials of Equation (10).

Figure 1 shows with red lines the dependence of the fractional release and the com-
plement fractional release, obtained through Equations (10) and (12), respectively, on the
dimensionless time τ of Equation (11). The area under the plot of 1−Mt/M∞ versus time,
Equation (12), corresponds to the average release time τav. Its exact value is provided by
Equation (15) and it is depicted by the vertical red dotted line in Figure 1. The value of
fractional release at τ = τav = 1/12 ≈ 0.0833 in this case is Mt/M∞ ≈ 0.64, indicating that
the cumulative amount of drug released up to this time is around 64%. The complement
fractional release has decayed to around 36% at that time.

3.3. Release from a Cylinder of Height H and Radius R

Finally, diffusional release from a uniform cylindrical tablet of height H and radius
R is considered. When the initial drug loading is homogenous, then the fractional release
profile is given by [44,48,54]

Mt

M∞
= 1− 32

π2

∞

∑
m=1

1
λ2

m
e−λ2

mDt/R2
∞

∑
n=0

1
(2n + 1)2 e−(2n+1)2π2Dt/H2

(17)
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where λm represents the mth root of the zero-order Bessel function J0(x) and the first sum
over m corresponds to a sum over all roots of the equation J0(x) = 0. This means that
λ1 ≈ 2.4048, λ2 ≈ 5.5201, λ3 ≈ 8.6537, λ4 ≈ 11.7915, etc. [55].

Considering the aspect ratio A of the cylinder as the ratio of its length (height) over its
diameter 2R

A =
H
2R

(18)

and the dimensionless time
τ =

D
H2 t (19)

then the solution of the diffusion equation given by Equation (17) can be written as

Mt

M∞
= 1− 32

π2

∞

∑
m=1

∞

∑
n=0

1
λ2

m(2n + 1)2 e−[4A2λ2
m+(2n+1)2π2]τ (20)

In this case, the complement fractional release is

1− Mt

M∞
=

32
π2

∞

∑
m=1

∞

∑
n=0

1
λ2

m(2n + 1)2 e−[4A2λ2
m+(2n+1)2π2]τ (21)

and the corresponding dimensionless average time is

τav =
∫ ∞

0

(
1− Mt

M∞

)
dτ =

32
π2

∞

∑
m=1

∞

∑
n=0

1
λ2

m(2n + 1)2[4A2λ2
m + (2n + 1)2π2]

(22)

Due to the square bracket term in the denominator, the coupled double sum in the last
equation cannot be easily evaluated towards a simpler expression. However, in the two
limiting cases of either very long cylinders, where H � R and A tends to infinity, or very
short cylinders, where H � R and A tends to zero, one of the two terms within the square
brackets in the denominator of Equation (22) can be ignored as negligible in comparison
to the other one. Then, the double sum is decoupled. In these situations simple analytical
expressions are derived, as discussed in Sections 3.3.1 and 3.3.2.

In the general case of an arbitrary value of the aspect ratio A, the exact result of τav
given by Equation (22) can be computed through a numerical evaluation of the coupled
double sum. Such a numerical calculation of τav versus A is shown in Figure 2 by the line-
connected black circles. The simple analytical expressions valid in the two aforementioned
limits of H � R ⇒ A � 1 or H � R ⇒ A � 1, see Equations (38) and (29) below, are
represented by the continuous green and red lines, respectively. It can be seen from Figure 2
that the former expression describes rather well the numerically calculated values of τav
when the aspect ratio is smaller than a value of A ≈ 0.05, while the latter one provides an
accurate approximation of the average release time when the aspect ratio is larger than
a value of A ≈ 5. For intermediate values of A, a simple formula interpolating between
the corresponding analytical relations at the two opposite limits, Equations (38) and (29),
respectively, can be used as a crude approximation of the average release time:

τav ≈
1

4(8A2 + 3)
(23)

This interpolating expression is also shown in Figure 2 by the blue dashed curve. It
provides a rough approximation of τav in the region 0.05 . A . 5, i.e., when the ratio of a
cylinder’s length over its radius, H/R = 2A, is within the range 0.1 . H/R . 10. Note
that the approximate estimate of tav from the simpler Equation (23) is always larger than
its exact value given by Equation (22), i.e., it overestimates the average release time. The
magenta dotted line in Figure 2 depicts the difference between the approximate formula of
τav in Equation (23) and the numerically obtained exact double sum of Equation (22), i.e.,
the difference between the blue dashed and black solid curves of the figure. It should be
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mentioned however that, even though this difference seems to be small, the values of τav
are small too. As a result, the relative difference exceeds 10% in the region 0.2 . H/R . 6,
while its maximum value is around 24% when H/R ≈ 1.

0.001 0.01 0.1 1 10

Aspect  Ratio   A = H /(2R)

0.001

0.01

0.1
D
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en
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e 
 T
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τ

av

Figure 2. Solid circles connected by the continuous black line show the dimensionless average time
τav as a function of the aspect ratio A, obtained through the numerical calculation of the double sum
in Equation (22). The horizontal green solid line and the inclined red solid line depict the limiting
expressions of Equations (38) and (29), valid when A� 1 and A� 1, respectively. The blue dashed
line represents the interpolating formula between these two limits, given by Equation (23). The
magenta dotted curve corresponds to the difference between the approximation of Equation (23) and
the exact result of Equation (22).

The average release time in real units is given by tav = (H2/D)τav, see Equation (19);
thus, Equation (22) implies

tav =
32
π2

(
∞

∑
m=1

∞

∑
n=0

1
λ2

m(2n + 1)2[4A2λ2
m + (2n + 1)2π2]

)
H2

D
(24)

Note that in this relation the geometrical dimensions of the cylindrical drug carrier
appear not only in the numerator H2 of the last fraction, but also in the square bracket term
within the double sum through the aspect ratio A. Taking into account the dependence of
the double sum on 4A2, in combination with Equation (18), one sees that the term within
the large parentheses of the last equation is a function of (H/R)2.

Correspondingly, the simpler Equation (23) yields in real units

tav ≈
1

4(8A2 + 3)
H2

D
=

1
4[2(H/R)2 + 3]

H2

D
(25)

which can be used as a rough approximation of the average release time in cylindrical
tablets with a length over radius ratio H/R ranging from ∼0.1 up to ∼10.

3.3.1. Very Long Cylinders (H � R)

This situation corresponds to long cylindrical rods of radius R. Now, the aspect ratio
A of Equation (18) tends to infinity and thus the first term 4A2λ2

m dominates inside the
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square brackets of the denominator of Equation (22). Thus, ignoring the corresponding
second term, the dimensionless average time is given in this limit by

τav =
32
π2

∞

∑
m=1

∞

∑
n=0

1
4A2λ4

m(2n + 1)2 =
8

A2π2

∞

∑
m=1

1
λ4

m

∞

∑
n=0

1
(2n + 1)2 (26)

Taking into account that, for the roots λm of J0(x), it is

∞

∑
m=1

1
λ4

m
=

1
32

(27)

(see Equation (3.6) of Ref. [56] for ν = 0 and m = 2), as well as the value of the sum

∞

∑
n=0

1
(2n + 1)2 =

π2

8
(28)

we finally obtain from Equation (26) that

τav =
1

32 A2 (29)

The simple result of Equation (29) obtained in this limit is shown by the solid red line in
Figure 2. It seems to provide a rather accurate description of the dimensionless average
time τav when A & 5, i.e., when H/R & 10.

Substituting the aspect ratio A from Equation (18) in the last relation yields

τav =
1
8

R2

H2 (30)

In real units we have tav = (H2/D) τav from Equation (19), resulting in

tav =
1
8

R2

D
(31)

In the case considered here, the last expression for the average release time can
alternatively be derived examining just radial diffusion from a cylinder of very long
(“infinite”) height and radius R. Then the analytical solution of the diffusion equation for
the problem of drug release from a two-dimensional disc of radius R provides the fractional
release profile (see Equation (5.23) of Ref. [8])

Mt

M∞
= 1− 4

∞

∑
m=1

1
λ2

m
e−λ2

mDt/R2
(32)

Using in this situation the dimensionless time

τ =
D
R2 t (33)

the complement fractional release is

1− Mt

M∞
= 4

∞

∑
m=1

1
λ2

m
e−λ2

mτ (34)

Evaluating the integral of Equation (2) in this case, yields

τav = 4
∞

∑
m=1

1
λ4

m
=

1
8

(35)
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where Equation (27) has been taken into account in the last equality. Restoring real
dimensions from Equation (33), tav = (R2/D) τav, leads to Equation (31).

The fractional release profile for long cylindrical rods, Equation (32), and the com-
plement fractional release from Equation (34) versus the dimensionless time of Equa-
tion (33) are depicted by green solid and dashed lines, respectively, in Figure 1. The vertical
green dotted line corresponds to the value of the dimensionless average release time,
Equation (35). In this case a fractional amount of drug around 0.66 has been released at
time τ = τav = 1/8 = 0.125. Thus, at a time equal to the average release time, an amount
of around 66% of the initially loaded dug has been released, while around 34% of the drug
is still remaining within the formulation.

3.3.2. Very Short Cylinders (H � R)

This is the case of flat discs with a very small height (thickness) H relative to their
radius, where the aspect ratio A of Equation (18) tends to zero. Now, the second term
within the square brackets of the denominator of Equation (22) is the dominant one and
thus, ignoring the first term, one obtains

τav =
32
π2

∞

∑
m=1

∞

∑
n=0

1
λ2

m(2n + 1)4π2 =
32
π4

∞

∑
m=1

1
λ2

m

∞

∑
n=0

1
(2n + 1)4 (36)

Using Equation (14) and that the sum of all inverse squared roots of the zero-order
Bessel function J0(x) equals

∞

∑
m=1

1
λ2

m
=

1
4

(37)

(see Equation (3.6) of Ref. [56] for ν = 0 and m = 1), we have

τav =
1

12
(38)

According to Equation (19), in real units tav = (H2/D) τav, leading to

tav =
1

12
H2

D
(39)

As expected, this result coincides with that of a thin slab with a thickness H, see
Equation (16). It can be easily seen that, in the limit where the aspect ratio A tends to zero,
the fractional release profile of Equation (20) reduces to the corresponding fractional release
from a slab, i.e. the dimensionless-time form of Equation (10). For this, one has to also take
into account the value of the sum given in Equation (37). Thus, all plots shown by red lines
in Figure 1, corresponding to the problem of diffusion-controlled release from slabs, also
represent the current situation of drug release from flat discs.

The horizontal green line in Figure 2 represents the analytical expression of τav,
Equation (38), derived in this limit. One sees that the simple analytical formula pre-
sented in this subsection for the average release time can be practically used when A . 0.05
or, equivalently, when H/R . 0.1, since H/R = 2A.

4. Discussion

The average release times discussed in this work are summarized in Table 1. These
simple, exact analytical expressions can be conveniently used for estimating the time scale
of release and thus facilitating the proper design of drug delivery devices, in cases where
diffusion constitutes the dominant release mechanism. They can be described in a unified
way considering spherically symmetric systems in any dimension [53].

When there is just a single geometrical parameter determining the size of the formu-
lation (for example, in spherical matrices or thin films), the particular dependence of the
average release time on the parameters of the system, i.e., the scaling tav ∼ size2/D, is what
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one expects by simple dimensional analysis. But, even in these cases, the exact value of the
numerical coefficient in this proportionality is one that permits the prediction of the precise
value of the characteristic average release time.

Table 1. Average release times for drug delivery formulations of different shapes. D denotes the drug
diffusion coefficient.

Drug Carrier Shape Characteristic Size Average Release Time tav

Sphere Radius R (1/15) R2/D

Slab or thin film Thickness L (1/12) L2/D

Cylinder (general case) Height H and Radius R Equation (24) 3

Long cylindrical rod 1 Radius R (1/8) R2/D
Flat disc 2 Height H (1/12) H2/D

1 Very long cylinder (H � R), in practice when H/R > 10. 2 Very short cylinder (H � R), in practice when
H/R < 0.1. 3 An approximate simple expression is given by Equation (25).

For cylindrical tablets there are two geometrical size parameters, the height (or length)
along the axis of the cylinder and the radius of its circular base, making the dependence of
tav more complicated, see Equation (24). However, the considered limiting expressions for
either very long or very short cylinders provide very simple formulae in terms of one of
the two relevant size parameter in each case. Practically, only for cylindrical tablets with
a height and radius of about the same order of magnitude, when their ratio is within the
range 0.1 . H/R . 10, the exact relation of tav in Equation (24) needs to be considered.
Even in this case, one can make use of the approximate expression of Equation (25) but
with caution since this formula overestimates tav as discussed in Section 3.3.

When the experimentally measured release profiles are obtained by a collection of
similar drug carriers exhibiting a distribution of sizes, the presented results on the aver-
age release time are still valid, but the squared geometrical size S2 in Table 1 should be
substituted by its mean value 〈S2〉 over the size distribution. Note that the mean squared
size 〈S2〉 is not equal to the squared mean size 〈S〉2 of the distribution, but these quantities
are connected through the variance Var of the distribution: 〈S2〉 = Var + 〈S〉2. Therefore,
considering for example release from spherical drug carriers where there is a distribution
of their radii with average radius 〈R〉 and variance VR, the average release time in this case
is tav = (1/15)〈R2〉/D = (1/15)(VR + 〈R〉2)/D. The situation is similar when there exists
a distribution of sizes in formulations with other geometrical shapes.

The average release time tav can be rather easily obtained from an experimentally
measured release profile, as discussed below. Thus, the analytical expressions presented
here can be efficiently used for an estimate of the drug diffusion coefficient D within the
matrix (see also Ref. [53]), if one knows the geometrical dimensions of the delivery device.
Preferably, a few release profiles could be obtained from similar formulations of various
sizes and then the diffusion coefficient can be calculated through the slope of a linear
regression of the average release time versus the mean squared size of the drug carrier.
Once more, such an estimate is meaningful only when diffusion is the main mechanism
of release.

Considering the definition of Equation (2), the average release time could be derived
from the experimental release data by plotting the complement fractional release, i.e. the
quantity 1− Mt

M∞
, versus time and then calculating the area under the plot of this curve.

Note that in this procedure Mt/M∞ should not be expressed as a percentage release, but
it must be varied in the interval from 0 to 1. The same range of variation also holds for
the complement fractional release 1− Mt

M∞
. At this point it should be stressed that in order

to use this method, based on Equation (2), for estimating the average release time, the
complement fractional release should be able to decay all the way from 1 to 0. This means
that in principle the whole amount of initially loaded drug could be removed from the
matrix or, equivalently, the fractional release profile should be able to reach a plateau
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around 1. When some amount of drug is permanently trapped within the formulation
and the fractional release shows a plateau in another value below 1, this procedure is not
directly applicable.

Perhaps a more practical way to obtain in diffusion-controlled systems the average
release time from a measured release profile is through the value of the fractional release
at tav, as discussed in Section 3. In particular, for a spherical formulation the average
release time is provided by the time instant at which around 67% of the release has been
completed. Similarly, for a slab or a flat disc tav is provided by the time instant at which
around 64% of the drug has been released. In the case of long cylindrical rods the average
release time coincides with the time instant at which around 66% of the initially loaded
drug has been removed from the formulation. Thus, roughly speaking, it seems that in
diffusional release the average release time is generally obtained by the time at which about
65% of the bioactive substance has been released from the matrix. It has been checked that
this conclusion seems to also hold when the surface of the drug carrier is not smooth, but
is characterized by a small to moderate amount of roughness. In particular, examining
numerically calculated release profiles from slabs exhibiting rough, instead of flat, surfaces
(presented in figure 6 of Ref. [12]), we see that the average release time (obtained through
the area under the plot of the corresponding complement fractional release) coincides
with the time instant at which about 64–66% of the release has been completed. Only in
situations of extremely rough and irregular surfaces (the three cases exhibiting the most
rough surfaces in Figure 6 of Ref. [12]), does the average release time equal the time at
which a larger fraction of drug, up to 69%, has been released.

The average release time is inversely proportional to the drug diffusion coefficient.
This dependence embodies the effects of matrix composition and the influence of any
ingredient present in the formulation, as well as the effects of external parameters, like the
pH or temperature. All these factors affect the physicochemical properties of the diffusing
drug particles. The quantitative way in which these factors determine the average release
time is mediated through the corresponding change in the drug diffusion coefficient.

As a final remark, when the Weibull function Mt/M∞ = 1 − e−(t/τs)b
is used to

approximate the infinite series of a diffusion-controlled release, the average time is obtained
by tav = Γ(1/b)

b τs, where Γ is the gamma function (see Equation (9) of Ref. [11]). For
release from spheres, the stretched exponential fitting of Equation (3) results in b = 0.68
and τs = 0.054 R2/D (see Equations (5) and (6) of Ref. [11]). Thus, the average release
time obtained through the Weibull fitting is tav = 0.070 R2/D, which overestimates
by 5% the exact result (1/15)R2/D. Similarly, for release from slabs it has been found
that τs = 0.076 L2/D and b = 0.80 (see Equations (4) and (5) of Ref. [12]), resulting in
tav = 0.086 L2/D. This overestimates the exact value (1/12)L2/D by 3.2%. We see that
in both cases the stretched exponential approximation of the diffusional release profile
overestimates the average release time by a few percent.

5. Conclusions

Very simple and exact analytical expressions are provided for the average release
times characterizing diffusion-controlled drug delivery systems, in terms of the size of
the device and the drug diffusion coefficient. Carriers of different geometrical shapes are
considered, like spheres or pellets, slabs or thin films, and cylindrical tablets or fibers.
The relations discussed here are valid when the bioactive substance is initially distributed
homogeneously inside uniform formulations (which do not exhibit spatially dependent
properties and inhomogeneities) with sink boundary conditions applied at their surfaces.

The main advantage of the exact expressions about the average release times is their
simplicity, compared to the impractical infinite series that appear in the corresponding exact
analytical formulae of the fractional release profiles. As a result these relations can be conve-
niently used in the design of delivery systems, for estimating the release time scale. Further,
the average release time can be easily determined through experimentally measured release
profiles, thus providing an efficient way to obtain the drug diffusion coefficient.
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Since these results are exact, there are no approximations involved, apart from the
assumptions mentioned above regarding the initial and boundary conditions of the uniform
delivery system used in diffusion-controlled release. This practically means that, if these
relations for the average release time are not satisfied in a specific situation where the
previous conditions are applied, it may happen that the release process is not determined
merely by diffusion but there may exist additional mechanisms controlling drug delivery
in this case.
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