
Citation: Lu, F.; Liu, H.; Lv, W.

Prediction of Clean Coal Ash Content

in Coal Flotation through a

Convergent Model Unifying Deep

Learning and Likelihood Function,

Incorporating Froth Velocity and

Reagent Dosage Parameters.

Processes 2023, 11, 3425. https://

doi.org/10.3390/pr11123425

Academic Editor: Jan Zawała

Received: 15 October 2023

Revised: 7 December 2023

Accepted: 11 December 2023

Published: 13 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Prediction of Clean Coal Ash Content in Coal Flotation through
a Convergent Model Unifying Deep Learning and Likelihood
Function, Incorporating Froth Velocity and Reagent
Dosage Parameters
Fucheng Lu, Haizeng Liu * and Wenbao Lv

School of Materials Science and Engineering, Anhui University of Science and Technology,
Huainan 232001, China; lufucheng@aust.edu.cn (F.L.); wenbaolv@126.com (W.L.)
* Correspondence: authors: liuhzeng@163.com

Abstract: This study successfully achieved high-precision detection of the clean coal ash content in
the coal froth flotation domain by integrating deep learning with the likelihood function. Method-
ologically, a novel data processing and prediction framework was established by combining a deep
learning Keras neural network with the likelihood function from probability statistics. The SIFT
algorithm was utilized to extract key feature points and descriptors from the images, and keypoint
matching and mean-shift clustering algorithms were employed to accurately obtain information
on foam motion trajectories and velocities. For parameter optimization, the maximum likelihood
estimation was applied to find the optimal parameter estimates of the likelihood function, ensuring
enhanced model accuracy. By incorporating the optimized likelihood function parameters into the
Keras deep neural network, an efficient prediction model was constructed for the dosage of flotation
reagents, froth velocity, and clean coal ash content. The model’s evaluation involved six performance
metrics. The experimental results were highly significant, with R2 at 0.99997%, RMSE at 0.04458%,
MAE at 0.00170%, MAPE at 0.02329%, RRSE at 0.00994%, and MAAPE at 0.00067%.

Keywords: deep learning; likelihood function; froth flotation; froth velocity; clean coal ash content

1. Introduction

Froth flotation finds extensive application in coal beneficiation, aiming to augment
coal quality and its adaptability [1–3]. Within this process, a liquid medium acts as a
carrier for solid particles and gas bubbles. The hydrodynamic characteristics encompassing
fluid flow patterns, velocities, and dynamic features play a pivotal role in governing the
distribution and trajectories of solid particles and bubbles. Efficient fluid dynamics are
crucial in ensuring homogeneous dispersion within the flotation chamber, preventing
agglomeration and obstructions, thus favoring the effective separation of target minerals
from contaminants [4]. The fundamental procedure involves the injection of bubbles
into the coal slurry, facilitating the attachment of coal particles onto bubble surfaces,
subsequently buoying them to the upper layer of the flotation chamber, thereby forming
froth concentrate [5,6]. The surface properties of bubbles exert significant influence on
their affinity towards mineral particles, thereby impacting separation efficiency. The
trajectories and velocities of solid particles within the flotation chamber dictate their
frequency and the duration of interaction with bubbles [6]. Optimized particle movement
aids in elevating collision probabilities with bubbles, consequently enhancing flotation
efficiency. Additionally, interparticle interactions such as agglomeration, settling, and
convective movements also influence their behavior during the flotation process [7]. A
benchmark for successful froth flotation lies in the ash content within the concentrate, a
critical indicator of coal quality [8,9]. Nonetheless, traditional ash content measurement
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methodologies entail multistep procedures and protracted durations, lacking real-time
adaptability for process control. Operators, relying on visual cues from foam appearances
on flotation chamber surfaces, encounter precision limitations. Consequently, there exists
an imperative need to devise rapid, precise, and practical techniques for ash content
quantification to support real-time process monitoring in flotation. Researchers have
explored rapid ash content measurement instruments, including X-ray fluorescence (XRF)
analyzers [10] and γ-ray transmission [11], among others. However, the accuracy of these
radiation-based instruments is susceptible to the intricate heterogeneity inherent in coal
samples. Regional disparities in coal composition, mineralogy, and impurity profiles
contribute to potential measurement inaccuracies. Particularly in heterogeneous coal
blends, higher resolution and intricate calibration procedures are imperative to ensure
measurement accuracy. Employing XRF and γ-ray technologies in ash content measurement
instruments necessitates the utilization of radioactive sources, entailing radiation risks.
Despite their relative expediency, these measurement instruments incur high costs and
pose hazards to both operators and the environment, thereby exhibiting limited potential
for widespread adoption within the flotation domain.

Zhiping Wen et al. have proposed a methodology employing visual data from coal
froth flotation images to predict flotation ash content [12]. Machine learning techniques
have seen widespread adoption in various domains such as object recognition [13], object
detection [14], and medical image analysis. For instance, Hassan Nateghi utilized machine
learning methodologies to determine the solubility of imatinib mesylate, an anticancer
pharmaceutical, in a supercritical carbon monoxide environment [15]. Remarkable strides
have been made in industrial sectors as well. Runda Jia integrated machine learning into
mineral flotation, specifically focusing on the recognition of flotation froth images, an area
of extensive research [16]. Bei Sun, Zhiping Wen, and their colleagues have employed
flotation image characteristics to predict critical variables including flotation recovery
and ash content [12,17]. The accurate prediction of flotation outcomes holds paramount
importance in controlling and optimizing production processes within coal production.
By leveraging machine learning for analyzing foam image features, it becomes possible
to forecast the ash content in flotation concentrates, thereby fostering increased recovery
rates of clean coal and reducing material wastage. Typically, analyses involve features
such as bubble size [18], bubble morphology [19], and chromatic attributes [20], as well as
texture, among others [21]. Diverse intelligent algorithms are utilized to establish models
that delineate the correlation between foam characteristics and metallurgical parameters,
facilitating the creation of predictive models [22]. However, the risk of critical feature
information loss exists, compounded by biases in feature selection that may lead the system
to overlook pivotal information crucial for predicting the requisite parameters. Machine
learning systems frequently rely on prior knowledge and experiential insights during the
process of feature extraction and model establishment. Inadequacies or biases within prior
knowledge may consequently impose limitations and inaccuracies within the resultant
model. Consequently, the untapped potential of machine learning in flotation monitoring
persists as an area ripe for further exploration and refinement.

In recent times, Zhiping Wen and M.R. Hosseini, along with their peers, have em-
braced the application of deep learning and neural network methodologies to address
predicaments surrounding process performance and prognostication [23,24]. M.R. Hosseini
et al. engaged neural networks to elucidate and model the intricate relationship between
procedural parameters, surface bubble dimensions, and operational efficacy during the
batch flotation of copper sulfide ores [23]. Concurrently, V. K. Kalyani et al. harnessed arti-
ficial neural networks to scrutinize laboratory-scale froth flotation operations, undertaking
estimations of optimal model parameters to compute diverse process parameters across
assorted experimental conditions inherent to the coal flotation processes [25]. Similarly,
Mengcheng Tang et al. delved into the anticipation of flotation concentrate ash content
by leveraging foam image processing and BP neural network modeling [26]. Moreover,
Gholamhossein Sodeifian et al. employed a multifaceted approach involving response
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surface methodology (RSM), genetic algorithms, and artificial neural network (ANN) mod-
els to elucidate and predict extraction rates, solubility, and concomitant parameters [27].
Neural networks inherently necessitate voluminous datasets for proficient training to
yield commendable performance. In the realm of mineral processing, however, procur-
ing high-fidelity data could prove challenging due to potential noise, incompleteness, or
inaccuracies within the datasets. Despite inherent constraints such as data volume de-
pendencies, interpretational constraints, and susceptibility to parameter sensitivity within
foam flotation processes, neural networks persist in offering latent value in predictive ana-
lytics and optimization strategies, necessitating a judicious appraisal considering both their
merits and constraints for pragmatic deployment. Gonzalo Montes-Atenas et al. adeptly
prognosticated bubble size and velocity in water and froth flotation slurries through the
adept application of deep neural networks (DNNs) entwined with computational fluid
dynamics (CFD) [28]. Likewise, Zhiping Wen et al. envisaged coal flotation concentrate ash
content employing a convolutional neural network (CNN) rooted in deep learning princi-
ples [24]. Additionally, Hu Zhang et al. introduced the Feature Reconstruction–Regression
Network (FRRN), a resource-efficient deep neural network tailored for monitoring foam
flotation performance [29]. Despite the relative prowess of deep learning in precise flota-
tion performance prognostication, its efficacy hinges upon hyperparameter calibration and
demands sizable annotated datasets for robust training, mandating protracted training
processes. Furthermore, its implementation necessitates intricate computational resources
and specialized expertise in deep learning, posing techno-economic hurdles for ventures
constrained by resources and financial limitations. Additionally, extant features exhibit
relative limitations, inadequately encompassing the multifaceted interplay between foam
image attributes and coal concentrate ash content. Hence, forthcoming research endeavors
should delve deeper into exploring multidimensional and intricate image features for
enhanced accuracy in flotation outcome prognostication.

The likelihood function, in statistical parlance, elucidates the intricate relationship
between parameter probability distribution and the observed dataset, serving as a funda-
mental tool in statistical modeling [30]. It quantifies the probability of observing specific
data given a certain set of parameters. Within statistical models, the estimation of various
unknown parameters necessitates rigorous attention [31]. Fundamentally, the likelihood
function denotes the plausibility of data occurrences under varied parameter scenarios.
Maximum likelihood estimation (MLE) represents an approach aimed at estimating model
parameters by optimizing the likelihood function, thus seeking parameter values that opti-
mize the probability of observed data occurrences within the selected statistical model [32].
Essentially, MLE fine-tunes parameter values to optimize the probability of observed
data occurrences, resulting in the computed maximum likelihood estimate. In industrial
contexts, the imperative nature of interpreting model outputs and assessing credibility
necessitates the application of maximum likelihood estimation to determine parameter val-
ues optimizing the probability of observed data occurrences within parameterized models.
This facilitates a nuanced comprehension of the alignment between features and observed
data characteristics [33]. In our approach, we endeavor to amalgamate the principles of
maximum likelihood estimation with the advancements in deep learning. Specifically,
leveraging deep neural networks to autonomously extract feature representations from
foam images eliminates the need for manual feature engineering. The optimal parameters
derived from this process are integrated as neural network weights, effectively harnessing
the feature learning prowess inherent in deep neural networks. This amalgamation aims to
exploit the strengths of deep learning’s feature learning capabilities alongside statistical
estimation techniques, resulting in a comprehensive encapsulation of intricate foam image
attributes, thereby significantly enhancing predictive performance concerning coal ash
content. The crux of this methodology lies in employing maximum likelihood estimation
to infer parameters associated with features, facilitating a deeper understanding of the
relationship between features and coal ash content values. This fusion of likelihood func-
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tion principles with deep learning stands poised to elevate predictive performance while
concurrently reinforcing the interpretability and credibility of model outcomes.

This investigation aims to amalgamate deep learning methodologies with the princi-
ples of likelihood functions to formulate a predictive model for coal’s refined ash content.
The model utilizes parameters such as bubble velocity and reagent dosages, acquired
from coal froth flotation processes. The primary objective is to optimize the stability and
efficiency of coal flotation techniques, ultimately enhancing the effective utilization of coal
resources. This study aspires to steer the coal industry towards a trajectory characterized by
cleaner, more efficient, and sustainable practices, thereby making significant contributions
to global endeavors for sustainable energy development.

2. Materials and Experiments
2.1. Materials

This research employed froth flotation experiments using coal samples with particle
sizes smaller than 0.5 mm, sourced from the Panji Coal Preparation Plant in Huainan,
Anhui, China. The imaging equipment chosen for this investigation was the HIKROBOT
MV-CS200-10GC (HIKROBOT, Hangzhou, China) color industrial camera, strategically
positioned on top of the flotation machine, at an approximate distance of 30 cm from the
foam surface. Additionally, a 240 W LED light source was utilized for effective illumination.
To ensure experimental stability, a shading hood was employed to cover the imaging area.
The computational aspect of this study involved a high-performance workstation equipped
with an Intel i9-13900K CPU (Intel, Santa Clara, CA, USA) and 128 GB of RAM, alongside
a dust removal system for meticulous cleanliness. The experiments were conducted on
a 1.5 L mechanical agitated flotation machine situated in the Flotation Laboratory of the
School of Materials Science and Engineering at Anhui University of Science and Technology.
The operating parameters of the flotation machine are shown in Table 1. The operations
strictly adhered to the guidelines specified in the “GB/T 30046.1–2013 Coal Flotation
Test” standard [34]. The comprehensive schematic diagram depicted in Figure 1 outlines
the entire process, beginning from foam image acquisition, to data processing, to the
conventional methodology of ash content measurement via foam flotation comparison
techniques. Each flotation batch consisted of 150 g of coal and 1 L of tap water.
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Table 1. Flotation machine operating parameters table.

Flotation Machine Operating Parameters Setting

Aeration Rate (m3/(m2·min) 0.25
Impeller Rotation (r/min) 1800
Impeller Diameter (mm) 60

The sequential procedure unfolds as follows: (1) Precision weighing of 150 g of coal,
introduction into the flotation apparatus, and subsequent initiation of slurry agitation.
(2) After a 2 min interval, the addition of the collector agent below the surface of the coal
slurry. (3) Following an additional minute, the introduction of the frother beneath the coal
slurry surface. (4) Stirring for a duration of 10 s, succeeded by the opening of the air valve
for a flotation duration of 60 s to gather the concentrate. (5) Subsequent filtration of all
concentrates acquired during flotation, followed by an 8 h drying period in a 75 ◦C oven,
culminating in the determination of ash content using the combustion weighing technique.

2.2. Flotation Reagent

In this experiment, the collector used was n-dodecane, which was of analytical purity
with a density ranging from 0.748 g/cm3 to 0.751 g/cm3. The foaming agent employed was
methyl isobutyl carbinol (MIBC), also of analytical purity, with a density of 0.807 g/cm3.
All reagents utilized in this study exhibited a purity level exceeding 99%. The specific
dosage information on the amount of experimental reagents added and the initial bubble
size magnitude is shown in Table 2.

Table 2. Reagent dosage additions and initial bubble sizes.

Group Collector (µL) Frother (µL) Initial Bubble
Number

Initial Average Bubble
Diameter (mm)

1

110.63

28.98 565 46
2 33.12 312 46
3 37.26 534 44
4 41.41 763 42
5 45.55 645 42
1

119.85

28.98 705 40
2 33.12 612 45
3 37.26 621 41
4 41.41 711 42
5 45.55 478 48
1

129.07

28.98 565 48
2 33.12 781 42
3 37.26 745 43
4 41.41 964 38
5 45.55 939 39
1

138.29

28.98 533 45
2 33.12 514 45
3 37.26 477 46
4 41.41 777 43
5 45.55 750 41
1

147.51

28.98 265 41
2 33.12 372 47
3 37.26 201 38
4 41.41 262 47
5 45.55 221 36

2.3. Data Gathering

During our flotation experimentation, we meticulously designed and executed 25 dis-
tinct sets of process parameters, each corresponding to a unique video segment. Each
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video segment, spanning approximately 1 min, yielded a corpus of 7500 images. These im-
ages, correlating with specific ash content values, boast a resolution of 2048 × 2048 pixels,
thus enabling meticulous capture of intricate foam details and characteristics. Concern-
ing dataset segmentation, the entire array of images within the foam image dataset was
allocated for training purposes. Concurrently, from this dataset, we randomly extracted
five sets of 1500 images each to constitute our validation set [29]. Table 3 comprehensively
outlines the partitioning specifics of the dataset. In selecting foam images, paramount
emphasis was placed on encapsulating the diverse foam characteristics and ash content
values under disparate process parameter configurations. Our meticulous curation ensured
that the chosen images exhibited a spectrum of variations in terms of size, shape, and
spatial positioning, effectively encapsulating the dynamic evolution of foam throughout
the flotation process. The systematic partitioning and utilization of the entire dataset
were purposefully geared towards training and validating the model’s comprehension of
foam images across an expansive range of process parameter configurations. This strategy
serves to facilitate the prediction of the interrelation between flotation efficiency and ash
content values.

Table 3. Froth flotation image dataset segmentation.

Delineation Criteria Number of Pictures

Training set 7500
Validation set 1500

3. Methodology and Modeling

Through the preceding experiments, a comprehensive dataset was obtained, encom-
passing essential parameters such as froth velocity, reagent dosage, and their corresponding
values of coal ash content. This dataset lays a robust groundwork for subsequent modeling
and prediction endeavors. We intend to harness the potential of cutting-edge deep learning
techniques to process and extract dynamic features from the bubble images. By incorporat-
ing the concept of the likelihood function, we aim to establish a sophisticated probabilistic
model that comprehensively captures the intricate relationships among reagent dosage,
froth velocity, and coal ash content. This approach will offer a more holistic and accurate
representation of the complex interplay between these variables. Furthermore, we will
seamlessly integrate the optimized parameters derived from the likelihood function into
the Keras deep neural network, thereby elevating the accuracy of predicting the coal ash
content value.

3.1. Modeling of Froth Velocity Feature Extraction

The traditional methodologies employed for foam image analysis typically concentrate
solely on the static attributes of foam while disregarding its dynamic nature, particularly
the pertinent froth velocity information. Froth velocity, often denoted as the foam’s fluidity,
embodies the dynamic facet of foam behavior, providing critical insights into the flux of
concentrate quality [35]. Notably, research conducted by P.N. Holtham accentuates froth
velocity as the most crucial dynamic determinant in assessing flotation performance [36].
Investigations by A. Jahedsaravani et al. have substantiated the pivotal significance of
froth velocity characteristics in the regulation and efficacy of foam flotation control [1].
Ming Lu et al., through the application of matching algorithms for extracting flotation foam
velocity, validated its practicality and effectiveness in industrial production settings [9].
Additionally, M. Massinaei et al., focusing on the characteristics of froth velocity, formu-
lated predictive control systems to anticipate process states and performance under varied
operational conditions [20]. The velocity of bubbles plays a pivotal role in determining
flotation efficiency, as it is intricately linked to bubble generation, flotation, and rupture
processes [37]. Consequently, accurate measurement and analysis of froth velocity are of
paramount importance in gaining deeper insights into the flotation process, predicting
bubble behavior, and optimizing operational parameters. To perform a meticulous analysis
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of foam images, we utilized a fusion of sophisticated deep learning techniques and ad-
vanced computer vision methodologies. Specifically, the application of the Scale-Invariant
Feature Transform (SIFT) algorithm facilitated the extraction of distinctive keypoints and
feature descriptors from the images, as illustrated in Figure 2a. These keypoints represent
salient local features within the images, delineating the image characteristics based on
their precise spatial locations, scales, and orientations. Subsequently, leveraging keypoint
matching techniques and the mean-shift clustering algorithm, we acquired the motion
trajectories of foam across the image sequences (Figure 2b) along with corresponding veloc-
ity information (Figure 2c). Keypoint matching involves identifying analogous keypoints
across different images, enabling precise tracking of foam positional variations across
diverse image frames [38]. Meanwhile, the mean-shift clustering algorithm serves as a
robust method for density estimation of data points and identification of cluster centroids,
effectively capturing and comprehending patterns and velocity characteristics inherent in
foam motion [39]. The employment of the SIFT algorithm enabled precise extraction of
distinctive local features from foam images, facilitating accurate tracking and correlation of
these salient points and thus ensuring meticulous monitoring and analysis of foam motion.
Simultaneously, the utilization of the mean-shift clustering algorithm enhanced our ability
to apprehend the motion patterns and velocity dynamics of foam, thereby enabling a
more profound insight into the dynamic behaviors of foam during the flotation process.
The SIFT algorithm is instrumental in identifying local feature points in the image, each
characterized by a unique descriptor [40,41]. For the i-th frame of the image Ii(ϑ,}), the
SIFT algorithm computes the scale-space extrema of the keypoints Kpi[j]. Subsequently, the
image undergoes Gaussian pyramid construction [42], yielding images at varying scales.

L(ϑ,}, ζ) = G(ϑ,}, ζ)× Ii(ϑ,}) (1)
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The scale-space extrema of the image at different levels of the Gaussian pyramid are
calculated to detect potential keypoints.

D(ϑ,}, ζ) = L(ϑ,}, ζ)−max{L(ϑ− 1,}, ζ), L(ϑ− 1,}, ζ),
L(ϑ− 1,}, ζ), L(ϑ− 1,}, ζ), L(ϑ− 1,}, ζ), L(ϑ− 1,}, ζ)} (2)

The scale-space extrema points are employed as initial candidate keypoints, and the
positions and scales of these keypoints are accurately ascertained through interpolation.

ϑ,}, ζ = argmax(D(ϑ,}, ζ)) (3)

(ϑ,}, ζ) = interpolate(D(ϑ,}, ζ)) (4)

In the context of the i-th frame image, each keypoint Kpi[j] undergoes a search pro-
cess to find the most suitable matching keypoint Kp(i+1)[j] in the subsequent frame image
Ii+1(ϑ

′,}′). The matching of keypoints is achieved by evaluating the Euclidean distance
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between their respective descriptors, which are distinctive representations of image fea-
tures [43,44].

Oiϑj = argmin(
∥∥dj − desi+1

∥∥ ) (5)

For each identified keypoint Kpi[j] and its corresponding matched keypoint Kp(i+1)[j],
the motion vector is calculated to quantify the spatial displacement between them.

Cj = (ϑ′ − ϑ,}′ − }) (6)

∥∥Cj
∥∥ =

√
(ϑ′ − ϑ,}′ − }) (7)

The motion vectors undergo normalization, a process that involves standardizing
their magnitudes.

V = (
ϑ′ − ϑ∥∥Cj

∥∥ ,
}′ − }∥∥Cj

∥∥ ) (8)

In this context, L(ϑ,}, ζ) represents the Gaussian convolution result of image Ii(ϑ,})
at scale ζ, where G(ϑ,}, ζ) denotes the Gaussian kernel function. D(ϑ,}, ζ) indicates the
scale-space extrema of the image at scale ζ, with max(·) signifying the maximum value.
argmax(·) refers to the position of the extrema, and interpolate(·) represents the precise
determination of the keypoint’s position and scale through interpolation. dj represents
the feature descriptor of keypoint Kpi[j], and desi+1 represents the feature descriptors of
all keypoints in the i + 1 frame image. ϑ, } and ϑ′, }′ denote the coordinates of key-
points Kpi[j] and its matched keypoint Kp(i+1)[j], respectively. V represents the normalized
velocity vector.

Table 4 illustrates the outcomes achieved through the application of deep learning and
computer vision methodologies for the identification and extraction of dynamic features
pertaining to froth velocity in froth flotation.

Table 4. Dynamic characterization parameter dataset for froth flotation images.

Collector (µL) Frother (µL) Id Froth Velocity (px/s) Ash Value (%)

110.63

28.98

00001.jpg 8.636 6.83
00002.jpg 8.723 6.83
00003.jpg 8.683 6.83
00004.jpg 8.785 6.83
00005.jpg 12.669 6.83

. . . . . . . . .
00299.jpg 22.221 6.83
00300.jpg 18.468 6.83

33.12

00001.jpg 24.318 6.9
00002.jpg 22.261 6.9

. . . . . . . . .
00300.jpg 11.046 6.9

. . . . . . . . . . . .

45.55

00001.jpg 19.31 6.65
00002.jpg 17.436 6.65

. . . . . . . . .
00300.jpg 19.691 6.65

. . . . . . . . . . . . . . .

147.51

28.98

00001.jpg 23.493 7.13
00002.jpg 27.762 7.13

. . . . . . . . .
00300.jpg 12.248 7.13

. . . . . . . . . . . .

45.55

00001.jpg 10.634 8.63
00002.jpg 12.151 8.63

. . . . . . . . .
00300.jpg 19.678 8.63



Processes 2023, 11, 3425 9 of 19

3.2. Likelihood Function Modeling of Froth Velocity and Chemical Additions

In this research, we take into consideration two distinct types of flotation reagent
dosages, denoted as D1 and D2, representing the collector and frother, respectively. Our
primary objective is to predict the ash content A of the clean coal based on these reagent
dosages and the froth velocity V. To achieve this, we propose a hybrid model that effectively
captures the impact of different reagent dosages and froth velocity on the clean coal’s ash
content. Additionally, we employ the maximum likelihood estimation method to accurately
estimate the parameters of the model.

We possess a dataset consisting of 7500 observational samples, denoted as [Vi, D1i, D2i, Ai]
with i = 1, 2, . . . , 7500, where Vi represents the bubble velocity of the i-th sample, and D1i
and D2i stand for the two types of reagent dosages for the i-th sample. Furthermore, Ai
signifies the ash content of the i-th clean coal sample. Our proposition postulates that
both the bubble velocity Vi and the two types of reagent dosages, D1i and D2i, exert a
substantial influence on the ash content Ai of clean coal. To effectively model the intricate
interdependencies among these variables, we propose the utilization of a mixed-effects
linear regression model:

Ai = ψ0 + ψ1Vi + ψ2D1i + ψ3D2i + εi (9)

In the presented equation, ψ0, ψ1, ψ2, and ψ3 denote the model’s coefficients, while εi
represents the residual term associated with the i-th sample, signifying the unexplained
variability remaining after accounting for the model’s explanatory variables.

To estimate the model parameters, we employ the maximum likelihood estimation
method. Each sample point [Vi, D1i, D2i, Ai] (as depicted in Figure 3) is independently
obtained by sampling from a random variable that follows a Gaussian distribution. Given
the model parameters ψ0, ψ1, ψ2, and ψ3, the likelihood function of observing the sample
points can be expressed as follows:

Li(ψ0, ψ1, ψ2, ψ3, σ2) =
1√

2πσ2
exp

(
− (Ai − ψ0 − ψ1Vi − ψ2D1i − ψ3D2i)

2

2σ2

)
(10)
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The joint likelihood function can be obtained as the product of the individual likelihood
functions for all observed samples:

L(ψ0, ψ1, ψ2, ψ3, σ2) =
n

∏
i=1

1√
2πσ2

exp

(
− (Ai − ψ0 − ψ1Vi − ψ2D1i − ψ3D2i)

2

2σ2

)
(11)

To simplify the computations, it is conventionally employed to take the natural loga-
rithm of the likelihood function, resulting in the following:
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log L(ψ0, ψ1, ψ2, ψ3, σ2) =
n

∑
i=1

(
−1

2
log(2πσ2)− (Ai − ψ0 − ψ1Vi − ψ2D1i − ψ3D2i)

2

2σ2

)
(12)

Our objective is to identify the parameter values that maximize the natural logarithm
of the likelihood function, represented as follows:

ψ̂0, ψ̂1, ψ̂2, ψ̂3, σ̂2 = argmaxψ0,ψ1,ψ2,ψ3,σ2 log L(ψ0, ψ1, ψ2, ψ3, σ2) (13)

The derivation obtained is as follows:

∂ log L
∂ψ0

=
n

∑
i=1

Ai − ψ0 − ψ1Vi − ψ2D1i − ψ3D2i
σ2 = 0 (14)

∂ log L
∂ψ1

=
n

∑
i=1

(Ai − ψ0 − ψ1Vi − ψ2D1i − ψ3D2i)Vi
σ2 = 0 (15)

∂ log L
∂ψ2

=
n

∑
i=1

(Ai − ψ0 − ψ1Vi − ψ2D1i − ψ3D2i)D1i
σ2 = 0 (16)

∂ log L
∂ψ3

=
n

∑
i=1

(Ai − ψ0 − ψ1Vi − ψ2D1i − ψ3D2i)D2i
σ2 = 0 (17)

∂ log L
∂σ2 =

n

∑
i=1

(
− 1

2σ2 +
(Ai − ψ0 − ψ1Vi − ψ2D1i − ψ3D2i)

2

σ2

)
= 0 (18)

By solving the above system of equations simultaneously, we can obtain the estimated
values for the model parameters ψ̂0, ψ̂1, ψ̂2, ψ̂3, and σ̂2.

3.3. Deep Neural Network Prediction Model with Multi-Feature Input and Hybrid Data Input
Using Keras

Having obtained the optimal parameters for the likelihood function, as described
earlier, we applied these parameters as the weights for the Keras deep neural network,
as depicted in Figure 4. In this study, we developed an innovative deep neural network
model with multiple feature inputs and a hybrid data input scheme, utilizing the Keras
framework [45–47]. Each neuron in the input layer represents distinct characteristics
of foam flotation bubble velocity, collector dosage, and frother dosage. Simultaneously,
the output layer comprises a single neuron, which predicts the coal ash content. The
architecture of the deep neural network model is presented as follows:

H1 = Tanh(X · ψ∗0 + ε∗0) (19)

H2 = Tanh(H1 · ψ∗1 + ε∗1) (20)

H3 = Tanh(H2 · ψ∗2 + ε∗2) (21)

Apred = H3 · ψ∗3 + ε∗3 (22)
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We adopted the mean squared error as the loss function, denoted by the following:

Loss =
1
n

n

∑
i=1

(Ai − Apredi
)2 (23)

The gradient calculation for each parameter is as follows:

∂Loss
∂ψ∗3

=
n

∑
i=1

(Ai − Apredi
) · ∂Apredi

∂ψ∗3

σ2 (24)

∂Loss
∂ε∗3

=
n

∑
i=1

(Ai − Apredi
) · ∂Apredi

∂ε∗3

σ2 (25)

∂Loss
∂ψ∗2

=
n

∑
i=1

(Ai − Apredi
) · ∂Apredi

∂H3
· ∂H3

∂ψ∗2

σ2 (26)

∂Loss
∂ε∗2

=
n

∑
i=1

(Ai − Apredi
) · ∂Apredi

∂H3
· ∂H3

∂ε∗2

σ2 (27)

∂Loss
∂ψ∗1

=
n

∑
i=1

(Ai − Apredi
) · ∂Apredi

∂H3
· ∂H3

∂H2
· ∂H2

∂ψ∗1

σ2 (28)

∂Loss
∂ε∗1

=
n

∑
i=1

(Ai − Apredi
) · ∂Apredi

∂H3
· ∂H3

∂H2
· ∂H2

∂ε∗1

σ2 (29)

∂Loss
∂ψ∗0

=
n

∑
i=1

(Ai − Apredi
) · ∂Apredi

∂H3
· ∂H3

∂H2
· ∂H2

∂H1
· ∂H1

∂ψ∗0

σ2 (30)
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∂Loss
∂ε∗0

=
n

∑
i=1

(Ai − Apredi
) · ∂Apredi

∂H3
· ∂H3

∂H2
· ∂H2

∂H1
· ∂H1

∂ε∗0

σ2 (31)

where
∂Apredi

∂ψ∗3
= HT

3 (32)

∂Apredi

∂ε∗3
= 1 (33)

∂Apredi

∂H3
= (ψ∗3 )

T (34)

∂H3

∂ψ∗2
= Tanh′(H2 · ψ∗2 + ε∗2) · HT

2 (35)

∂H3

∂ε∗2
= Tanh′(H2 · ψ∗2 + ε∗2) (36)

∂H2

∂ψ∗1
= Tanh′(H1 · ψ∗1 + ε∗1) · HT

1 (37)

∂H2

∂ε∗1
= Tanh′(H1 · ψ∗1 + ε∗1) (38)

∂H1

∂ψ∗0
= Tanh′(X · ψ∗0 + ε∗0) · XT (39)

∂H1

∂ε∗0
= Tanh′(X · ψ∗0 + ε∗0) (40)

During the training procedure of the Keras deep neural network, we employed a
series of critical hyperparameter configurations to optimize the model’s performance and
mitigate overfitting phenomena. The Adam optimizer was selected as the initializer, given
its proficient adaptive learning rate properties, which enable more effective adaptation to
intricate optimization tasks [48]. The learning rate was set to 0.001 to adequately control
the parameter update step during training, avoiding the pitfalls of excessively high or
low learning rates that could lead to training instability. Following the completion of each
training epoch, the learning rate was subjected to decay by dividing the initial learning
rate by 200. This gradual reduction in the learning rate during the later stages of training
facilitated a more meticulous search for the optimal solution space, thereby enhancing the
model’s convergence speed and stability.

To forestall the model from excessively tailoring itself to the training data, an early
stopping strategy was introduced. We diligently monitored the loss function on the valida-
tion set and immediately terminated the training process if no improvement was discernible
over 200 consecutive training iterations. This judicious approach effectively prevented the
model from continuing to train in an overfitting state, thereby bolstering its generalization
capacity and reducing the risk of overfitting.

4. Results and Analysis
4.1. Dynamic Characterization Parameters of Froth Flotation in Relation to Coal Ash Content

Each video segment, lasting approximately 1 min, corresponds to a specific ash content
value. Under the condition of extracting 5 frames per second, images within the same video
segment are associated with the same ash content. As depicted in Figure 5, illustrating the
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distribution chart of identified froth velocity, we conducted an analysis of froth velocity
distribution based on this image data. Subsequently, we computed the average dynamic
features of the foam flotation process to explore the correlation between foam flotation
dynamics and the ash content of fine coal. Employing a confusion matrix, we scrutinized
the relationship between ash content values and dynamic feature parameters, as shown
in Figure 6. Figure 6 clearly illustrates the impact of bubble velocity on ash content.
Figure 6 presents a confusion matrix plot of bubble velocity and ash content, with Figure 6b
depicting bubble velocity on the x-axis and ash content on the y-axis. In Figure 6c, the x-axis
represents ash content, while the y-axis represents bubble velocity. The correlation analysis
results revealed a negative correlation coefficient of −0.05502 between the ash content of
fine coal and froth velocity. This negative correlation implies that higher froth velocity
in the foam flotation process might indicate larger and swifter-moving bubbles. This
circumstance could potentially diminish the contact duration between bubbles and solid
particles, thereby influencing flotation efficiency. Conversely, lower froth velocity may allow
for an extended contact duration between bubbles and solid particles, potentially fostering
a more effective separation between coal and foam, ultimately enhancing coal quality.
These findings elucidate a certain correlation between bubble velocity as a dynamic feature
parameter within the foam flotation process and the ash content of fine coal. Elevated
bubble dynamics parameters closely interrelate with the interaction between coal and foam,
potentially wielding substantial influence over the efficiency and quality of products within
the coal flotation process.
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4.2. Froth Flotation Concentrate Coal Ash Content Prediction and Result Analysis

In this investigation, we employed a meticulously trained Keras deep neural network
to make accurate predictions regarding the ash content of 25 clean coal samples. The
prediction outcomes are presented in Figures 7 and 8. Detailed performance evaluations on
the training and validation sets are furnished in Table 5, encompassing essential metrics
such as the R2, RMSE, MAE, MAPE, RRSE, and MAAPE. Remarkably, the coefficient of
determination (R2) demonstrated exceptionally high scores of 0.99997% on the training set
and 0.99992% on the validation set. These outstanding R2 values underscore the model’s
remarkable fitting capability to the data, ensuring precise predictions of clean coal ash
content. Additionally, both the RMSE and MAE metrics exhibited remarkably low values of
0.00218% and 0.00170%, respectively. This conveys the model’s superior prediction accuracy
and its ability to minimize disparities between predicted and actual values. Furthermore,
the MAPE yielded a value of 0.02329%, while the RRSE registered at 0.00994%. The MAAPE
was found to be 0.00067%. The combined analysis of these metrics underscores the model’s
overall capacity to maintain minimal prediction errors and relative precision. Moreover,
the model’s performance on the validation set exhibited a slight reduction when compared
to the training set. Nevertheless, it remained highly competitive, indicating robust learning
capabilities and excellent generalization to unseen data. Lastly, the deep neural network
model surpassed alternative machine learning methods in all assessed metrics, solidifying
its substantial advantages. Notably, the model’s R2 value, nearing 1 on the validation set, in
tandem with the significantly low RMSE, MAE, and MAPE values, attests to its exceptional
accuracy and reliability in forecasting clean coal ash content in froth flotation.
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Regarded as a fundamental tool, this investigation employed the Keras deep learning
framework as a pivotal instrument, establishing a predictive model for fine coal ash content
based on neural network architecture. Keras, renowned for its flexibility and user-friendly
attributes, boasts exceptional prowess in data processing. This framework organizes
neurons hierarchically and across multiple layers, effectively facilitating the comprehension
and interpretation of intricate nonlinear features embedded in the data. By delving deeply
into these data features, the model comprehends the inherent structure of fine coal sample
data comprehensively, consequently enhancing its predictive performance for ash content
values. Concurrently, high-resolution 2048 × 2048-pixel image data were harnessed. This
selection of high resolution was dictated by the necessity for precise feature extraction in
deep learning methodologies. High-resolution images provide nuanced and comprehensive
information, aiding the model in accurately discerning and assimilating minute features
and intricate patterns within the images. These subtle features often play pivotal roles in
influencing fine coal ash content values. Consequently, the precise capture of these features
establishes a robust foundation for the model’s predictive capacities. By integrating the
robust data processing capabilities of the Keras deep learning framework with the detailed
information gleaned from high-resolution image data, this study offers a more accurate and
comprehensive feature depiction within the data. This, in turn, provides a more reliable and
precise foundation for predicting fine coal ash content values. Through this technological
approach, researchers can unveil inherent nonlinear correlations within the data, furnishing
dependable solutions for optimizing production processes, enhancing product quality, and
curbing expenses in industries such as coal mining. Moreover, the developed model serves
as a significant reference point for future research endeavors and industrial applications,
guiding further exploration and enhancements.

5. Conclusions

This study successfully integrates deep learning with the likelihood function, thereby
establishing a high-precision prediction model for accurately detecting the ash content
of clean coal in the realm of coal froth flotation. Leveraging the Scale-Invariant Feature
Transform (SIFT) algorithm, this research extracts salient feature points and descriptors from
the images, and through the amalgamation of keypoint matching with mean-shift clustering,
it achieves a comprehensive understanding of the flotation process, encompassing froth
trajectory and velocity information. Studies have revealed an inverse relationship between
the ash content of refined coal and the velocity of bubbles observed during the froth flotation
process. This negative correlation suggests that elevated bubble velocities may decrease
the duration of the interaction between bubbles and solid particles, thereby impacting
the efficacy of flotation. Conversely, lower bubble velocities appear to be conducive to
facilitating the separation of coal from the foam, consequently elevating the quality of coal.
These revelations illuminate the pivotal impact of dynamic parameters in bubble kinetics
and the interplay between coal and foam on the efficiency and quality of flotation processes.

This study proposed the utilization of the maximum likelihood estimation to optimize
parameters within the likelihood function, which were subsequently integrated into the
Keras deep neural network for training and predictive purposes. Evaluation of the model
performance on both the training and validation sets exhibited R-squared values nearing
1, accompanied by minimal values across other assessment metrics. This signifies the
exceptional predictive capability of our model in estimating the ash content of refined coal.
The harmonious fusion of deep learning and the likelihood function has showcased robust
predictive prowess, presenting novel technological avenues for quality control in coal
product manufacturing and productivity enhancement. The optimized predictive model
developed in this study lays a robust groundwork for real-time monitoring within practical
industrial applications, particularly in the domain of froth flotation. This advancement
holds the potential to drive the froth flotation sector toward automation and intelligent op-
erations. It is noteworthy that our findings offer an efficient and reliable method for the coal
industry and related sectors, specifically for the accurate prediction of ash content in refined
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coal. This capability enhances product quality and provides crucial support for pivotal
decisions in industrial production processes. In essence, our research applies the amalga-
mation of deep learning and the likelihood function to the realm of coal froth flotation,
presenting a robust predictive model with superior performance. This achievement holds
significant implications for driving technological innovation and industrial intelligence in
related fields, laying a solid foundation for the efficient monitoring and control of froth
flotation processes.
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Abbreviations

Abbreviation Connotation
SIFT Scale-Invariant Feature Transform
XRF X-ray fluorescence
BP Back Propagation
RSM Response surface methodology
ANN Artificial neural network
DNN Deep neural network
CFD Computational fluid dynamics
CNN Convolutional neural network
FRRN Feature Reconstruction–Regression Network
MLE Maximum likelihood estimation
MIBC 4-Methylpentan-2-ol
R2 Coefficient of Determination
RMSE Root Mean Square Error
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
RRSE Relative Root Squared Error
MAAPE Mean Arctangent Absolute Percentage Error
PX/S Pixel/Second
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