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Abstract: Design for remanufacturing (DfRem) is to consider the remanufacturability of the product
at the design stage, which can improve the remanufacturability of the product. Moreover, the DfRem
solution has a significant impact on the carbon emissions of manufacturing processes. Unreasonable
design solutions can significantly increase carbon emissions from manufacturing processes. However,
there is no direct link between DfRem solutions and remanufacturability as well as manufacturing
carbon emissions, which makes it difficult to quickly generate a rational DfRem solution that can
enhance product remanufacturability and reduce carbon emissions simultaneously. To this end, this
paper proposes an intelligent design method for remanufacturing that considers remanufacturability
and manufacturing carbon emissions. First, an intelligent DfRem framework is constructed, which
includes information acquisition, virtual model construction of the DfRem solution, and multi-
objective optimization of the design solution. Then, the design matrix and sensitivity analysis are
used to construct the mapping models between remanufacturability, carbon emissions, and DfRem
parameters. Meanwhile, a multi-objective optimization model of DfRem with remanufacturability
requirements and carbon emissions as design objectives is constructed, and an adaptive teaching
and learning optimization algorithm is applied to solve the optimization model to obtain a DfRem
solution that satisfies the objective information. Finally, the feasibility of the method is verified by
DfRem of the injection mold as an example.

Keywords: intelligent; design for remanufacturing; carbon emission; remanufacturability; optimization
model

1. Introduction

Remanufacturing is the process of turning used blanks into remanufactured products
that meet functional and performance requirements through a series of repair techniques.
While remanufacturing is the repair and upgrading of valuable parts and components
of used products, the maximization of the residual value of used products, and reman-
ufacturing promotes the recycling of used resources, which is increasingly recognized
as an important part of the circular economy [1,2]. Remanufacturability determines the
successful implementation of used products for remanufacturing. Design for remanufactur-
ing is to consider the remanufacturability of products at the product design stage, which
directly affects the product remanufacturability and carbon emissions from the manufac-
turing process [3,4]. Thus, design for remanufacturing is a key aspect of remanufacturing
engineering.

However, remanufacturability, carbon emission, and design parameters are not di-
rectly related, making it difficult to quickly generate a DfRem solution that meets the design
objectives. To address these issues, many scholars have studied DfRem. Gong et al. [5] pro-
posed a nonempirical hybrid multi-attribute decision-making method, which can alleviate
the impacts of subjective factors. Ke et al. [6] developed an intelligent design method for
remanufacturing, which can intelligently analyze remanufacturability requirements and
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generate design solutions. Zhang et al. [7] analyzed the product engineering characteristics
and remanufacturing design guidelines, used the two-stage quality function development
method to analyze the impact of failure modes on remanufacturing design, and found an
improvement direction for remanufacturing design. Yang et al. [8] proposed a multi-criteria
decision method to select the optimal material to improve the remanufacturability of prod-
ucts from the perspective of material selection. Kishawy et al. [9] defined the concepts and
needs related to the sustainability approach. Soh et al. [10] provided a holistic approach to
designing products from the remanufacturing perspective, considering the disassembly
guidelines and constraints. Shahbazi et al. [11] investigated how circular product design
can facilitate automation remanufacturing processes. Chakraborty et al. [12] identified the
design criteria of a product that can enhance its remanufacturability and subsequently. The
above-mentioned literature shows that many scholars conduct research on DfRem methods
from the perspectives of failure characteristics, knowledge reuse, material selection, and
DfRem scheme evaluation. Undoubtedly, the proposed methods greatly contributed to the
research of DfRem. However, these studies have not constructed a relationship between
design parameters and remanufacturability, which does not ensure that the design solution
precisely satisfies product remanufacturability requirements. In addition, these studies do
not take into account the impact of DfRem on manufacturing carbon emissions to ensure
that the product manufacturing process is decarbonized. In the axiomatic design (AD)
theory, product design parameters directly affect manufacturing process parameters, and
process parameters directly affect product manufacturing carbon emissions; therefore,
DfRem directly affects the magnitude of manufacturing carbon emissions. In summary,
DfRem not only affects the product remanufacturability but also directly affects the man-
ufacturing carbon emissions; excessive carbon emissions will take away the advantages
of DfRem.

For developing a reasonable DfRem scheme to reduce carbon emissions, it is necessary
to construct the mapping relationship between design parameters and carbon emissions,
and many studies have been conducted on this; for instance, low-carbon design consider-
ing human behavior [13], product design on remanufacturing considering environment
legislation [14], low-carbon design of product family [15], and CAD-based identification of
product low-carbon design [16]. This research has analyzed the impact of product design on
carbon emissions. Yet, these methods do not simultaneously consider the impact of design
parameters on remanufacturability, which does not provide a reasonable DfRem scheme.
For the synergistic optimization of these two, it is necessary to build a mathematical model
between design parameters, remanufacturability, and carbon emissions.

Previous researchers have made some achievements in relationship construction. Ex-
isting research has focused on low-carbon design [17], cost-constraint low-carbon product
design [18], and performance-based product design [19]. These studies construct links
between cost, performance, carbon emissions, and product design, which reduce product
manufacturing costs and carbon emissions and improve product performance. Yet, none
of them synergistically consider the impact and mapping of product design on remanu-
facturability and carbon emissions. The remanufacturability represents the function or
product performance, such as easily disassembled, easily recycled, easily processed, etc.,
and the mathematical relationship between the design parameters and the function can be
described by the design matrix in the axiomatic design (AD) theory [20], while sensitivity
analysis can analyze the degree of influence between variables and determine the degree of
correlation between them [21]; thus, these methods can be used to construct mathematical
models between design parameters and remanufacturability and carbon emissions.

Moreover, DfRem is a multi-objective optimization problem, and it is necessary to
ensure that remanufacturability and carbon emissions are synergistically satisfied. Many
scholars currently use optimization algorithms to optimize design solutions, and multi-
objective optimization model-solving algorithms have been developed and are very mature.
Commonly used examples include particle swarm algorithms [22], genetic algorithms [23],
ant colony algorithms [24], etc., but these algorithms do not have enough computational
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accuracy, and their stability is poor. In order to solve the limitations of previous algorithms,
an adaptive teaching–learning-based optimization (ATLBO) algorithm is proposed, which
simulates the process of students learning from teachers and can adaptively adjust the
learning method to achieve faster learning results after learning certain knowledge [25].
The algorithm can avoid entering the local optimum too early, improve the global search
ability, speed up the solution, and respond to changes in the optimization model faster.

For the rapid generation of a sound DfRem scheme, it is necessary to construct a
mapping model between carbon emissions, remanufacturability, and design parameters
and generate a design scheme with an intelligent approach. To address these, an intelligent
design method for remanufacturing considering remanufacturability and carbon emission
is proposed. The novelty of this study lies in the following: (1) An intelligent design frame-
work is built, which includes design mapping model construction, optimal design solution
solving, and a design solution feedback adjustment mechanism. (2) A design matrix and
sensitivity analysis are used to construct the mapping models between remanufacturability,
carbon emissions, and design parameters. (3) A multi-objective optimization model of
the DfRem scheme is constructed, and an improved teaching and learning algorithm is
applied to solve the optimization scheme, which realizes the intelligence of DfRem. The
effectiveness and feasibility of this method are verified by a case to provide theoretical
support for DfRem.

2. Methods
2.1. Intelligent Design Framework for Remanufacturing

The ultimate goal of DfRem is to realize the functionality and remanufacturability re-
quirements of the customer, while the design process also needs to consider the designer’s
preferences, manufacturing scenario constraints, policy limitations, etc. Therefore, the
DfRem solution needs to be optimized according to the external conditions and constraints
so as to make the original design solution conform to the actual application scenarios.
Firstly, feedback from customers, designers, and technicians is collected, including reman-
ufacturability requirements, low-carbon requirements, environmental requirements, etc.
At the same time, virtual simulation technology is used to construct a virtual product
model that meets the design scheme and establish an optimization model for the product
design scheme. Finally, the ATLBO algorithm is used to solve the optimization model, and
the virtual model is changed according to the optimization results to verify its feasibility.
Through the continuous cycle of optimization and feedback, the optimal product design
scheme is obtained, and the specific process model is as follows.

As shown in Figure 1, the physical side refers to all the physical entities involved in the
product design, including the customers, designers, process engineers, operators, etc. The
information side represents all the information generated by the physical entity, i.e., demand
information, subjective intent, and environmental demand information, etc. The model
side is mainly to build the design optimization model and virtual simulation model. The
physical data side represents the historical data of the entire product lifecycle. Moreover,
the empty rectangles indicate that there are other categories of people, information, data,
etc. For example, the physical side also contains operators and remanufacturers. The
adaptive optimization process for DfRem solutions is divided into three main parts:

(1) Information acquisition.

The external constraint information of product design includes customer demand
information, the designer’s personal preference information, the technician’s process plan-
ning information, environmental laws and regulations, etc. This information provides the
constraints and design goals for the implementation of the design program. The above
information is mainly summarized into four aspects: performance requirements, cost re-
quirements, energy saving, and emission reduction. The internal connection between the
target information and the design parameters is analyzed, and the mapping mathematical
model is constructed between the two so as to facilitate the optimization of the subsequent
design parameters.
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(2) Construction of the design scheme virtual model.

In order to realize the visualization of the design scheme, the virtual model of the
design scheme is constructed, including the physical model of the new product, the perfor-
mance simulation model, the cost analysis model, the energy saving and emission reduction
analysis model, and the processing simulation model, etc. The virtual model can quickly
verify the feasibility of the design scheme, reduce the trial-and-error cost, and shorten the
design cycle.

(3) Multi-objective optimization of DfRem solutions.

Processes 2023, 11, x FOR PEER REVIEW 4 of 17 
 

 

constraints and design goals for the implementation of the design program. The above 

information is mainly summarized into four aspects: performance requirements, cost re-

quirements, energy saving, and emission reduction. The internal connection between the 

target information and the design parameters is analyzed, and the mapping mathematical 

model is constructed between the two so as to facilitate the optimization of the subsequent 

design parameters. 

(2) Construction of the design scheme virtual model. 

In order to realize the visualization of the design scheme, the virtual model of the 

design scheme is constructed, including the physical model of the new product, the per-

formance simulation model, the cost analysis model, the energy saving and emission re-

duction analysis model, and the processing simulation model, etc. The virtual model can 

quickly verify the feasibility of the design scheme, reduce the trial-and-error cost, and 

shorten the design cycle. 

(3) Multi-objective optimization of DfRem solutions. 

The design scheme multi-objective optimization model with manufacturing costs, re-

manufacturing performance requirements, and carbon emissions as design objectives is 

constructed, and the optimization model is solved by using adaptive teaching and learn-

ing optimization algorithms to obtain the design scheme that satisfies the objective infor-

mation. 

Customer Designer 
Process 

engineer

Environmental 

worker

Physical 

side

Remanfacturability 

demand Information
Subjective intent

Environmental 

requirements

Informati

on side

High 

performance

Easily 

upgraded

Structural 

reliability
...

Model 

side

...

...

...

Low 

carbon

Process 

analysis

Performance 

analysis

Cost analysis

...

Optimization 

goals

Multi-objective 

optimization model

ATLBO 

Algorithms

 Scheme 

output

Historical 

process data

Historical 

design data

Historical 

BOM data

Historical 

test data

Physical 

data side
...

 

Figure 1. Intelligent design framework for remanufacturing. 

2.2. Information Extraction and Optimization Objective Analysis 

Once the DfRem scheme is completed, it will be fed back to the customer, process 

personnel, and safety and environmental departments for program evaluation, and the 

designers will also verify the performance, structure, and other parameters of the design 

scheme and put forward new design intentions. The above information will form new 

Figure 1. Intelligent design framework for remanufacturing.

The design scheme multi-objective optimization model with manufacturing costs,
remanufacturing performance requirements, and carbon emissions as design objectives is
constructed, and the optimization model is solved by using adaptive teaching and learning
optimization algorithms to obtain the design scheme that satisfies the objective information.

2.2. Information Extraction and Optimization Objective Analysis

Once the DfRem scheme is completed, it will be fed back to the customer, process
personnel, and safety and environmental departments for program evaluation, and the
designers will also verify the performance, structure, and other parameters of the design
scheme and put forward new design intentions. The above information will form new
design constraints, and at this time, the design solution needs to be based on the constraints
of the information to make changes to the design parameters. The feedback information
of the DfRem scheme is categorized from three perspectives of technology, economy, and
environment, mainly including remanufacturing performance requirement information,
manufacturing cost information, and carbon emission information, as follows:
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(1) Information on remanufacturing performance requirements.

After the product design scheme is generated, the development department will carry
out prototype trial production and verification according to the scheme. Among them, the
performance of parts and the whole machine is tested according to standard operating
conditions to ensure that the product can be easily remanufactured after retirement. During
the testing process, parts performance that is not up to standard or non-ideal running
states will appear; at this time, there is a need to improve the product structure parameters
or material parameters to adjust the performance parameters of the product. Product
performance information is mainly collected through testing equipment, sensors, and
collection devices, according to the collected performance data and customer performance
requirements and remanufacturing performance standards for comparison to extract the
performance parameters that need to be improved.

(2) Manufacturing costs.

Manufacturing costs are the core concern of manufacturers, and customers often set
the control range of product development costs, so manufacturers must rationalize the
manufacturing costs in the production process. Manufacturing costs are mainly material
costs, equipment development costs, labor hour costs, commissioning costs, and surcharges.
In the actual processing process, there may be more than the predetermined costs, so it is
necessary to rationalize the design parameters to reduce the manufacturing costs.

(3) Low-carbon requirements.

The manufacturing process consumes energy such as electricity, water, and oil and
generates a large amount of pollutants, including wastewater, metal waste, and waste oil.
According to the policies and regulations of energy conservation and emission reduction,
as well as the dual-carbon goal, it is necessary to vigorously reduce the consumption and
emission of these two parts. In order to characterize the energy conservation and emission
reduction goal, carbon emission can be used to represent the energy consumption in the
manufacturing process and the energy consumption of waste treatment.

The constraint information is extracted to analyze the optimization objective of the
design scheme, and the establishment of the connection between the constraint information
and the design parameters is the key to the optimization of the design scheme; below is the
model developed by the authors.

2.2.1. Mapping Model of Remanufacturability and DfRem Parameters

The remanufacturability demand includes easy to disassemble, easy to clean, easy
to reprocess, etc., which correspond to the stiffness of the product, the strength of the
component, the hardness, etc.; the details are shown in Figure 2.

While the mapping relationship between remanufacturability and DfRem parameters
can be derived from empirical formulas or theorems, the generic functional relationship
between the two can be characterized by using the design matrix in axiomatic design
as follows. 

F1
F2
. . .
Fm

 =



A11 A12 . . . A1j . . . A1n
A21 A22 . . . A2j . . . A2n
. . . . . . . . . . . . . . . . . .
Ai1 Ai2 . . . Aij . . . Ain
. . . . . . . . . . . . . . . . . .

Am1 Am2 . . . Amj . . . Amn




DP1
DP2
. . .

DPn

 (1)

Therefore, the remanufacturability requires multiple DfRem parameters to be solved,
which can be shown by Equation (2):

Fi =
n

∑
j=1

Aij·DPj (2)
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where Fm denotes the m-th remanufacturability of the product, DPn denotes the n-th
DfRem parameter, and Aij denotes the mapping relationship between the i-th remanufac-
turability and the j-th DfRem parameter, which can be either a real number or a functional
relationship.
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2.2.2. Mapping Relationship between Carbon Emissions and Design Parameters

Carbon emissions from product manufacturing are directly related to the DfRem
parameter. Carbon emissions are mainly generated by consumed electricity, water, raw
materials, weather, etc. Firstly, a carbon emission calculation model should be established,
and then a mapping relationship between energy consumption, material consumption, and
design parameters should be established using sensitivity analysis; below is the model
developed by the authors.

Different energy and materials are consumed in the manufacturing process of the
product, and these generate carbon emissions, so the consumption of energy and materials
can be counted to calculate the manufacturing carbon emissions.

Hi =
p

∑
q=1

NE
q f E

q +
n

∑
t=1

NM
t f M

t (3)

In Equation (3), Hi denotes the manufacturing carbon emission corresponding to the
i-th DfRem parameter, NE

q denotes the q-th energy consumption, f E
q denotes the carbon

emission factor of the q-th energy source, NM
t represents the t-th material consumption,

and f M
t denotes the carbon emission factor of the t-th material.

In order to obtain the functional relationship between carbon emissions and design
parameters, it can be analyzed by sensitivity, which can be obtained by the relationship
between the number of micro-variations between carbon emissions and design parameters;
below is the model developed by the authors.

Si =
dHi

dDPi
=

d fHi (DPi)

dDPi
(4)
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Equation (4) represents manufacturing carbon emissions as a function of trace changes
in design parameters, fHi represents the function between energy consumption and the
design parameters, and Si denotes the sensitivity coefficient of the i-th design parameter to
the corresponding carbon emission.

By converting Equation (4), the mapping relationship between the micro variables of
carbon emissions and the micro variables of DfRem parameters can be obtained, and the
details are shown in Equation (5).

dHi = Si · dDPi (5)

The functional relationship between carbon emissions and DfRem parameters can be
obtained by solving the differential equation, which is shown as follows.

Hi = Si · DPi + gi (6)

The result of solving Equation (3) is shown in Equation (6), where gi represents the
constant of the i-th carbon emission equation.

2.2.3. Manufacturing Cost Constraint

Process engineers formulate the corresponding process program according to the de-
sign and processing by the manufacturing shop. The design scheme directly determines the
manufacturing process of the parts but also determines the processing of electricity, water,
materials, and other energy consumption; an increase in consumption will undoubtedly
increase the cost of manufacturing products. Each processing scheme will contain differ-
ent processing methods to achieve, and each processing method will use the appropriate
processing equipment, raw materials, and heat treatment; processing will also consume
different amounts of energy, so it is necessary to analyze according to the specific object. In
this paper, the cost of manufacturing is the constraint of the design scheme.

2.3. Optimization Model Construction

In order to improve design efficiency, product remanufacturability, and reduce carbon
emissions, the optimization model of the DfRem scheme is built with remanufacturability
and carbon emission, and an intelligent algorithm is applied to solve the DfRem scheme.
Meanwhile, virtual verification of the product remanufacturability and manufacturing pro-
cess is carried out by using physical modeling, CAE simulation, and energy consumption
evaluation technologies, and the verification results are fed back to the subject demand
departments, which compare and analyze according to historical physical data, and feed
the analysis results to the optimization process as design objectives until the optimal design
results are obtained. The detailed process is shown in Figure 3.

The optimization model is constructed with the objectives of remanufacturability
and manufacturing carbon emissions. According to the axiomatic design matrix, the
performance is equal to the product of the mapping parameter and the design parameter,
while the product of the two is inverted for the minimum optimization principle, which is
shown in Equation (7). The carbon emission minimization optimization objective function
is shown in Equation (8).

minFi =
1

Aij ∗ DPj
(7)

minH =
n

∑
i=1

(Si · DPi + gi) (8)

The constraints of the optimization model are set according to the system requirements,
manufacturing cost requirements, and legal policies. The details are as follows:

Cs < C < Cd (9)
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H < Hl (10)

DPlp ≤ DPi ≤ DPup (11)

where Cs denotes the manufacturer’s constraint value for manufacturing cost, and Cd
denotes the customer’s constraint value for product manufacturing cost; in general, the
manufacturing cost set by the manufacturer will be lower than the manufacturing cost set
by the customer. Hl denotes the carbon emission limit set by policy and regulation. The
lower and upper limits of the DfRem parameters are determined by the product system
constraints, tolerance range, and other factors.
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2.4. Optimization Model Solution

Multi-objective optimization model-solving algorithms have been developed very
maturely. Commonly used examples include particle swarm algorithms, genetic algorithms,
and ant colony algorithms, but these algorithms have insufficient computational accuracy
and poor stability. In order to solve the limitations of previous algorithms, an adaptive
teaching–learning-based optimization (ATLBO) algorithm is proposed, and the specific
solving process is as follows (Figure 4).
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Figure 4. Adaptive teaching–learning-based optimization algorithm process.

2.4.1. Teacher stage

In the teacher stage, learning is based on the differences between teachers and students,
and first, the degree of difference in the mean between teachers and students is calculated
as follows.

di f = Tc(t) · (xT − θ · xM) (12)

θ = round(1 + rand(0, 1)) (13)

Tc(t) =
1
2
· (Tcmax − Tcmin) ·

(
tmax − ti

tmax

)2
+

1
2
· (Tcmax − Tcmin) ·

(
tmax − ti

tmax

)
+ Tcmin (14)

In Equation (12), xM denotes the mean of the M-th learner, xT denotes the mean of the
teacher, Tc(t) denotes the adaptively adjustable learning factor, Tcmax denotes the maximum
value of the learning factor, Tcmin denotes the minimum value of the learning factor, ti
denotes the number of iterations of the learning process, and tmax denotes the maximum
number of cycles of the iterations.

In addition, students learn according to the differences with their teachers; the details
are as follows:

xinew = xi + di f (15)

where xi denotes the value before the i-th participant, and xinew denotes the value after the
i-th participant’s study.
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2.4.2. Student Stage

In the student phase, each participant randomly finds a learning target in the class for
comparative analysis and adjusts the school factor according to the gap with the learning
target, which is calculated as follows.

xinew =

{
xi + rand(0, 1) · (xi − xj) f (xi) > f (xj)

xi + rand(0, 1) · (xj − xi) f (xi) < f (xj)
(16)

2.4.3. Termination Guidelines

If the maximum number of iterations is reached, the calculation is terminated, and
the optimization parameters are output; otherwise, the calculations in Steps A and B
are repeated.

3. Case Study

To verify the feasibility of the proposed method, the DfRem of an injection mold is
taken as an example. An injection mold is a key device for producing plastic products,
which is shown in Figure 5. However, during the service process of the mold, it is found
that the cavity surface is easily worn and corroded, which is not conducive to reprocessing
the mold at the end of life. Moreover, the cooling area is not enough, and the poor cooling
effect will affect the surface accuracy of plastic products, so designers need to optimize
mold design parameters to solve the above problems. Meanwhile, in response to the
‘double carbon policy’, the manufacturing process scheme should satisfy the low carbon
requirements.
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Figure 5. The structure of the mold.

First, heat treatment is used to improve the surface strength of the cavity; the empirical
formula for carbon content and die surface tensile strength is shown as follows:

σb = 300(1 − C/0.83) + 1000(C/0.83) (17)

where σb denotes the tensile strength of the mold, and C denotes the carbon content of
the mold.
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In addition, the cooling temperature is related to the cooling area, and the cooling area
is related to the length and diameter of the cooling pipe; thus, the calculation formulae are
as follows:

∆θ =
WQ
Ah

(18)

A = 3.14Ld (19)

∆θ =
WQ

3.14Ldh
(20)

where ∆θ denotes the temperature difference between the outlet and inlet of the mold;
W denotes the total mass of plastic melt injected into the mold cavity per unit time, in
units of kg/h; Q is the heat released per unit mass of plastic part during solidification; L is
the length of the cooling pipe; d denotes the diameter of the cooling pipe; and h denotes
the heat transfer coefficient between the wall of the cooling pipe orifice and the cooling
medium, in units of m2 · h · ◦C. The details are as follows (Table 1).

Table 1. Energy and material consumption.

DfRem Parameter Energy and Material Consumption Carbon Emission

Cooling tube processing
length (L)

Aluminum 0.3 kg 3.496 kg CO2Electricity 0.7398 kW × h

Carbon content of parts (C)
Electricity 1.1313 kW × h

1.081 kg CO2Water 0.8 kg
Natural gas 0.0075 m3

The sensitivity of DfRem parameters to carbon emissions can be calculated according
to Equation (4), and the results are as follows.

From Table 2, it can be seen that the design parameter DP1 is positively correlated
with carbon emissions, and DP2 is negatively correlated with carbon emissions; thus,
the functional relationships between each design parameter and carbon emissions are
as follows.

H1 = 0.03802DP1 − 7.91 (21)

H2 = −0.1302DP2 + 1.1206 (22)

H = 0.03802DP1 − 0.1302DP2 − 6.7894 (23)

Table 2. Sensitivity analysis of DfRem parameters.

DfRem Parameter Standard Design
Parameters Carbon Emission Sensitivity S

Cooling tube length (DP1) 300 mm 3.496 kg CO2 0.03802
Cavity carbon content (DP2) 0.3% 1.081 kg CO2 −0.1302

According to Equations (17) and (20), as well as square original design information
can be obtained as a function of the performance parameters and design parameters; the
details are as follows:

f1 = 300(1 − DP2/0.83) + 1000(DP2/0.83) (24)

f2 =
WQ

3.14 · DP1 · d · h
=

3.811 × 590
3.14 × 8 × 1.4 × DP1

=
2248.49

35.168 · DP1
(25)
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Then, the multi-objective optimization model of the design solution regarding the
performance parameters and carbon emission parameters is as follows.

minF1 = 1
f1
= 1

300(1−DP2/0.83)+1000(DP2/0.83)

minF2 = 1
f2
= 35.168·DP1

2248.49

minH = 0.03802DP1 − 0.1302DP2 − 6.7894

s.t. 270mm ≤ DP1 ≤ 1350mm

0.28% ≤ DP2 ≤ 0.4%

(26)

In the above equations, the length of the cooling tube DP1 should not be lower than
the length of the concave die, the width of the cooling tube should not exceed the width of
the concave die, and the spacing of the cooling tube is generally five times the diameter
of the tube, so the above rules can be obtained as a constraint range. The range of carbon
content DP2 is obtained by checking the material properties of P20 steel.

The adaptive teaching and learning algorithm was used to solve the multi-objective
optimization model for the design solution, setting the number of students to 10, the
number of students studying the course to 2 (the number of design variables), and the
number of iterations to 50. In order to show the superiority of ATLBO, the conventional
teaching and learning algorithm was run simultaneously, the results were compared, and
the computational results are shown below.

From Figure 6, it can be seen that the ATLBO algorithm computes the multi-objective
function iteratively up to Step 5, while the TLBOA computes iteratively up to Step 12 before
convergence, indicating that the ATLBO algorithm computes faster.
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As can be seen in Figure 7, the results of the ATLBO and TLBO solutions are approxi-
mately the same, but ATLBO provides better convergence. To verify the reliability of the
ATLBO algorithm, the computational quality data of the two algorithms are extracted for
comparison, and the results are as follows.
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Figure 7. Comparison of ATLBO and TLBO algorithm solution results.

As can be seen in Figure 8, the quality values of the ATLBO solution process tend
to a steady state, and the dip state tends to be smooth at the end of the iteration, while
the quality values of TLBO are in a dip state and cannot be stabilized. This is because the
adaptive teaching and learning algorithm continuously adjusts the learning strategy during
the solution process, which can solve the objective function more stably and quickly; the
solution results are shown below.
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According to Table 3, both algorithms were able to solve for the design parameters
that met the requirements; however, the ALBO algorithm was able to reduce the carbon
emissions by 14.6%, reduce the internal temperature of the mold by 2 ◦C, and slightly
increase the tensile strength than the design parameters solved by the TLBO algorithm.
Overall, the ATLBO algorithm produced better and faster design solutions than TLBO.

Table 3. Comparison of optimization results for design parameters.

Algorithm
Design Parameter Carbon

Emission
Tensile

Strength
Temperature
DifferenceDP1 DP2

ATLBO 298.2 mm 0.035% 4.5481 kg
CO2

302.94 Mpa 1 ◦C

TLBO 314.67 mm 0.030% 5.2106 kg
CO2

302.52 Mpa 3 ◦C

In order to verify the reliability of the optimization scheme, virtual simulation was
used to verify the design scheme. Firstly, SolidWorks software 2020 was used to build
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a 3D model of the injection mold, while the Sustainability module was applied to solve
the carbon emission and energy consumption of the mold manufacturing process, and
Moldflow software 2019 was used to simulate the performance of the mold, the specific
results are as follows.

From the simulation analysis results in Figures 9–11, we can obtain the manufacturing
costs of the mold, the cooling effects, and the carbon emissions of the manufacturing
process. The mold manufacturing cost is USD 81.95, while the cost control requirement of
the manufacturer is not more than USD 100 (excluding labor, equipment, and management
costs). Therefore, the total remanufacturing cost is less than the manufacturer’s expected
maximum cost. Although the overall length of the cooling pipe is shorter due to the
increase in the cooling pipe inlet and outlet, it can cool the molded part more directly and
prevent uneven cooling, which affects the quality of the molded part, the carbon emission
simulation analysis of the mold manufacturing process using the Sustainability module
of SolidWorks shows that the carbon emission of the manufacturing process is 70 kg CO2,
which is consistent with the manufacturer’s historical carbon emission measurement. The
results of the concave mold stress simulation in Figure 12 show a maximum yield stress of
282.7 Mpa and a maximum deflection of 1.14615 × 10−5 mm at this time. By comparing
the optimized mold design with the design requirements, the error value between the two
is within the allowable range, and the design can be output directly.
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From the results of the case study, it can be seen that the proposed design method can
reduce carbon emissions and costs in the mold manufacturing process while improving the
performance of the mold. This promotes the application of intelligent DfRem and provides
a new theoretical model for DfRem methods.

4. Conclusions and Future Work

Design for remanufacturing is an important process that affects not only the product
remanufacturability but also the manufacturing carbon emission. To rapidly develop a ra-
tional design scheme for reducing manufacturing carbon emissions and improving product
remanufacturability, this paper proposes an intelligent design method for remanufacturing
that can obtain the design scheme for satisfying the design targets. The proposed method-
ology is able to balance the impact of design solutions on manufacturing carbon emissions
and product remanufacturability, greatly reducing carbon emissions and increasing the
utilization of used products, making green design more comprehensive. The following are
some findings coming from this study:

(1) An intelligent design framework for remanufacturing is constructed, which includes
the construction of a mapping model between design parameters and carbon emis-
sions and product remanufacturability. The design optimization model and solution
method are also constructed, and the theoretical method for adaptive adjustment of
design solutions is proposed.

(2) Design matrix and sensitivity analysis were used to construct mathematical models
of remanufacturability and carbon emissions in relation to design parameters.

(3) The DfRem optimization model was constructed and intelligently solved with the
ATLBO algorithm; the optimized design parameters can greatly reduce the manu-
facturing carbon emissions and improve mold cavity surface wear resistance and
cooling effects.

For future work, there is a need to develop an intelligent method that can quickly
simulate the optimized design scheme and verify its feasibility. Digital twin technology can
truly portray the manufacturing and remanufacturing process of the products and make
real-time corrections to design parameters based on manufacturing and remanufacturing
process data, which helps designers optimize DfRem schemes more intuitively and quickly.
Meanwhile, sensitivity analysis needs to be added to reflect the dynamic conditions af-
fecting the results, and the method is only for the low-carbon design of products with
remanufacturability demand, there is a need to establish a low-carbon design method for
multiple types of demand; these will be studied in the future.
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