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Abstract: Particle-mediated elasticity/viscoelasticity imaging has the potential to expand the elas-
ticity imaging field, as it can provide accurate and local tissue elastic properties as well as density
and viscosity. Here, we investigated elasticity imaging based on small particles located within the
tissue and at the tissue interface exposed to static/dynamic external loads. First, we discuss elastic-
ity/viscoelasticity imaging methods based on the use of particles (bubbles and rigid spheres) placed
within the tissue. Elasticity/viscoelasticity imaging techniques based on the use of particles (bubbles,
rigid, and soft spheres) located at the tissue interface are then presented. Based on new advances, we
updated some of the models for the responses of the particles placed within the tissue and at the tissue
interface available in the literature. Finally, we compared the mathematical models for the particles lo-
cated within the tissue and at the tissue interface and evaluated the elasticity/viscoelasticity imaging
methods based on the use of small particles. This review summarized the methods for measuring the
elasticity and viscosity of material using particles exposed to external forces. Remote viscoelasticity
imaging can be used to improve material characterization in both medical and industrial applications
and will have a direct impact on our understanding of tissue properties or material defects.

Keywords: elasticity imaging; elastography; bubble; sphere; interface; mathematical modelling; shear
modulus; ultrasound sensors; viscosity; viscoelasticity imaging

1. Introduction

There are various imaging techniques, such as X-ray imaging, ultrasound imaging,
magnetic resonance imaging (MRI), and optical imaging, to detect abnormalities [1]. X-ray
imaging can provide detection of lesions when they absorb X-ray radiation differently from
normal tissue. MRI produces multiplanar imaging and clear soft tissue contrast by differ-
entiating structures based on their water content, etc. Sonography can be used to detect
abnormalities due to their hypoechoic or hyperechoic appearance on the B-scan and/or
the acoustic shadowing effect they lead to. However, these medical imaging techniques
show tissue properties that are typically not related to the distinct mechanical properties
of tissue, such as shear modulus and viscosity. The diagnostic value of characterizing the
mechanical properties of tissues resulted in the development of methods such as magnetic
resonance elastography (MRE) and ultrasound elastography for detecting tissue mechanical
properties [2]. In these methods, a static, quasi-static, or dynamic force is applied to the
tissue, and the deformation caused by the applied force is detected using a traditional
imaging technique such as MRI or ultrasound imaging. Many attempts have been made
to develop elasticity imaging methods with distinct capabilities, especially using ultra-
sound technology [3,4]. Some of these methods include vibro-acoustography [5], shear
wave elasticity imaging (SWEI) [6], acoustic radiation force impulse imaging (ARFI) [7],
harmonic motion imaging (HMI) [8], supersonic shear imaging (SSI) [9], and shear wave
spectroscopy (SWS) [10]. Readers may refer to the review papers for further informa-
tion about ultrasound-based elasticity imaging methods [11,12] and the clinical use of
ultrasound elastography [13–17].

Processes 2023, 11, 3402. https://doi.org/10.3390/pr11123402 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11123402
https://doi.org/10.3390/pr11123402
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-8891-1495
https://doi.org/10.3390/pr11123402
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11123402?type=check_update&version=1


Processes 2023, 11, 3402 2 of 23

In addition to the aforementioned methods, acoustic radiation force-based elasticity
methods that are based on the use of spherical objects (i.e., gas bubbles and rigid spheres)
placed within the tissue have been proposed to determine the material’s mechanical prop-
erties [18–22]. However, in these methods, a high-powered laser is exploited to create a
bubble inside the medium. This restricts the application of these techniques to only shallow
targets and demands local destruction of the target material [20]. Additionally, there is a
need to locate a bubble (or a non-deformable sphere) within the tissue, which may not be
allowed in human tissue. A more rational technique based on the use of particles located at
the material interface has recently been introduced to determine the viscoelastic properties
of soft materials [23,24]. It is worth noting that the acoustic radiation force-based elasticity
imaging methods that deform the tissue cause a complicated displacement field [20]. The
transducer’s focusing characteristics and target geometry affect the displacement field. For
these absorption-based techniques, the focal volume affects elasticity reconstruction. On
the other hand, for elasticity imaging based on the use of small particles, particle displace-
ment is independent of the transducer’s focal zone and is influenced only by the local
material’s viscoelastic properties. As the object in the elasticity imaging methods based on
small particles can be considered as almost a discrete target, simple and accurate elasticity
reconstruction can be performed. By exploiting the analytical models for the response of
the small particles placed within the medium or at the tissue interface, in addition to the
elastic properties of the tissue, the density and viscosity of the material can be determined.
It should be noted that parameters such as viscosity can be used as additional biomarkers
for the evaluation of materials [25].

Elasticity imaging based on the absorption mechanism and the use of small particles
is illustrated in Figure 1. In the elasticity imaging methods based on the absorption
mechanism (Figure 1a), displacements vary considerably over the region exposed to the
acoustic radiation force because of the differences in the exerted force over the same region.
Contrarily, in the elasticity imaging methods based on the use of small particles (Figure 1b),
only the displacement of the particle is measured, which can be achieved to align with the
focus of the exerted force. Because the radiation force exerted on the particle placed within
the material or at the material interface can be much greater than that occurring in a pure
absorbing medium, a lower acoustic power can be employed in a moderately attenuating
medium for elasticity imaging methods based on small particles. Similar displacements
can be achieved with far lower acoustic intensities with particle-based methods. The
elasticity imaging methods based on small particles located within the tissue and at the
tissue interface have the potential to determine local tissue properties with improved
measurement resolution at variable depths.

Particle-mediated elasticity imaging is illustrated in Figure 2. Although the particle is
pushed mostly using ultrasound, the excitation force ( fe) can be applied using any other
method, such as magnetic or mechanical excitation. Monitoring the displacement of the
particle (u) using ultrasound is practical, yet particle imaging can be performed using other
methods, such as optical imaging or magnetic resonance imaging. Although there is a
need to use a coupling material such as gel or water between the tissue and transducer
for ultrasonic excitation, there is no need for a coupling medium (or only air around the
medium) for other excitation methods, such as a magnetic force. In addition to the elastic
properties of material, the density, Poisson’s ratio, and viscosity of material can be identified
in elasticity imaging based on small particles. Therefore, instead of using the term elasticity
imaging, we suggest using the term viscoelasticity imaging.
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Figure 1. The elasticity imaging based on the absorption mechanism (a) and the use of small parti-
cles (b). The arrows show the displacement produced due to the acoustic radiation force. Displace-
ments vary considerably over the region exposed to the acoustic radiation force because of the dif-
ferences in the exerted force over the same region for elasticity imaging based on the absorption 
mechanism. Only the displacement of the particle is measured, which can be managed to align with 
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is pushed mostly using ultrasound, the excitation force (𝑓 ) can be applied using any other 
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other methods, such as optical imaging or magnetic resonance imaging. Although there is 
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fied in elasticity imaging based on small particles. Therefore, instead of using the term 
elasticity imaging, we suggest using the term viscoelasticity imaging.  

 

 

Figure 1. The elasticity imaging based on the absorption mechanism (a) and the use of small
particles (b). The arrows show the displacement produced due to the acoustic radiation force.
Displacements vary considerably over the region exposed to the acoustic radiation force because of
the differences in the exerted force over the same region for elasticity imaging based on the absorption
mechanism. Only the displacement of the particle is measured, which can be managed to align with
the focus of the exerted force for elasticity imaging based on small particles.
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Figure 2. (a) Elasticity imaging based on small particles located within the material and at the material
interface. Although the particle is pushed mostly using ultrasound, the excitation force ( fe) can be
applied using any other method, such as magnetic excitation. Similarly, although monitoring the
displacement of the particle (u) using ultrasound is quite practical, the imaging can be performed
using other methods, such as optical imaging. (b) The schematic for the particle located within the
material and at the material interface. G, ρ, η and v show the medium shear modulus, density,
viscosity, and Poisson’s ratio, respectively, and r and θ show the radial and polar coordinates,
respectively.

Although there have been a huge number of research studies (e.g., [26,27]) and some
review papers (e.g., [11,12]) on the elasticity imaging techniques based on the absorption
mechanism, there have been a limited number of research studies on the particle-mediated
elasticity imaging methods. To the best of the authors’ knowledge, there is currently no
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review study focusing on the elasticity imaging techniques based on the use of small
particles located within the tissue and at the tissue interface. We believe that elasticity
imaging based on the use of small particles has the potential to change the field, as they can
provide the determination of accurate and local tissue elastic properties as well as density
and viscosity. Here, we examined the mathematical models for small particles located
within the tissue and at the tissue interface. In addition, we compared the mathematical
models for small particles located within the tissue and at the tissue interface and provided
elasticity/viscoelasticity imaging results based on these models and experiments. This
paper is the first review study on elasticity and viscoelasticity imaging based on the use
of small (nanometer-, micrometer-, or millimeter-sized) particles (e.g., bubbles and rigid
and soft spheres) located within the tissue and at the tissue interface exposed to static and
dynamic external forces. Elasticity/viscoelasticity imaging methods based on the use of
particles (bubbles and rigid spheres) placed within the tissue are presented in Section 2.
Elasticity/viscoelasticity imaging techniques based on the use of particles (bubbles, rigid,
and soft spheres) located at the tissue interface are covered in Section 3. It should be noted
that the viscoelastic medium was mostly modeled using the Kelvin–Voigt model in the
models available in the literature. In this paper, we extended the responses of particles
located within the tissue and at the tissue interface and generalized the relations so that,
in addition to the Kelvin–Voigt model, any viscoelastic rheological model, such as the
Maxwell, standard linear solid, and Kelvin–Voigt fractional derivative models, can be
used to simulate the medium. Furthermore, based on the new advances, in this paper, we
updated some of the models for the responses of the particles located within the tissue
and at the tissue interface available in the literature. The mathematical models for the
small particles located within the tissue and at the tissue interface are compared, and the
elasticity and viscoelasticity imaging methods based on the use of the particles are assessed
in Section 4. Some concluding remarks are given in Section 5.

2. Elasticity/Viscoelasticity Imaging Using Particles Located within the Tissue
2.1. Bubble Located within the Tissue

There are many mathematical models for the radial oscillations of a bubble inside the
elastic and viscoelastic media exposed to sound (e.g., [28–30]). However, these models are
generally extensions of the well-known Rayleigh–Plesset equation (e.g., [31]) and were
proposed for studying the dynamics of bubbles inside the tissue rather than for using them
for elasticity imaging. The first important study for the purpose of elasticity imaging using
a bubble located within the medium was performed by Ilinskii et al. [19] in 2005. In this
model, the radiation pressure on the object is predicted via the integration of the acoustic
field in the medium around the object with respect to the target surface. This approach is
like the method applied to estimate Stockes’ drag of a solid sphere placed inside a viscous,
incompressible liquid [32]. Hence, by assuming the elastic medium as homogeneous,
isotropic, incompressible, and non-viscous, Ilinskii et al. [19] proposed models for the static
and dynamic displacements of a bubble placed within the soft medium in response to
acoustic radiation force. The model for an external static force fe = f0 and elastic medium
is given by [19]:

u =
f0

4πGR
(1)

where G is the shear modulus of the medium, and R is the radius of the bubble. For a
homogeneous isotropic material, the relationship between the Young’s modulus and shear
modulus is given by E = 2G(1 + ν). Ilinskii et al. [19] obtained the following equation of
motion for the dynamic displacement of a bubble placed within a soft medium exposed to
an acoustic radiation force:

u +
.
u +

1
6

..
u +

1
18

...
u = fe (2a)

where

u =
u(t)

R
(2b)
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fe =
fe

4πGR2 (2c)

t =
t
√

G/ρ

R
(2d)

Here, ρ is the density of the material, and t shows the time. The solution to Equation (2a)
provides the relationship between the dynamic force and displacement for a bubble placed
within the soft elastic medium. The solution of Equation (2a) can be determined analyt-
ically (e.g., using the Laplace transformation) or numerically. Readers can refer to the
reference [19] to see the details of the derivations of the models (i.e., Equations (1) and (2a)).
For a homogeneous, incompressible, and isotropic material, a model was proposed to pre-
dict the dynamic response of a bubble placed within the soft viscoelastic material exposed
to an acoustic radiation force. The equation correlating the displacement of the bubble
placed within the viscoelastic material and the dynamic force is [19]:

4π(G− jωη)RU
(

1− jkR− 1
6

k2R2 +
1

18
jk3R3

)
= Fe (3)

where η is the viscosity of the medium, k = ω√
(G−jωη)/ρ

is the complex wave number of

the shear wave with frequency ω, j =
√
−1, Fe is the Fourier transform of the external force

fe(t), and U is a spectral component of the bubble displacement u(t). Readers can refer
to the reference [19] to see the details for the derivation of the model (i.e., Equation (3)).
The response to a rectangular pulse, characterized by an amplitude f0 and a duration
τ, resembles the impulse response when τ is small and step response when τ is large
(0 ≤ t ≤ τ). The external force is assumed to be a rectangular pulse here; note that
the Fourier transform of a rectangular pulse is Fe = − j f0

ω

(
ejωτ − 1

)
. In conclusion, we

can calculate the dynamic displacement of the bubble located within the soft viscoelastic
material using the inverse Fourier transformation [33]:

u(t) = − j f0

24π2R

∫ ∞

−∞

(
ejωτ − 1

)
(3− jkR)e−jωt

ω(G− jωη)
(

1− jkR− 1
6 k2R2 + 1

18 jk3R3
)dω (4)

We can divide the duration into N points and repeat the calculations over the entire period
of interest to numerically determine the dynamic response of the bubble placed within the
material using Equation (4).

Exploiting the static model (i.e., Equation (1)), Erpelding et al. [20] identified the
Young’s moduli of gelatin phantoms. For this purpose, individual bubbles were created
by laser-induced optical breakdown. A two-element confocal ultrasonic transducer was
used to exert acoustic radiation force on individual bubbles (1.5 MHz) and monitor their
displacement within the medium (7.44 MHz). Maximum bubble displacements were used
to identify the Young’s moduli of different gel phantoms; their Young’s moduli were
identified to be 1.7–4.8 kPa for the 5–9% gel concentration. Erpelding et al. [34] used the
same method to map age-related elasticity changes in porcine lenses. Hollman et al. [35]
exploited the same approach to map elasticity in human lenses. Young’s modulus varied
from 5.2 kPa in the center to 1.1 kPa on the periphery for middle-age lenses. Young’s
modulus varied from 10.6 kPa in the center to 1.4 kPa on the periphery for old-age lenses.
Similarly, Mikula et al. [36] exploited this simple model to determine corneal elasticity.
For this purpose, a femtosecond laser-generated microbubble was pushed using a low-
frequency and high-intensity acoustic force. The position of the microbubble within the
ex vivo human cornea was detected using high-frequency and low-intensity ultrasound.
The Young’s moduli of the central anterior and posterior corneas were determined to be
1.39 and 0.71 kPa, respectively. In another study, using the same technique, Mikula et al. [37]
determined the elasticity map across the ex vivo human cornea.
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Using the dynamic model presented above, Yoon et al. [38] estimated the mechanical
properties of gelatin phantoms using a laser-induced microbubble within the phantoms
exposed to ultrasound (3.5 MHz). The motion of the microbubble was detected using
an imaging transducer (25 MHz). By using both the maximum displacements and the
times of maximum displacement of the bubbles, the Young’s modulus of the 3% gelatin
phantom was determined to be 4.37 ± 0.26 kPa. In another study, exploiting the same
model, the Young’s moduli and viscosities of ex vivo bovine and porcine crystalline lenses
were identified using the time characteristics of the microbubble deformation [39].

In the model presented above (i.e., Equations (3) and (4)), the viscoelastic sample
was modeled using the Kelvin–Voigt model. In this paper, we extended the response of a
bubble located within the soft viscoelastic material and generalized the relations so that,
in addition to the Kelvin–Voigt model, any viscoelastic rheological model, such as the
Maxwell, standard linear solid, and Kelvin–Voigt fractional derivative models, can be used
to simulate the medium. In conclusion, the generalized model for the response of a bubble
located within the soft viscoelastic material can be represented as:

u(t) = − j f0

24π2R

∫ ∞

−∞

(
ejωτ − 1

)
(3− jkR)e−jωt

ωG∗
(

1− jkR− 1
6 k2R2 + 1

18 jk3R3
)dω (5)

where G∗(ω) = G′(ω)− jG′′ (ω) is the complex modulus of the medium material; G′(ω)
and G′′ (ω) represent the storage and loss moduli, respectively. Readers may refer to the
reference [22] for the expressions of G′(ω) and G′′ (ω) for different rheological models.

2.2. Sphere Located within the Tissue

The response of a spherical object placed within the medium has been studied for over
70 years. Oestreicher [40] obtained the mechanical impedance of an oscillating sphere inside
a viscoelastic medium in the frequency domain by modeling the medium using the Kelvin–
Voigt model. Chen et al. [18] used the measured response of a vibrating sphere inside a
gelatin phantom exposed to modulated ultrasound and the model in the reference [40] for
the determination of the material’s viscoelastic properties. However, the first important
study for the purpose of elasticity imaging using a sphere located within the medium was
performed by Ilinskii et al. [19] in 2005. By assuming the elastic medium as homogeneous,
isotropic, incompressible, and non-viscous, Ilinskii et al. [19] proposed models for the
static and dynamic displacements of a non-deformable sphere located within the medium
exposed to acoustic radiation force. The model for a static force f0 and elastic medium is
given by [19]:

u =
f0

6πGR
(6)

For a dynamic force fe and an elastic medium, they obtained the following equation of
motion [19]:

u +
.
u +

1
9

(
1 + 2

ρs

ρ

)
..
u = fe (7a)

where

u =
u(t)

R
(7b)

fe =
fe

6πGR2 (7c)

t =
t
√

G/ρ

R
(7d)

Here, ρs is the density of the sphere. The solution of Equation (7a) gives the relation-
ship between the dynamic force and displacement for a sphere located within the elastic
medium. The solution of Equation (7a) can be determined analytically (e.g., using the
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Laplace transformation) or numerically. Readers can refer to the reference [19] to see the
details of the derivations of the models (i.e., Equations (6) and (7a)). For a homogeneous,
isotropic, and incompressible medium, Aglyamov et al. [21] developed a model to predict
the dynamic response of a sphere placed within the viscoelastic material exposed to an
acoustic radiation force in 2007. The equation relating the displacement of the sphere placed
within the viscoelastic medium and the dynamic force is [21]:

−msω2U + 6π(G− jωη)RU
(

1− jkR− 1
9

k2R2
)
= Fe (8)

where ms = 4
3 πR3ρs is the mass of the sphere. Readers can refer to the reference [21] to

see the details for the derivation of the model (i.e., Equation (8)). By performing some
operations, the dynamic displacement of the sphere located within the viscoelastic material
can be found using [33]:

u(t) = − j f0

12π2R

∫ ∞

−∞

(
ejωτ − 1

)
e−jωt

ω
[
− 2

9 R2ρs ω2 + (G− jωη)
(

1− jkR− 1
9 k2R2

)]dω (9)

Chen et al. [18], exploiting the measured response of a vibrating sphere inside a
gelatin phantom excited by modulated ultrasound and the expression for the mechanical
impedance of a vibrating sphere inside the gelation phantom, determined the viscoelastic
material properties of gelatin. Karpiouk et al. [41] used the dynamic model presented
above for a sphere inside the material to identify the shear modulus of the gelatin phantom.
For this purpose, a rigid sphere placed inside the elastic medium was pushed using a short
pulse produced by a focused ultrasound transducer (1.5 MHz), and the displacement of
the sphere was detected using another focused ultrasound transducer (25 MHz). They
determined the shear modulus of the gelatin phantom using the maximum displacement of
the sphere and the time required for the rigid sphere to reach the maximum displacement
(no need to know the applied force). Using a similar test setup, Shih et al. [42] exploited
the spatiotemporal behavior of the sphere displacement and determined the viscoelastic
properties of porcine clot (with different hematocrits). The shear modulus of the blood
clot was identified to be 585 ± 127 Pa at plasma (and 168 ± 26 Pa at 40% hematocrit).
The viscosity of the blood clot was determined to be 0.125 ± 0.025 Pa·s at plasma (and
0.28 ± 0.12 Pa·s at 40% hematocrit). Similarly, Huang et al. [43], by using the dynamic
model, identified the shear modulus and viscosity of porcine blood clots based on the
spatiotemporal displacement profile of the sphere.

It should be noted that the medium was modeled using the Kelvin–Voigt model in the
model presented above (i.e., Equations (8) and (9)). Urban et al. [22] extended the vibration
response of a sphere located within the viscoelastic medium and generalized the relations
so that, in addition to the Kelvin–Voigt model, any viscoelastic rheological model, such
as the Maxwell, standard linear solid, and Kelvin–Voigt fractional derivative models, can
be used to simulate the medium. In conclusion, the generalized model for the vibration
response of a sphere placed within the viscoelastic material can be represented as:

u(t) = − j f0

12π2R

∫ ∞

−∞

(
ejωτ − 1

)
e−jωt

ω
[
− 2

9 R2ρs ω2 + G∗
(

1− jkR− 1
9 k2R2

)]dω (10)

Readers may refer to the reference [22] for the expressions of G∗(ω) = G′(ω)− jG′′ (ω)
for different rheological models. Urban et al. [22] determined the viscoelastic properties
of gelatin and rubber phantoms by matching the measured and theoretically predicted re-
sponses of the spheres inside phantoms using different rheological models for the medium.

It should be noted that the particle located within the tissue has been mostly pushed
using acoustic excitation (e.g., [22,41]). However, the particle can be pushed using any
proper excitation technique, such as a magnetic force. Recently, Levy and Oldenburg [44]
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used magnetic force to excite a sphere inside the medium for elasticity imaging purposes.
They formulated the motion of a magnetic particle exposed to the special magnetomo-
tive ultrasound driving force in the frequency domain and then obtained an analytical
expression by using the inverse Fourier transform as follows:

u(t) =
f0

6πGR

[
1− 1√

χ2 + ψ2
cos(ω0t− φs) + ω2

0e−ωbt
√

Z2 + 1√
X2 + Y2

cos(ωat− φt)

]
(11)

where f0 and ω0 are the amplitude and frequency of the driving force, respectively. Readers
may refer to the reference [44] for the explanation and expressions of the parameters ωa,
ωb, χ, ψ, X, Y, φs and φt.

In another study, Cebrecos et al. [45] evaluated the complex shear modulus of gelatin
by applying a magnetic force to a sphere inside the medium. Because generating an ideal
rectangular waveform for the current is not possible (due to the inductance of the coil),
the magnetic force was assumed to be a trapezoidal pulse with a rise time tr. The Fourier
transform of this force is Fe = − j f0

trω2

(
ejωτ − 1

)(
ejωtr − 1

)
. Hence, the displacement of the

sphere located within the material can be found using:

u(t) = − j f0

12π2Rtr

∫ ∞

−∞

(
ejωτ − 1

)(
ejωtr − 1

)
e−jωt

ω2
[
− 2

9 R2ρs ω2 + (G− jωη)
(

1− jkR− 1
9 k2R2

)]dω (12)

A 3 MHz ultrasound probe was used to detect the displacement of the sphere. Using the
measured response and the theory (i.e., Equation (12)), the shear moduli and viscosities of
two different gelatin phantoms were determined as 1.86 ± 0.005 and 4.96 ± 0.025 kPa and
0.61 ± 0.01 and 1.05 ± 0.03 Pa·s, respectively.

3. Elasticity/Viscoelasticity Imaging Using Particles Located at the Tissue Interface
3.1. Bubble Located at the Tissue Interface

Although there are many mathematical models for the radial oscillations of a bubble
inside the elastic and viscoelastic media exposed to sound (e.g., [28–31]) and some studies
on elasticity imaging based on the use of a bubble located within the elastic and viscoelastic
media (e.g., [19,20,34,35]), there are a few studies on the responses of the bubbles placed
at the medium interfaces [24,46,47]. Considering the elastic medium as homogeneous,
isotropic, incompressible, and non-viscous, Koruk and Choi [46] proposed models for the
static and dynamic displacements of a bubble placed at the soft medium interface exposed
to an external force in 2018. The model for an external static force fe = f0 and a soft elastic
medium is [46]:

u =
f0

2πGR
[
1−

(
1− u

R
)3
] (13)

For a dynamic force fe and a soft elastic medium, they obtained the following equation of
motion [46]:

u +
.
u +

1
6

..
u +

1
18

...
u = fe (14a)

where

u =
u(t)

R
(14b)

fe =
fe

2πGR2(1− cos3 θu)
(14c)

t =
t
√

G/ρ

R
(14d)
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where θu is the angle corresponding to the displacement u (see Figure 2b). The solution
of Equation (14a) gives the relationship between the dynamic force and displacement for
a bubble placed at the soft elastic material interface. The solution of Equation (14a) can
be determined numerically. Readers can refer to the reference [46] to see the details for
the derivations of the models (i.e., Equations (13) and (14a)). Later, Koruk and Choi [47],
considering the medium as homogeneous, isotropic, and incompressible, proposed a
model to predict the dynamic response of a bubble placed at the soft viscoelastic material
interface in response to an external force in 2019. The frequency-domain equation relating
the displacement of the bubble placed at the soft viscoelastic material interface and the
dynamic force can be written as:

2π(G− jωη)RU
(

1− cos3 θu

)(
1− jkR− 1

6
k2R2 +

1
18

jk3R3
)
= Fe (15)

In conclusion, the dynamic displacement of the bubble placed at the soft viscoelastic
material interface in response to a rectangular pulse input can be calculated using the
inverse Fourier transformation [47]:

u(t) = − j f0

12π2R
{

1−
[
1− u(t)

R

]3
} ∫ ∞

−∞

(
ejωτ − 1

)
(3− jkR)e−jωt

ω(G− jωη)
(

1− jkR− 1
6 k2R2 + 1

18 jk3R3
)dω (16)

Readers can refer to the references [46,47] to see the details for the derivation of the model
(i.e., Equations (15) and (16)).

Koruk et al. [23] emitted ultrasound pulses across a wall-less channel of gelatin filled
with a cloud of microbubbles. The microbubble cloud exposed to ultrasound caused the
deformation of the gelatin phantom. The velocity of the shear wave propagated away
from the sonicated region was exploited to identify the Young’s moduli of the gelatin
phantoms (vs = E

3ρ ; ρ being the gel density). Hence, they found E = 0.46 ± 0.06 kPa and
E = 1.54 ± 0.32 kPa for the 2.5 and 5% gelation phantoms, respectively. Bezer et al. [24] ad-
ministered individual microbubbles into a wall-less hydrogel tunnel exposed to ultrasound
(1 MHz) and tracked the motion of each microbubble using a high-speed camera. Using
the mathematical model explained above (i.e., Equation (16)) and the measured response of
each microbubble located at the gel interface, they evaluated the Young’s moduli (2–8.7 kPa)
and the viscosities (0.12–0.20 Pa·s) of the hydrogels.

In the model presented above (i.e., Equations (15) and (16)), the soft viscoelastic
material was modeled using the Kelvin–Voigt model. In this paper, we extended the
response of a bubble placed at the soft viscoelastic material interface and generalized
the relations so that, in addition to the Kelvin–Voigt model, any viscoelastic rheological
model, such as the Maxwell and Kelvin–Voigt fractional derivative models, can be used to
simulate the medium. The generalized model for the response of a bubble placed at the
soft viscoelastic material interface can be represented as:

u(t) = − j f0

12π2R
{

1−
[
1− u(t)

R

]3
} ∫ ∞

−∞

(
ejωτ − 1

)
(3− jkR)e−jωt

ωG∗
(

1− jkR− 1
6 k2R2 + 1

18 jk3R3
)dω (17)

Readers may refer to the reference [22] for the expressions of G∗(ω) = G′(ω)− jG′′ (ω) for
different rheological models.

3.2. Sphere Located at the Tissue Interface

The displacement of a non-deformable sphere placed at the material interface exposed
to a static force can be predicted using the well-known Hertz Model. However, the Hertz
model can produce accurate estimates when the ratio of the sphere displacement to the
sphere diameter is less than 0.05 [48]. Some extended Hertz models have been developed
for more accurate estimates of static loading (e.g., [49–52]). Koruk [53] proposed a Hertz
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model for the small and large displacements of a sphere and a Poisson’s ratio of v = 0.45
given by:

f0 =

[
1− 0.1 u

R
1 + 0.5

(
1− 0.1 u

R
)]3/2

4E
√

R
3(1− v2)

u3/2 for v = 0.45 (18)

Koruk [54] recently developed a modified Hertz model based on the finite element analyses
for the small and large displacements of a sphere and different values of the Poisson’s ratio
of the medium given below:

f0 =

{
1− (v− 0.35) u

R
1 + 0.5

[
1− (v− 0.35) u

R
]}3/2

4E
√

R
3(1− v2)

u3/2 (19)

Among the many investigated models, this was shown to be a more accurate model to
accurately estimate the small and large sphere displacements (i.e., u

R = 0− 0.6) and practical
values of the medium Poisson’s ratio (i.e., v = 0.30–0.49).

Using the force-displacement relation in Equation (18) and considering the damping of
the oscillations of the sphere arising from the radiation of shear waves, Koruk [53] obtained
an analytical model to predict the dynamic response of a rigid sphere placed at the elastic
material interface. However, as stated before, the force-displacement relation in Equation
(19) was shown to produce more accurate estimates. Therefore, the analytical model for the
dynamic response of a rigid sphere placed at the elastic material interface in response to
a rectangular pulse input in the reference [53] was updated using the force-displacement
relation in Equation (19), and the solution is presented in this paper. Hence, the solution is
obtained as follows:

u(t) =
f
k
− f

k
√

1− ζ2
e−ζωnt cos(ωdt− ϕ) for 0 ≤ t ≤ τ (20a)

u(t) =
f e−ζωnt

k
√

1− ζ2

{
eζωnτ cos[ωd(t− τ)− ϕ]− cos(ωdt− ϕ)

}
for t > τ (20b)

where

k =

[
1− (v− 0.35)

δ

R

]
1.5

(
4E∗
√

R
3

)2/3

f 1/3
0 (20c)

c =
1
2

(
0.5 +

δ

R

)(√
ρ

G
R
)[

1− (v− 0.35)
δ

R

]
1.5 f 1/3

0

(
4E∗
√

R
3

)2/3

(20d)

m =
1
3

πR3
(

4ρs +
δ

R
ρ

)
(20e)

f =

{
1 + 0.5

[
1− (v− 0.35)

δ

R

]}
f0 (20f)

ωn =

√
k
m

(20g)

ωd = ωn

√
1− ζ2 (20h)

ζ =
c

ccr
=

c
2
√

km
(20i)

ϕ = tan−1 ζ√
1− ζ2

(20j)
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δ =

(
3 f0

4E∗
√

R

)2/3
(20k)

Here, E∗ is the reduced Young’s modulus of the sphere at the interface of a flat medium
with a Young’s modulus E and Poisson’s ratio ν. For a non-deformable sphere, the reduced
Young’s modulus is E∗ = E/

(
1− ν2). Koruk et al. [55,56] pushed a spherical object

placed at the interface of a gelatin phantom using a magnetic force. Using a high-speed
camera, the sphere was tracked as it pushed against the gelatin phantom. For example,
using the mathematical model explained above (i.e., Equations (20a) and (20b)) and the
measured response of the sphere placed at the gelatin-phantom interface, the shear moduli
of some gelatin phantoms were determined to be 1.5–2.8 kPa [55]. By using an equivalent
viscous damping ratio for the gelatin phantom in the model (i.e., Equations (20a) and (20b)),
the equivalent viscous damping ratios of the gelatin phantoms were determined to be
0.12–0.38 [55].

Later, Koruk [54], by using the force-displacement relation in Equation (19) and
considering the medium viscosity via the Kelvin–Voigt model, updated the model for
the dynamic response of a non-deformable sphere placed at the medium interface in the
reference [53]. Overall, the dynamic response of a spherical object placed at the viscoelastic
material interface in response to a rectangular pulse input in the frequency domain was
determined to be:

U =

{
1 + 0.5

[
1− (v− 0.35) δ

R

]}[
− j f0

ω

(
ejωτ − 1

)]
1
3 πR3

(
4ρs +

δ
R ρ
)
(−ω2) +

[
1
2

(
0.5 + δ

R

)(√
ρ

G−jωη R
)
(−jω) + 1

][
1− (v− 0.35) δ

R

]
1.5 f 1/3

0

(
4Ẽ∗
√

R
3

)2/3 (21)

where Ẽ∗ = 2(G− jωη)(1 + ν)/
(
1− ν2) for a homogeneous isotropic material and a non-

deformable sphere. The response of the sphere placed at the viscoelastic material interface
in time dmain was obtained using the inverse Fourier transform as follows [54]:

u(t) =
1

2π

∫ ∞

−∞

{
1 + 0.5

[
1− (v− 0.35) δ

R

]}[
− j f0

ω

(
ejωτ − 1

)]
e−jωt

1
3 πR3

(
4ρs +

δ
R ρ
)
(−ω2) +

[
1
2

(
0.5 + δ

R

)(√
ρ

G−jωη R
)
(−jω) + 1

][
1− (v− 0.35) δ

R

]
1.5 f 1/3

0

(
4Ẽ∗
√

R
3

)2/3 dω (22)

In addition to the elastic properties of the medium and size of the sphere, this model
includes the corrected models for the inertia force due to the medium involved in motion,
the inertia force of the sphere, and the damping due to the oscillations of the sphere arising
from the radiation of shear waves. The force-displacement relation is valid for the small and
large displacements of the sphere and the practical values of the medium Poisson’s ratio.
Therefore, the model given above (i.e., Equations (21) and (22)) is considered the most com-
prehensive mathematical model for the response of a sphere placed at the medium interface
in the literature. The mathematical model presented above (i.e., Equations (21) and (22))
can be extended for the response of a soft spherical object placed at the material interface

by using the reduced Young’s modulus Ẽ∗ =
[

1−v2
1

E1
+

1−v2
2

E2

]−1
where E1 and E2 and v1 and

v2 show the Young’s moduli and Poisson’s ratios of the medium and deformable sphere,
respectively. Furthermore, the model can be extended for a sphere placed at a spherical

interface by replacing R with the relative radius R∗ =
[

1
R1

+ 1
R2

]−1
where R1 and R2 show

the radii of the spherical interface and sphere, respectively.
It should be noted that the particles, such as non-deformable spherical objects, are

commonly used in conventional indentation tests [57,58] and AFM, or atomic force mi-
crocopy [59], to identify the material properties. However, a sphere is attached to a rigid
holder in conventional indentation tests and to a flexible beam in AFM. Usually, only the
Young’s modulus of the sample can be identified via conventional indentation tests, while
an AFM system is quite complicated and expensive. Furthermore, these systems are used
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for material identification in laboratories and cannot be used for in vivo elasticity imaging.
For example, Huth et al. [60] determined the Young’s moduli of some hydrogels using AFM
indentation tests and the Hertz model. Orikasa et al. [61] introduced an indentation-based
testing platform to measure the stiffness of ultra-soft materials at different scales. However,
the model proposed by Koruk [54] can be implemented to identify the shear or Young’s
modulus and viscosity of the tissue. This model can even be used to evaluate the density
and Poisson’s ratio of the tissue.

Koruk et al. [62] have recently updated the mathematical model in [54] for a trape-
zoidal pulsed force. Furthermore, Koruk and Pouliopoulos [63] have recently extended
the mathematical model for a spherical object placed at the elastic and viscoelastic ma-
terial interface in [53,54] for different practical loading cases. The mathematical models
in [63] simulate the change in the frequency of oscillations of the spherical object located
at the medium interface with the applied load. It was shown that the frequencies of
oscillations were different in the loading and unloading phases, and the frequency of oscil-
lations decreased with decreasing external load [63]. The shear modulus and viscosity of a
gelatin sample with a density of 1133 kg/m3 were determined to be 6800 Pa and 6.0 Pa·s,
respectively [63].

4. Evaluation of Elasticity/Viscoelasticity Imaging Using Particles Located within the
Tissue and at the Tissue Interface
4.1. Evaluation of Mathematical Models

Here, we compared the most updated mathematical models for small particles located
within the tissue and at the tissue interface and evaluated the models. The radius of the
bubbles used in practical ultrasound applications is a few micrometers. The radius of
the bubbles and spheres used for material characterization in laboratories mostly ranges
from tens of micrometers to a few millimeters (e.g., [21,38]). Therefore, here the results
for spherical particles with radii of R = 3 and 50 µm were presented. The shear modulus
of tissue mostly ranges from a few hundred Pascal to ten thousand Pascal, while it is
a few thousand Pascal for most tissues (e.g., [36,64]). For example, the shear modulus,
density, and viscosity of the liver are around 2000 Pa [64], 1000 kg/m3 [65], and 0.5 Pa·s [66],
respectively. Here, the analyses were performed for physiologically relevant materials (i.e.,
G = 2000–6000 Pa, ρ = 1000 kg/m3, and η = 0.01–1.6 Pa·s). It should be noted that, for all the
models presented above, scripts were written using Matlab R2022a (MathWorks, Natick,
MA, USA) to find the responses of the small particles located within the tissue and at the
tissue interface.

The static force required for a specific normalized displacement (i.e., u/R) for a bubble
inside the medium (Equation (1)), a sphere inside the medium (Equation (6)), a bubble
located at the material interface (Equation (13)), and a sphere placed at the material interface
(Equation (19)) is presented in Figure 3a (R = 3 µm) and Figure 3c (R = 50 µm). The
stiffnesses for the four cases are plotted as a function of the normalized displacement
in Figure 3b (R = 3 µm) and Figure 3d (R = 50 µm). The stiffness of the bubble and
sphere inside the material are constant, while the stiffness changes nonlinearly with the
displacement of the particles located at the medium interface. This stiffness for a normalized
displacement of u

R = 0.5 is 0.05, 0.08, 0.19, and 0.28 N/m when R = 3 µm and 0.81, 1.37,
3.14, and 4.71 N/m when R = 50 µm for the sphere located at the material interface,
bubble located at the material interface, bubble inside the sample, and sphere inside the
sample, respectively. As the stiffness of the system increases, the force required for a specific
displacement increases. The value of the force for a normalized displacement of u

R = 0.5
is 0.07, 0.12, 0.28 and 0.42 µN when R = 3 µm and 20.35, 34.36, 78.54 and 117.8 µN when
R = 50 µm for the sphere located at the medium interface, bubble located at the medium
interface, bubble inside the medium, and sphere inside the medium, respectively. This
clearly shows the order of the external force needed to be applied for a specific particle
displacement in different systems.
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Figure 3. The static force required for a specific normalized displacement (i.e., u/R) for a bubble
inside the medium (Equation (1)), a sphere inside the medium (Equation (6)), a bubble located at the
medium interface (Equation (13)), and a sphere placed at the material interface (Equation (19)) for
R = 3 µm (a) and R = 50 µm (c). The stiffnesses for the four cases as a function of the normalized
displacement for R = 3 µm (b) and R = 50 µm (d). The sample properties are G = 5000 Pa and
v = 0.45. The plots clearly show the stiffnesses and the order of the external force needed to be
applied to a specific particle displacement for different systems.

The dynamic responses for a bubble inside the medium (Equation (4)), a sphere inside
the medium (Equation (9)), a bubble located at the medium interface (Equation (16)),
and a sphere located at the medium interface (Equation (22)) for R = 3 µm (a and b) and
R = 50 µm (c and d) and for two different medium viscosities (η = 0.02 and 0.2 Pa·s) are
presented in Figure 4. Among the four small particles with R = 3 µm, only the sphere
located at the medium interface oscillates when η = 0.02 Pa·s. However, this small sphere
does oscillate when the viscosity is increased to η = 0.2 Pa·s. On the other hand, when the
particle size is increased (i.e., R = 50 µm), both the sphere inside the medium and the sphere
located at the medium interface oscillate for the viscosity η = 0.02 Pa·s. It is seen that this
larger sphere located at the sample interface still oscillates for the viscosity η = 0.2 Pa·s. As
expected, the period of oscillations of the particle increases (or the frequency of oscillation
decreases) as the size of the particle increases. For instance, the frequencies of oscillations
are 38,168 and 2825 Hz for the 3 and 50 µm spheres, respectively, when η = 0.02 Pa·s. The
viscosity has a small effect on the frequency of oscillation. For example, the frequency of
oscillations decreases from 2825 to 2674 Hz for the 50 µm sphere placed at the medium
interface when the medium viscosity increases from η = 0.02 to 0.2 Pa·s. The time needed
for the particle to reach the steady-state increases as medium viscosity increases. However,
the viscosity does not alter the steady-state displacements of the particles.
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Figure 4. The dynamic responses for a bubble inside the medium (Equation (4)), a sphere inside the
medium (Equation (9)), a bubble placed at the material interface (Equation (16)) and a sphere placed
at the medium interface (Equation (22)) for R = 3 µm and η = 0.02 Pa·s (a) and η = 0.2 Pa·s (b) and
for R = 50 µm and η = 0.02 Pa·s (c) and η = 0.2 Pa·s (d). The medium properties are G = 5000 Pa,
ρ = 1000 kg/m3, and v = 0.45, and the sphere density is ρs = 9000 kg/m3. The force applied to the
small and large particles is 0.05 and 50 µN, respectively.

The effects of medium shear modulus and viscosity on the dynamic responses of a
bubble inside the medium (Equation (4)), a sphere inside the medium (Equation (9)), a
bubble placed at the sample interface (Equation (16)), and a sphere located at the sample
interface (Equation (22)) for R = 50 µm are presented in Figures 5 and 6, respectively.
It is seen that the displacement of the particles decreases as the shear modulus of the
sample increases. The particles react faster, and the time to reach the steady-state decreases
as the shear modulus of the sample increases and its viscosity decreases. The period
of oscillations decreases (or the frequency of oscillation increases) as the material shear
modulus increases. Although the displacements of the particles at a specific time before
steady-state decrease with increasing medium viscosity, the viscosity does not alter the
steady-state displacements of the particles. The mathematical models for all the particles
can properly simulate the effects of the shear modulus and viscosity of the medium on the
dynamic responses of the particles.

In addition to the time-domain data, the frequency-domain data (spectra) can be used
to identify the tissue properties. The FFTs, or Fast Fourier Transforms, of the response of
the sphere placed at the sample interface for different medium shear moduli, densities, and
viscosities are presented in Figure 7. The spectra clearly show that the displacement of the
particle decreases and its frequency of oscillations increases with increasing medium shear
modulus. The displacement of the particle and its frequency of oscillations decrease with
increasing material density. The displacement of the particle considerably decreases, and
its frequency of oscillations slightly decreases with increasing medium viscosity.
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Figure 5. The effect of medium shear modulus on the dynamic responses of a bubble inside the
medium (Equation (4)), a sphere inside the medium (Equation (9)), a bubble placed at the material
interface (Equation (16)), and a sphere placed at the material interface (Equation (22)) for R = 50 µm.
The medium properties are ρ = 1000 kg/m3, η = 0.2 Pa·s, and v = 0.45, and the sphere density is
ρs = 9000 kg/m3. The force applied to the particles is 10 µN.
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Figure 6. The effect of medium viscosity on the dynamic responses of a bubble inside the medium
(Equation (4)), a sphere inside the medium (Equation (9)), a bubble placed at the sample interface
(Equation (16)), and a sphere located at the sample interface (Equation (22)) for R = 50 µm. The
medium properties are ρ = 1000 kg/m3, G = 4000 Pa, and v = 0.45, and the sphere density is
ρs = 9000 kg/m3. The force applied to the particles is 10 µN.

In addition to the part of the curve during loading, the part of the curve corresponding
to unloading can be used to identify the tissue properties. The external force function and
the dynamic responses for a bubble inside the sample (Equation (4)), a sphere inside the
sample (Equation (9)), a bubble located at the sample interface (Equation (16)), and a sphere
located at the sample interface (Equation (22)) for R = 3 µm (a and c) and R = 50 µm
(b and d) and for two different medium viscosities (η = 0.8 and 1.6 Pa·s) are presented in
Figure 8. It is observed that as the viscosity of the sample increases, the particle’s response
slows down during loading and unloading. The part of the curve corresponding to loading
or unloading can be used to identify medium viscosity. The response rate is lowest for the
bubble located at the medium interface, and the response rate is quite high for the sphere
placed at the sample interface.
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Figure 7. The spectrum of the response of the sphere placed at the sample interface for differ-
ent medium shear moduli (left panel), densities (center panel), and viscosities (right panel) for
R = 50 µm. The Poisson’s ratio of the sample is v = 0.45 and the sphere density is ρs = 9000 kg/m3.
The force applied to the particle is 10 µN. The medium density and viscosity are ρ = 1000 kg/m3

and η = 0.2 Pa·s for the left panel. The medium shear modulus and viscosity are G = 2000 Pa and
η = 0.2 Pa·s for the center panel. The shear modulus and density of the sample are G = 4000 Pa and
ρ = 1000 kg/m3 for the right panel.
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Figure 8. The dynamic responses for a bubble inside the medium (Equation (4)), a sphere inside the
medium (Equation (9)), a bubble placed at the sample interface (Equation (16)) and a sphere located
at the sample interface (Equation (22)) for R = 3 µm (a,c) and R = 50 µm (b,d) and for medium
viscosities η = 0.8 (a,b) and 1.6 Pa·s (c,d). The medium properties are G = 6000 Pa, ρ = 1000 kg/m3,
and v = 0.45, and the sphere density is ρs = 9000 kg/m3. The force applied to the small and large
particles is 0.1 and 30 µN, respectively.

The displacement u presented so far shows the displacement of the tip point (the tip
contact point between the particle and medium). It should be noted that displacement u
is mostly used for elasticity and viscoelastic imaging purposes. However, if it is needed,
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the radial ur(r, θ) and polar uθ(r, θ) displacement components and radial σr(r, θ) and
polar σθ(r, θ) stress components at every point of the medium can be determined (see
Figure 2b). Readers may refer to the references [19,33] for the corresponding displacement
and stress expressions for a bubble and sphere inside the medium. Readers may refer to
the references [33,46] for a bubble located at the sample interface and to the reference [33]
for the sphere placed at the sample interface for the corresponding displacement and stress
expressions.

4.2. Evaluation of Tissue Identification Systems

Some of the elasticity and viscoelasticity imaging studies based on measurements
and the mathematical models presented above are summarized in Table 1. Ultrasonic
excitation and monitoring are mostly used to identify material properties, though magnetic
and mechanical excitation and optical and MRI imaging can be used for elasticity and
viscoelastic imaging based on the use of small particles located within the tissue and at the
tissue interface (see Figure 2a). It is seen that there are still no applications for the in vivo
identification of tissue properties based on the use of small particles located within the
tissue and at the tissue interface. Although the particles inside the tissue have been used for
the last 70 years, this technique uses a high-powered laser to create the bubble inside the
medium. This restricts its application to shallow targets and demands local destruction of
the material. A bubble (or a non-deformable sphere) must be placed inside the tissue, which
may not be permissible in human tissue (e.g., [20,43]). However, owing to the mathematical
models recently proposed for the particles located at the tissue interfaces [46,47,53,54,62,63],
it is believed that in vivo tissue identification can be possible in the future. We believe that
tissue identification based on small particles located within the tissue and at the tissue
interface has the potential to change the field, as they can provide the determination of
accurate and local tissue elastic properties as well as density, Poisson’s ratio, and viscosity,
thanks to the sophisticated mathematical models developed. We propose the use of the
term viscoelasticity imaging, as unlike conventional elasticity imaging, which maps the
elastic properties of the tissue, some other properties of the tissue, such as its viscosity, can
be identified using particle-mediated imaging methods.

As mentioned before, because there is a need to locate the particles inside the medium
to be able to use mathematical models, these models are even more difficult to use for the
identification of tissue-mimicking materials or ex vivo tissue in the laboratory. However,
as it is straightforward to locate a particle at the medium interface and this does not alter
material properties, the mathematical models for the particles located at the medium
interface can be easily used for the identification of material properties of tissue-mimicking
materials and ex vivo tissue in the laboratory. In addition to the elastic properties of the
medium and size of the sphere, the model for the sphere placed at the material interface
includes the corrected models for the inertia force due to the sample involved in motion,
the inertia force of the sphere, and the damping due to the sphere oscillations arising from
the radiation of shear waves. Furthermore, the force-displacement relation is valid for
the small and large displacements of the sphere and the practical values of the medium
Poisson’s ratio and the experimental setup is very straightforward. Therefore, this system
seems very promising for tissue identification purposes.
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Table 1. Some of the elasticity and viscoelasticity imaging studies.

Particle Used Particle
Location

Excitation
Method

Monitoring
Method Target Material Identified

Property Reference

bubble inside
medium ultrasonic ultrasonic gelation phantom Young’s modulus Erpelding et al.,

2005 [20]

bubble inside
medium ultrasonic ultrasonic human lenses Young’s modulus Hollman et al.,

2007 [35]

bubble inside
medium ultrasonic ultrasonic

bovine and
porcine

crystalline lenses

Young’s modulus
and viscosity

Yoon et al.,
2013 [39]

sphere inside
medium ultrasonic ultrasonic gelation phantom shear modulus Karpiouk et al.,

2009 [41]

sphere inside
medium ultrasonic ultrasonic porcine blood

clots
shear modulus
and viscosity

Huang et al.,
2011 [43]

sphere inside
medium magnetic ultrasonic gelation phantom shear modulus

and viscosity
Cebrecos et al.,

2021 [45]

cloud of
bubbles

at a medium
interface ultrasonic optical gelation phantom shear modulus Koruk et al.,

2015 [23]

bubble at a medium
interface ultrasonic optical hydrogel shear modulus

and viscosity
Bezer et al.,

2020 [24]

sphere at a medium
interface magnetic optical gelation phantom

shear modulus
and viscous

damping ratio

Koruk et al.,
2022 [55]

sphere at a medium
interface magnetic optical gelation phantom shear modulus

and viscosity

Koruk et al., 2022
[62]; Koruk and

Pouliopoulos [63]

The mathematical models presented in this paper can be used to identify material
properties on macroscopic or microscopic scales. If only the identification of the Young’s
modulus (or shear modulus) of the tissue is required (i.e., elasticity imaging), it is only
needed to measure the displacement of the particle exposed to a static force or the steady-
state displacement of the particle exposed to a dynamic force. Using the corresponding
mathematical models for a static external force (i.e., Equations (1), (6), (13) or (19)), the elastic
properties of the tissue can be identified. However, besides the elasticity or shear modulus,
if the identification of the density and/or viscosity of tissue is required (i.e., viscoelasticity
imaging), there is a need to measure the dynamic response of the particle and to use the cor-
responding mathematical models for dynamic loading (i.e., Equations (4), (9), (16), or (22)).
By performing curve fitting using experimental data and mathematical models, the elas-
ticity modulus, density, and viscosity of the tissue can be identified. Alternatively, the
elastic properties can be determined from the steady-state displacement, the viscosity can
be identified from the part of the measured curve corresponding to loading or unloading,
and the density of the tissue can be determined by matching the measured and theoretical
oscillating frequency of the particle. Furthermore, it may be difficult to know the magnitude
of the applied force. In practice, without needing the amplitude of the applied force, the
elasticity or shear modulus and/or the density of tissue can be identified by matching
the measured and theoretical oscillating frequency of the particle, and the viscosity of
tissue can be identified from the part of the measured curve corresponding to loading or
unloading. In addition, the frequency of oscillation of the particle and damping of tissue
can be determined using the spectrum of the time-domain data and the modal analysis
techniques, such as half-power, circle-fit, or line-fit (e.g., [67]).
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5. Concluding Remarks

In this paper, we investigated the elasticity/viscoelasticity imaging based on the use
of small particles located within the tissue and at the tissue interface exposed to static and
dynamic external loads. We compared the mathematical models for the small particles
exposed to static and dynamic external loads and evaluated the elasticity and viscoelasticity
imaging methods based on the use of small particles located within the tissue and at the
tissue interface. Some concluding remarks are presented below.

The acoustic radiation force-based elasticity imaging techniques that remotely palpate
material produce a complicated displacement field. The displacement field depends on the
transducer’s focusing properties and target geometry. For the absorption-based techniques,
the focal volume influences elasticity reconstruction. For elasticity imaging based on the use
of small particles located within the tissue and at the tissue interface, particle displacement
is independent of the focal zone of the transducer and is affected only by the viscoelastic
properties of the local tissue, and simple and accurate elasticity reconstruction can be
performed. As sophisticated mathematical models for a particle located within the tissue
and at the tissue interface can be developed, in addition to elastic properties, density and
viscosity of tissue can be determined in particle-mediated elasticity imaging.

Because the radiation force exerted on the particle located within the tissue and at the
tissue interface is normally far greater than that occurring in a purely absorbing medium,
a lower acoustic power can be used in a moderately attenuating medium for particle-
mediated elasticity imaging techniques. For the particles located inside the tissue, there is a
need to use a high-powered laser to create the bubble inside the medium, which restricts its
application to shallow targets and demands local destruction of the material, or there is a
need to position a bubble (or rigid sphere) inside the tissue. This may not be permissible in
human tissue. However, exploiting the models recently proposed for the particles located
at the tissue interfaces, it is believed that in vivo tissue identification can be possible in the
future. Furthermore, using the well-established mathematical models, the particles located
at the medium interface can be conveniently used to identify tissue-mimicking materials
and ex vivo tissue in the laboratory.

The stiffness of the bubble and sphere inside the medium is constant, while the
stiffness varies nonlinearly with the displacement of the particles located at the medium
interfaces. The stiffness, hence the force required for a specific displacement of the particle,
increases from the sphere placed at the material interface to the bubble located at the
material interface, the bubble inside the medium, and the sphere inside the sample. The
value of force needed for a ratio of 0.5 particle displacement to the radius of the special
object and a medium with a shear modulus of 5000 Pa is around 70–420 nano Newton and
20–120 micro-Newton for particles with a radius of 3 and 50 µm, respectively.

The period of oscillations of the particle significantly increases (or the frequency of
oscillation significantly decreases) as the size of the particle increases. However, even
the spherical object placed at the sample interface does not have any oscillations if the
particle size is small and the material viscosity is considerably high. The displacement
of the particles decreases as the medium shear modulus increases. The particles react
faster, and the time to reach the steady-state decreases as the shear modulus of the sample
increases. The period of oscillations decreases (or the frequency of oscillation increases) as
the material shear modulus increases. The displacements of the particles at a specific time
before steady-state decrease with increasing sample viscosity. The particles react faster, and
the time needed for the particle to reach the steady-state decreases as medium viscosity
decreases. The viscosity does not alter the steady-state displacements of the particles. The
frequency of oscillation of the particle interacting with tissue slightly decreases as sample
viscosity increases. The frequency of oscillations of the particle interacting with tissue
decreases with increasing medium density.

If only the identification of the Young’s modulus (or shear modulus) of the tissue is
required (i.e., elasticity imaging), it is only needed to measure the displacement of the
particle exposed to a static force or the steady-state displacement of the particle exposed
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to a dynamic force. Using the corresponding mathematical models for a static external
force, the elastic properties of the tissue can be identified. However, in addition to the
elasticity or shear modulus, if the identification of the density and/or viscosity of the
tissue is required (i.e., viscoelasticity imaging), there is a need to measure the dynamic
response of the particle and to use the corresponding mathematical models for dynamic
loading. By performing curve fitting using experimental data and mathematical models,
the Young’s (or shear) modulus, density, and viscosity of the tissue can be identified.
Alternatively, the elastic properties can be determined from the steady-state displacement,
the viscosity can be identified from the part of the measured curve corresponding to loading
or unloading, and the density of the tissue can be determined by matching the measured
and theoretical oscillating frequency of the particle. Furthermore, as it may be difficult
to know the magnitude of the exerted force in practice, without needing the amplitude
of the applied force, the Young’s modulus (or shear) modulus and/or the density of the
tissue can be identified by matching the measured and theoretical oscillating frequency of
the particle, and the viscosity of the tissue can be identified from the part of the measured
curve corresponding to loading or unloading.

Although ultrasonic excitation and monitoring are mostly used to identify material
properties based on small particles, magnetic and mechanical excitation and optical and
MRI imaging can be used for elasticity and viscoelastic imaging based on small particles.
We believe that tissue identification based on the use of small particles located within the
tissue and at the tissue interface has the potential to change the field, as they can provide
the determination of accurate and local tissue elastic properties as well as density, Poisson’s
ratio, and viscosity, owing to the sophisticated mathematical models developed. We suggest
the use of the term viscoelasticity imaging, as unlike traditional elasticity imaging, which
maps the elastic properties of the tissue, some other properties of the tissue, such as its
viscosity, can be determined using particle-mediated imaging methods.
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