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Abstract: The safety and stability of a wind turbine is determined by the health condition of its
gearbox. The temperature variation, compared with other characteristics of the gearbox, can directly
and sensitively reflect its health conditions. However, the existing deep learning models (including
the single model and the hybrid model) have their limitations in dealing with nonlinear and complex
temperature data, making it challenging to achieve high-precision prediction results. In order to
tackle this issue, this paper introduces a novel two-phase deep learning network for predicting the
temperature of wind turbine gearboxes. In the first phase, a one-dimensional convolutional neural
network (1DCNN) and a bidirectional long short-term memory (BiLSTM) network are separately
trained using the same dataset. The two pre-trained networks are combined and fine-tuned to
form the 1DCNN-BiLSTM model for the accurate prediction of gearbox temperatures in the second
phase. The proposed model was trained and validated by measured datasets from gearboxes from an
existing wind farm. The effectiveness of the model presented was showcased through a comparative
analysis with five traditional models, and the result has clearly shown that the proposed model has a
great improvement in its prediction accuracy.

Keywords: temperature prediction; wind turbine gearbox; one-dimensional convolutional neural
network; bidirectional long short-term memory network

1. Introduction

With the further intensification of global warming, clean energy has experienced
exponential growth for low-carbon development [1–3]. The rapid growth of the wind
power sector poses maintenance challenges for critical components of wind turbines such
as the gearbox, blade, and brake rotors [4,5]. Among them, the gearbox, as the fault-prone
component, determines the stable operation of the wind turbine [6,7]. Once the wind tur-
bine’s gearbox breaks down, a huge economic loss will happen [5,8]. Thus, monitoring the
operational condition of the gearbox is crucial for enhancing the wind turbine’s reliability
and safety. In the actual application, the temperature variation is a suitable index reflecting
the health condition of the wind turbine gearbox [9]. For example, operating under an
environment with a high temperature for a long time will directly lead to the degradation
of the viscosity of lubricating oil and increase the friction of the gear mesh [10,11]. As
a result, the temperature will continue to rise, which will result in a vicious cycle, even-
tually causing damage to the gearbox. Therefore, it is essential to monitor and predict
the operation temperature of the wind turbine gearbox [12]. Although some temperature
prediction methods have already been applied in actual applications, the prediction ac-
curacy of the results is not satisfying and can hardly extract the characteristics from the
complex nonlinear signals. Therefore, this paper introduces an innovative deep learning
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network to address the aforementioned challenge. The proposed model outperforms the
five classical comparison models in terms of prediction accuracy, meeting the demands for
high prediction accuracy in actual engineering applications.

In recent decades, a variety of temperature prediction methods have been proposed
and can be categorized into two groups, namely, the traditional mathematical model-based
methods and deep learning-based methods [13,14]. Traditional approaches have signifi-
cantly contributed to the advancement of temperature forecasting. For example, Li and
coworkers [15] introduced a data processing technique that involves outlier identification,
missing value imputation, and random error reduction. This method was employed to
enhance the accuracy of temperature prediction in large-scale concrete applications. To
handle locally stationary time series data, Das and coworkers [16] proposed a model-free
temperature prediction method. In the literature, One-step-ahead point prediction models
and prediction intervals were developed with the aim of improving prediction accuracy
compared to the widely utilized RAMPFIT algorithm in the context of locally stationary
long time series data. To deal with predictions of the thermal characteristics of CPU, Wang
and coworkers have presented an enhanced linear regression method [17]. In the proposed
method, the conventional linear regression model was enhanced by incorporating the
correlation between time series data and the model’s autocorrelation. Although these
methods have achieved great success at temperature prediction, disadvantages still limit
their further application. Basically, these methods were developed mainly based on prior
knowledge and expert experience. Therefore, it is challenging to precisely characterize
nonlinear data, such as temperature data, and extract deep abstract features 18.

On the contrary, machine learning-based methods can automatically mine the features
of the data in a proper manner when dealing with nonlinear data [18,19]. Typical machine
learning methods include convolutional neural networks (CNN), recurrent neural networks
(RNN), long short-term memory (LSTM) networks, and so on [20]. Among these networks,
LSTM is designed with a specific focus on addressing prediction challenges within time
series data. The three-gate structure can handle the time series data well and efficiently
avoid gradient disappearance and gradient explosion [21]. Considering temporal–spatial
correlation in traffic systems, Zhao and coworkers [22] developed an LSTM-based traffic
forecasting method for short-term traffic prediction. Vlachas and coworkers have intro-
duced a data-driven forecasting method based on LSTM for high-dimensional chaotic
systems [23]; the results indicated that the LSTM neural network is effective in nonlinear
data processing. Jia and coworkers [24] developed an LSTM model for the long-term and
seasonal temperature prediction of the sea, considering the impact of the input length. The
experimental results indicate that selecting an appropriate input length can enhance the
performance of the model.

Despite the advantages of the LSTM model over the classical CNN and RNN models in
processing time series data, it falls short in its ability to extract periodic features, potentially
impacting the prediction accuracy. To overcome this problem, the bidirectional long short-
term memory (BiLSTM) network is proposed. The BiLSTM model has the advantage
in nonlinear temporal signal processing with its bidirectional structure, combining the
forward sequences and the reverse sequences of LSTM; thus, it can capture more valuable
features from both the forward direction and the reverse direction. Therefore, the prediction
accuracy can be significantly improved. Wu and coworkers [25] proposed a tool wear
prediction model based on the BiLSTM model. Based on the dataset processed by singular
value decomposition (SVD), the BiLSTM neural network can extract the periodic features
of SVD features and achieve a higher prediction accuracy than the comparison models. In
actual application, the performance of the BiLSTM model is closely tied to the expertise
of professionals in the segmentation of time series data. Thus, Jiang and coworkers [26]
proposed a method combining the elitist preservation genetic algorithm (EGA) with the
BiLSTM model to predict battery temperature. The EGA method is employed to derive an
optimized data segmentation strategy, thus enabling the BiLSTM neural network to achieve
enhanced prediction accuracy. Farah and coworkers [27] utilized BiLSTM for time series
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prediction, specifically focusing on confirmed cases, deaths, and recoveries in ten major
countries affected by COVID-19. The result confirms that the BiLSTM neural network can
achieve robustness and higher prediction accuracy.

Although the BiLSTM model has been successfully applied in many areas, the dis-
advantages of a single deep learning network are gradually becoming apparent. As the
collected temperature data are nonlinear and complex with multiple features (e.g., tem-
poral features, periodic features), it is challenging for a single model to fully capture all
the features within the data. Thus, the hybrid model is often used in actual applications,
since it successfully preserves the strengths of each model and attains improved prediction
accuracy [28]. Xiao and coworkers [29] proposed a hybrid model that combines the LSTM
neural network with an attention mechanism to handle the time series data to extract
more important features from the historical data. The experimental results illustrate that
the suggested hybrid model outperforms individual models in terms of robustness and
prediction accuracy. Chen and his coworkers [30] developed a multi-scale CNN and LSTM
model for fault diagnosis; this model has shown higher classification accuracy than some
traditional intelligent algorithms, particularly in noisy environments. To process the nonlin-
ear data of the concentration of PM2.5, a CNN-LSTM hybrid model is proposed by Li and
coworkers [31]. The hybrid model retains the advantages of CNN and LSTM to achieve a
higher prediction accuracy than the single models. Qiao and coworkers [32] proposed a
hybrid model combining the wavelet transform (WT), LSTM, and a stacked autoencoder
(SAE) to predict the electricity of America; the hybrid model can achieve higher robustness.

In this paper, a pre-trained 1DCNN-BiLSTM hybrid network is developed for the
temperature prediction of the wind turbine gearboxes. In the proposed network, the
hybrid model merges the 1DCNN’s ability to process sequential signals and extract spatial
features with the BiLSTM network’s capability to extract periodic features. This allows
the spatial and periodic features to be well extracted from the actual temperature datasets
measured from the target wind turbine gearbox. Moreover, with the pre-training method,
the parameters of the model are not randomly initialized, so the problem of local minima
can be basically prevented, thus significantly improving the accuracy of the prediction
result. In the proposed method, a 1DCNN and a BiLSTM network are pre-trained by the
pre-training dataset. Then, the pre-training-based 1DCNN-BiLSTM model is constructed
by the above two pre-trained networks. Finally, the wind turbine gearbox dataset is fed
into the pre-trained hybrid model for model fine-tuning. To assess the effectiveness of
the proposed model, a set of experiments is devised using three temperature datasets;
the results indicate that the proposed model leads to improved prediction accuracy and
enhanced robustness. The contributions of this paper are summarized as follows:

1. A novel hybrid 1DCNN-BiLSTM model is designed in this paper. Thus, the most
important spatial and periodic features contained in the temperature data can be
completely extracted by the hybrid model; thus, higher prediction accuracy can
be achieved.

2. The pre-training method is creatively introduced into the model training. As a result,
it is not necessary to randomly initialize the parameters of the hybrid model. This
effectively prevents the training process from being trapped by local minima and
significantly improves the prediction accuracy of the trained network.

3. Several experiments are conducted to evaluate the effectiveness of the proposed
model by the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)
dataset and the real wind turbine temperature dataset. Evidently, the proposed model
outperforms certain classical models for temperature prediction.

The remains of this article are organized as follows. In Section 2, the basic theory
of the proposed model is presented. In Section 3, the implementation of the proposed
method is reported in detail. In Section 4, several experiments are conducted to evaluate
the performance of the proposed model. Finally, the conclusion is given in Section 5.
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2. Theoretical Background
2.1. One-Dimensional Convolutional Neural Network
2.1.1. Traditional Convolutional Neural Network (CNN)

The structure of a traditional CNN is shown in Figure 1. A CNN is a feedforward
neural network that incorporates convolutional layers, pooling layers, and fully connected
layers. Through the convolutional layers and pooling layers, it captures the inherent
features within the data and subsequently conducts feature classification by the fully
connected layers [33]. The weight sharing and local connection characteristics of a CNN
can reduce the connection between network layers, and there is also the possibility of
overfitting [34].
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As shown in Figure 1, a 32 × 32 matrix is the input to a CNN for feature classification.
In the first convolutional layer, the size of the convolution kernel is 5 × 5, the number
of channels is 4, and the step size is 1. Being convolved through the sliding window
method, the input matrix can be mapped into a 4 × 28 × 28 feature map. In the subsequent
pooling layer, the pooling kernel size is 2 × 2, and the step size is 1. Only the maximum
value in each set of pooling operations is preserved for sampling; thus, the feature map is
converted into 4 × 14 × 14. The following convolutional layer and pooling layer are the
same as the aforementioned layers. Finally, the feature classification will be realized by
fully connected layers.

2.1.2. The One-Dimensional Convolutional Neural Network

The primary application of a traditional CNN is in the recognition of two-dimensional
(2D) images, so the input is a 2D matrix. When dealing with one-dimensional (1D) time-
domain signals, various transformation methods are available for converting a 1D vector
to a 2D matrix. No matter which transformation method is used, the correlations among
the input data points will be altered. Thus, the accuracy of the prediction results may be
seriously affected. Thus, the one-dimensional convolutional neural network (1DCNN) is
developed to handle the 1D time-domain signals for retaining the correlation among data
points and so as to ensure the features in the input data can be completely extracted [35].

Like the traditional CNN, the 1DCNN consists of an input layer, convolutional layers,
pooling layers, fully connected layers, and an output layer. The input of the 1DCNN is 1D
vectors, while the output is usually 1D feature vectors [36].

In the 1DCNN, the convolutional layer is the most important component among
the five kinds of layers. The developed convolution kernel is designed to handle a 1D
input, so the features can be completely extracted and preserved. The formula of the 1D
convolutional layer is described as follows [36]:

zl
i = σ

(
bl

i + ∑
j

zl−1
j ×wl

ij

)
(1)
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where zl
i stands for the ith features in the lth layer; zl−1

j is the jth feature in the (l − 1)th

layer; wl
ij represents the weights of the convolutional kernel connected to the jth feature in

the lth layer; and bl
i is the bias value of this feature. In this network, ReLU is employed as

the activation function, and it can be expressed as follows:

σ(x) = max(0, x) (2)

Similar to other traditional CNNs, the inclusion of the pooling layer simplifies cal-
culations by reducing the network’s complexity. The commonly used pooling layer is
max pooling or mean pooling. The proposed model employs max pooling, which can be
described as follows:

zl
i = max

∀p∈Ωi
zl−1

p (3)

where Ωi stands for the pooling region with index i.
The extracted features are nonlinearly combined and fed into the fully connected

layer to achieve feature classification and learning. In the CNN, the fully connected layer
plays a crucial role in efficiently amalgamating the localized information extracted by the
aforementioned two layers. The ReLU function is utilized for activating neurons in this
layer to improve the performance of the fully connected layer [37].

The model structure of the adopted 1DCNN model, which is employed to extract the
spatial features of temperature data, is shown in Figure 2. Features contained in the data
will be extracted by the convolutional layer and pooling layer, alternatively. Subsequently,
the feature vector, comprising the extracted features, is transmitted to the fully connected
layer for regression analysis.
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2.2. The Bi-Direction Long Short-Term Memory Network

To process time series data, the RNN model endows the network with memory ability.
The output of the network can memorize information from the previous layer, so the
outputs of the previous layer and the current layer are combined to form a feature vector
to preserve more valuable features to improve prediction accuracy. However, the issues
related to gradient disappearance and gradient explosion significantly affect the prediction
accuracy and ultimately constrain the actual applicability.

LSTM stands out as a distinct category within the realm of RNNs; it is capable of
effectively handling long-term dependencies in data while averting concerns related to
gradient vanishing and explosion, which are common in standard RNN models. Three new
gate structures (including the input gate, output gate, and forgetting gate) are designed in
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the LSTM deep learning network to preserve and regulate the information flow throughout
the time series data. The neural network can decide which information is useful in the
long-term and short-term and, therefore, makes it suitable for processing long time series
data [38]. The structure of the LSTM neural network is shown in Figure 3.
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The input gate it, forgetting gate ft, and output gate ot can be described as follows [39]:

it = sigmoid
(

w f ·[ht−1, xt] + b f

)
(4)

ft = sigmoid(wt·[ht−1, xt] + bi) (5)

ot = sigmoid(wo·[ht−1, xt] + bo) (6)

where ht−1 is the output information of the previous hidden layer, xt is the input informa-
tion of the current layer, ht is the output information of the current layer, w is the weight of
the reset gate, and b is the bias value.

The mathematical formulas of the activation functions are as follows:

sigmoid(x) =
1

1 + e−x (7)

tan h(x) =
ex − e−x

ex + e−x (8)

The output results of the long-term memory ct and the short-term memory ht are
described as follows [39]:

ct = ft ⊗ ct−1 ⊕ it ⊗ tan h(wc · [ht−1, xt] + bc) (9)

ht = ot ⊗ tan h(ct) (10)

where ⊗ is the multiplication of elements and ⊕ is the addition of elements.
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The inability to extract periodic features limits the capacity of the LSTM model to
capture periodic patterns within time series data. To address the previously mentioned
issue, a developed LSTM model is introduced [40]. The overall structure of the BiLSTM
model is shown in Figure 4. Based on the LSTM model, the BiLSTM model merges a
forward LSTM with a reverse LSTM, facilitating the extraction of features from both the
forward and reverse directions; thus, the periodic features can be obtained from the training
data. Like the LSTM model, the BiLSTM model also contains a three-gate structure [41].
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2.3. The Basic Theory of Pre-Training

The presence of local minima poses a significant challenge during model training
because the model parameters are initially randomized in the conventional training process.
This will substantially impair the prediction accuracy of the network. In addressing this
issue, a pre-training method is introduced to fine-tune the model parameters, ultimately
enhancing the precision of the prediction result.

The essence of the pre-training method is that the model parameters are not randomly
initialized. The model training process is divided into two parts: commonality learning
and feature learning [42,43]. The model is first pre-trained with pre-training data, enabling
the model to obtain the initial parameters. Then, the parameters will be fine-tuned to
enhance prediction accuracy in the subsequent temperature forecasting. The characteristics
of commonality learning and feature learning significantly enhance the model’s scalability.
At present, model pre-training has been employed in a variety of machine learning projects,
such as image classification and sentence relationship judgment.

The pre-training method is employed in the proposed model. That is, the 1DCNN
model and the BiLSTM model are firstly pre-trained to obtain a set of initial model pa-
rameters. Then, the two pre-trained models are combined to form the hybrid model with
the initial parameters being retained. Compared to the 1DCNN-BiLSTM model without
pre-training, it is clear that the model pre-training is helpful to improve the prediction
accuracy [42,44].

3. The Proposed Pre-trained 1DCNN-BiLSTM Model
3.1. Overview of the Proposed Hybrid Model

This paper presents an innovative pre-trained 1DCNN-BiLSTM network designed for
temperature prediction. The hybrid model is created by integrating a pre-trained 1DCNN
model with a pre-trained BiLSTM neural network. The pre-training phase yields a set of
initial model parameters, mitigating the risk of encountering local minima. Subsequently,
temperature data are input into the pre-training-based hybrid model for both model training
and regression analysis. The overall architecture of the proposed model is depicted in
Figure 5. The 1DCNN and BiLSTM models undergo initial pre-training using a temperature
dataset to acquire the initial parameters. Following this, the relevant convolutional layers,
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pooling layers, and bidirectional long short-term layers are extracted to formulate the pre-
trained models. Finally, the pre-trained model undergoes fine-tuning using an experimental
dataset. The process of temperature prediction and the detailed procedures are further
elaborated in the subsequent subsections.
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3.2. Data Collection and Processing

In this section, three experiments are performed based on three datasets. The first one is
the turbine engine dataset published by the National Aeronautics and Space Administration
(NASA) in 2020 [45]. The data are the simulated data of the turbofan aircraft engine obtained
by the C-MPASS platform. It is one of the most widely used datasets for RUL predictive
studies. The dataset consists of four sub-datasets and each of them contains several kinds of
data collected from 100 engines; the temperature dataset was used to assess the performance
of the proposed model.

Another two datasets contain temperature data collected from an actual wind turbine
gearbox in an existing wind farm, and the measurement duration is two minutes. Two
comparative experiments have been structured to assess the effectiveness of the proposed
model using the provided datasets. The location and actual view of the wind farm are
shown in Figure 6.
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The preprocessing methods employed for the data include data normalization and
data slicing. Initial temperature data are normalized firstly to avoid the occurrence of the
problem that large numbers cover up small numbers when the difference in values is too
large. Meanwhile, since the gradient descent will be used for the model optimization, data
normalization can avoid the appearance of a poor solution path. The min-max normaliza-
tion was employed for data processing. Taking the wind turbine gearbox temperature data
normalization as an example, the normalized data are shown in Figure 7. The temperature
data were normalized to a range of [0, 1].
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After the data normalization, the dataset should be partitioned into training and test
sets with an 8:2 split ratio. For a dataset with N data points, the data slicing process will
generate m training-label data pairs. The process starts as follows:

1. The first n data points are selected as a training sample and the next data point as
the label for this training sample. The value of n can be selected according to the
complexity of the input data.

2. Then, the first data point in the dataset is removed.
3. The next data pair is generated by repeating steps one and two until the number of

data points is less than or equal to n.

Eventually, m training-label data pairs can be formed for model training. An example
of data slicing with n = 5 is shown in Figure 8.
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3.3. The Components of the Hybrid Model

The proposed model utilizes the 1DCNN model as the initial step to process the data
and extract spatial features. In the 1DCNN model, two convolutional layers with a kernel
number of 32 and two pooling layers with a pooling size of two are stacked, alternatively.
Both the convolutional layers and max pooling layers utilized a stride size of one. The
detailed parameters of the 1DCNN model are shown in Table 1. The BiLSTM model is
mainly employed to extract the periodic features that are contained in the temperature data.
The detailed parameters of the BiLSTM model are shown in Table 2.

The BiLSTM model is mainly employed to extract the periodic features that are
contained in the temperature data. The detailed parameters of the BiLSTM model are
shown in Table 2. The two models are the components of the proposed hybrid model, and
both of them are pre-trained before being combined into a hybrid model.
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Table 1. The parameters of the 1DCNN model.

The Definition of Layers The Parameters of Layers

Input layer Input size: (1, 5)
Convolutional layer 1 Channel number: 32, nuclear size: 1

Pooling layer 1 Nuclear size: 2, step size: 2
Convolutional layer 2 Channel number: 32, nuclear size: 1

Pooling layer 2 Nuclear size: 2, step size: 2
Activation layer 1 Activation function: ReLU

Flatten layer One-dimension feature vector
Output layer Output size: 1

Table 2. The parameters of BiLSTM.

The Definition of Layers The Parameters of Each Layer

Input layer Input size: (1, 16)
BiLSTM layer Channel number: 64, activation function: ReLU
Output layer Output size: 1

3.4. Building the Hybrid Model

To leverage the advantages of the 1DCNN and BiLSTM models, the hybrid model
is constructed by combining the two pre-trained networks. The parameters of each layer
have already been adjusted after pre-training and the initial parameters will be retained in
the hybrid model. In the target problem, the parameters of the pre-training-based hybrid
model will be fine-tuned to achieve the optimal configuration. The detailed parameters of
the 1DCNN-BiLSTM model are shown in Table 3.

Table 3. The parameters of the pre-trained 1DCNN-BiLSTM model.

The Definition of Layers The Parameters of Each Layer

Input layer Input size: (1, 5)
Convolutional layer 1 Channel number: 32, nuclear size: 1

Pooling layer 1 Nuclear size: 2, step size: 2
Convolutional layer 2 Channel number: 32, nuclear size: 1

Pooling layer 2 Nuclear size: 2, step size: 2
Activation layer 1 Activation function: ReLU

BiLSTM layer Channel number: 64, activation function: ReLU
Output layer Output size: 1

4. Case studies of Temperature Prediction

The proposed model is evaluated using the C-MAPSS public dataset and two measured
temperature datasets.

4.1. Case 1: Experiments Using the C-MAPSS Dataset

The C-MAPSS dataset contains simulated data generated from 100 turbine engines.
The blade temperature data of turbine engine 81 are employed for model validation. For
comparison purposes, five different models are considered in this study:

• M0: proposed pre-trained 1DCNN-BiLSTM model,
• M1: CNN model,
• M2: RNN model,
• M3: CNN-LSTM model,
• M4: 1DCNN-BiLSTM model without pre-training, and
• M5: residual shrink neural network.

These six models are used to predict the temperature of a turbine engine. M1 is a
1DCNN model with the same parameters as the 1DCNN model in M0. M4 is an ordinary



Processes 2023, 11, 3324 12 of 23

1DCNN-BiLSTM hybrid neural network without pre-training. M5 is a residual shrink
neural network proposed by Zhao and coworkers [46] in 2020. This model employs a
soft-threshold denoising technique, endowing it with robust noise-resistance capabilities.
Figure 9 shows the comparison of the predicted and actual values of the engine blade
temperature and its error for M0 to M5.
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As shown in Figure 9, it is clear that the proposed model (M0) can predict the trend
of temperature change well. The prediction accuracies of all six models are similar, while
the maximum prediction error of M0 is significantly smaller than that of the other five
methods. To further evaluate the performance of different models, the root mean square
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error (RMSE) and the mean absolute error (MAE) of the prediction results are employed.
Their mathematical formulations are as follows [25]:

RMSE =

√√√√ 1
N

N

∑
i=1

(
X̂i − Xi)2 (11)

MAE =
1
N

N

∑
i=1

∣∣X̂i − Xi
∣∣ (12)

where X̂i and Xi are the tth predicted value and the actual value, and N is the number of
predicted values. The indicators corresponding to the five models are shown in Table 4.

Table 4. The comparison of performance among the five models.

Model RMSE MAE

M0 22.61107 17.46969
M1 27.59789 22.37025
M2 26.48077 21.16881
M3 30.95766 22.54774
M4 26.64763 20.69926
M5 23.58911 18.61125

Table 4 presents the prediction error values obtained by the six models. The overall
prediction performance of the proposed model surpasses that of the CNN, indicating that
the hybrid model retains the advantages of the CNN and BiLSTM and achieves better
performance than a single model. When comparing M0 to M4, the prediction error is signif-
icantly reduced by the pre-training process, and it can be concluded that the pre-training
method can help neural networks select a better optimization path to obtain the optimal
parameters, therefore significantly improving the performance of temperature prediction.
When comparing M0 to M5, it can be concluded that the proposed model can achieve a
more stable prediction result. The maximum error is clearly lower than M5, showing the
strong feature extraction and noise-resistance capabilities of the proposed model.

4.2. Experiments Using Measured Dataset from Hejiashan Wind Farm
4.2.1. Case 2a: Wind Turbine Gearbox Temperature

In this part, measured gearbox temperature data collected from an existing wind
turbine are utilized to validate the practicality and reliability of the proposed model. The
same validation approach is used to verify the validity of the model based on a real
temperature dataset.

Figure 10 shows the comparison of the predicted temperature obtained by the pro-
posed model (M0), CNN model (M1), RNN model (M2), CNN-LSTM model (M3), 1DCNN-
BiLSTM model without pre-training (M4), and residual shrink neural network (M5). Fig-
ure 11 shows the training data, predicted data, and prediction error, representing the
variance between the predicted and actual temperatures, across the five models.

It is clear from Figure 10 that all six models can predict the trend of temperature
changes. However, the values of the predicted temperature are different. It can be seen from
Figure 11 that temperatures predicted by the proposed model have the lowest prediction
error (i.e., the highest accuracy) among all models considered in this study. The maximum
error appears at the time when the temperature changes sharply. It is the most important
time point to which more attention needs to be paid in actual temperature monitoring.
Detailed information has been acquired from the prediction error curves, and the maximum
error value of the proposed model exhibits a smaller maximum error value compared to
other models. The error values are less than 2 ◦C.
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In the experiment, although all six models can predict the temperature of the gearbox,
the prediction errors of M1 (CNN model) and M2 (RNN model) are higher than 3 ◦C on
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average, and the maximum error is about 6 ◦C. It can be concluded that the ability of a
single model to handle complex signals is weaker than hybrid models. M1 can hardly
extract the temporal feature and the periodic feature contained in the temperature data, and
the RNN model (M2) can hardly process long time series signals. Therefore, the prediction
errors of these two single models are higher than the other hybrid models.

Even though the accuracies of M3 and M4 are higher than those of M1 and M2, the
prediction accuracy is terrible at the point where the temperature sharply changes. The
prediction errors are about 3 ◦C and 5 ◦C, but notably, M0 (the proposed model) achieves a
prediction error of less than 2 ◦C. The result in Case 2a underscores the effectiveness of the
pre-training method in enhancing the performance of the model.

When comparing M0 to M5, from Figure 11, it is evident that the predictive results of
M5 exhibit significant volatility, indicating that the predictive performance of this model is
inferior to the approach proposed in this paper.

In this experiment, RMSE, MAE, and the coefficient of determination R2 are employed
to evaluate the performance of the models. The mathematical formulation of the coefficient
of determination R2 is as follows [35]:

R2 = 1− ∑i
(
yi − fi)

2

∑i

(
yi − 1

n ∑n
i=1 yi)2

(13)

where fi is the predicted value of the model, and yi is the true value. The value range of
the R2 coefficient is [0, 1]. A higher value of R2 represents a better effect of the regression
model. The results of the five models are summarized in Table 5.

Table 5. The comparison of results among the five models in Case 2a.

Model RMSE MAE R2

M0 0.12252 0.07602 0.99959
M1 1.73922 1.59984 0.89635
M2 2.04201 1.85558 0.84766
M3 1.71908 1.45505 0.89737
M4 0.57687 0.52392 0.99061
M5 1.91532 1.55412 0.87133

Table 5 makes it evident that M0 (the proposed model) outperforms all other models
with significantly lower RMSE and MAE values, along with the highest R2 coefficient. The
prediction errors of M1 and M2 are higher than M3 and M4. The experimental results
indicate that the hybrid models enhance the feature extraction capability as well as the
prediction accuracy. Meanwhile, the MAE of M0 has an average of 589% reduction when
compared to M4 (the 1DCNN-BiLSTM model without pre-training). The three metrics
for M0 are superior to those of M5, indicating that the model’s adaptability is the highest
among the six models. The pre-training-based 1DCNN-BiLSTM model is more suitable for
actual wind turbine temperature prediction.

4.2.2. Case 2b: Wind Turbine Bearing Temperature

The bearing is a key component of a wind turbine gearbox, but it can be easily affected
by environmental factors. Abnormal bearing temperature will lead to the deterioration of
its function, resulting in a vicious cycle during operation. Furthermore, the deterioration of
bearing function may lead to gearbox damage.

Therefore, in this experiment (Case 2b), a measured bearing temperature dataset of a
wind turbine in an existing wind farm is utilized to assess the performance of the proposed
model. Similar to the previous experiment (Case 2a), M1 to M5 are utilized to demonstrate
the performance of the proposed model (M0) in temperature prediction. Figure 12 shows
the comparison of the temperatures predicted by the five models (i.e., M0 to M5). Figure 13
shows the training data, the predicted data, and the error of the predicted temperature.



Processes 2023, 11, 3324 18 of 23

Processes 2023, 11, x FOR PEER REVIEW 18 of 24 
 

 

The bearing is a key component of a wind turbine gearbox, but it can be easily af-
fected by environmental factors. Abnormal bearing temperature will lead to the deterio-
ration of its function, resulting in a vicious cycle during operation. Furthermore, the dete-
rioration of bearing function may lead to gearbox damage. 

Therefore, in this experiment (Case 2b), a measured bearing temperature dataset of a 
wind turbine in an existing wind farm is utilized to assess the performance of the pro-
posed model. Similar to the previous experiment (Case 2a), M1 to M5 are utilized to 
demonstrate the performance of the proposed model (M0) in temperature prediction. Fig-
ure 12 shows the comparison of the temperatures predicted by the five models (i.e., M0 to 
M5). Figure 13 shows the training data, the predicted data, and the error of the predicted 
temperature. 

 
Figure 12. The predicted temperature of the five models in Case 2b. 

 
(a) M0 

Figure 12. The predicted temperature of the five models in Case 2b.

Processes 2023, 11, x FOR PEER REVIEW 18 of 24 
 

 

The bearing is a key component of a wind turbine gearbox, but it can be easily af-
fected by environmental factors. Abnormal bearing temperature will lead to the deterio-
ration of its function, resulting in a vicious cycle during operation. Furthermore, the dete-
rioration of bearing function may lead to gearbox damage. 

Therefore, in this experiment (Case 2b), a measured bearing temperature dataset of a 
wind turbine in an existing wind farm is utilized to assess the performance of the pro-
posed model. Similar to the previous experiment (Case 2a), M1 to M5 are utilized to 
demonstrate the performance of the proposed model (M0) in temperature prediction. Fig-
ure 12 shows the comparison of the temperatures predicted by the five models (i.e., M0 to 
M5). Figure 13 shows the training data, the predicted data, and the error of the predicted 
temperature. 

 
Figure 12. The predicted temperature of the five models in Case 2b. 

 
(a) M0 

Processes 2023, 11, x FOR PEER REVIEW 19 of 24 
 

 

(b) M1 

(c) M2 

 
(d) M3 

 
(e) M4 

Figure 13. Cont.



Processes 2023, 11, 3324 19 of 23

Processes 2023, 11, x FOR PEER REVIEW 19 of 24 
 

 

(b) M1 

(c) M2 

 
(d) M3 

 
(e) M4 

Processes 2023, 11, x FOR PEER REVIEW 20 of 24 
 

 

 
(f) M5 

Figure 13. The comparison of the six models in Case 2b. 

The trend of the temperature changes predicted by the five models can be observed 
in Figure 12. The predicted trends of the temperature changes by all six models are similar 
while the values are different. It can be concluded that the performances of different mod-
els are different. 

From Figure 13, it is evident that M0 (the proposed model) exhibits a relatively low 
prediction error. Even though the highest prediction error is about 3 °C, the prediction 
error of M0 is lower than 1 °C in most of the considered time duration. The mean error 
and the highest error of M0 are obviously lower than those of the other five models. When 
the results from M0 are compared to those of M4, it can be concluded that the performance 
of the hybrid model is enhanced by the pre-training method. The analysis results in this 
case are consistent with Case 2a in that the proposed model can achieve a higher predic-
tion accuracy. Next, the results from M1 and M2 are discussed. The prediction errors of 
M1 and M2 are more than 3 °C, and the maximum error is over 6 °C. These results are 
consistent with those in Case 2a. When comparing M0 to M5, the maximum error of M5 
is obviously larger than that of M0, indicating that the stability of the proposed method is 
higher. 

Similar to Case 2a, the prediction accuracy is very low when the temperature sharply 
changes. Even though the prediction error of M0 is less than 2 °C, it can be concluded that 
the pre-training method can improve the performance of the model. 

Similarly, MAE, RMSE, and R2 are used to evaluate the performance of the five mod-
els. The analysis results are summarized in Table 6. 

Table 6. The comparison of results among the five models in Case 2b. 

Model RMSE MAE R2 
M0 0.29843 0.06297 0.99349 
M1 0.80648 0.62013 0.92599 
M2 0.91263 0.72302 0.89618 
M3 0.72388 0.51454 0.95233 
M4 0.43028 0.22917 0.98541 
M5 0.67138 0.57061 0.96228 

It can be concluded from Table 6 that the values of MAE and RMSE of M0 are on 
average 263~1048% and 44.2~205%, respectively, lower than those of other models. Mean-
while, the R2 coefficient also improved by using the proposed model in M0. 

  

Figure 13. The comparison of the six models in Case 2b.



Processes 2023, 11, 3324 20 of 23

The trend of the temperature changes predicted by the five models can be observed in
Figure 12. The predicted trends of the temperature changes by all six models are similar
while the values are different. It can be concluded that the performances of different models
are different.

From Figure 13, it is evident that M0 (the proposed model) exhibits a relatively low
prediction error. Even though the highest prediction error is about 3 ◦C, the prediction
error of M0 is lower than 1 ◦C in most of the considered time duration. The mean error and
the highest error of M0 are obviously lower than those of the other five models. When the
results from M0 are compared to those of M4, it can be concluded that the performance
of the hybrid model is enhanced by the pre-training method. The analysis results in this
case are consistent with Case 2a in that the proposed model can achieve a higher prediction
accuracy. Next, the results from M1 and M2 are discussed. The prediction errors of M1 and
M2 are more than 3 ◦C, and the maximum error is over 6 ◦C. These results are consistent
with those in Case 2a. When comparing M0 to M5, the maximum error of M5 is obviously
larger than that of M0, indicating that the stability of the proposed method is higher.

Similar to Case 2a, the prediction accuracy is very low when the temperature sharply
changes. Even though the prediction error of M0 is less than 2 ◦C, it can be concluded that
the pre-training method can improve the performance of the model.

Similarly, MAE, RMSE, and R2 are used to evaluate the performance of the five models.
The analysis results are summarized in Table 6.

Table 6. The comparison of results among the five models in Case 2b.

Model RMSE MAE R2

M0 0.29843 0.06297 0.99349
M1 0.80648 0.62013 0.92599
M2 0.91263 0.72302 0.89618
M3 0.72388 0.51454 0.95233
M4 0.43028 0.22917 0.98541
M5 0.67138 0.57061 0.96228

It can be concluded from Table 6 that the values of MAE and RMSE of M0 are on aver-
age 263~1048% and 44.2~205%, respectively, lower than those of other models. Meanwhile,
the R2 coefficient also improved by using the proposed model in M0.

5. Conclusions

In regression analysis, the problems based on deep learning, exemplified by the tem-
perature prediction, nonlinearity, and complexity inherent in the data, pose demanding
challenges to the feature extraction performance of the model. In order to enhance the fea-
ture extraction capability of models, scholars often resort to constructing residual networks
or hybrid networks. However, these models may encounter the issue of being trapped
in local minima during the training process. Simultaneously, as the depth of the model
increases, the associated problems of gradient vanishing or exploding also significantly
diminish the effectiveness of the model. Therefore, the objective of this study is to innova-
tively introduce a pre-training approach while enhancing the feature extraction capability,
aiming to circumvent the aforementioned issues.

In this paper, a pre-training-based 1DCNN-BiLSTM model is proposed for temperature
prediction of the wind turbine gearbox. The proposed model retains the advantages of the
1DCNN model and the BiLSTM model. Furthermore, the pre-training method, which can
pre-adjust the parameters of the model so that it is not necessary to randomly generate
initial model parameters, is innovatively employed in the hybrid model. After combining
the pre-trained 1DCNN model and the pre-trained BiLSTM model, the model parameters
are fine-tuned in the subsequent training. The incorporation of the hybrid model along
with the application of the pre-training method results in a remarkable enhancement in the
performance of temperature prediction.
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Then, three experiments were devised to assess the effectiveness of the proposed
model; by comparing the error curves and three key indicators, it can be observed that the
method proposed in this paper demonstrates superior performance in terms of both the
error upper limit and error fluctuation. Meanwhile, by comparing the proposed method
with the 1DCNN-BiLSTM model without pre-training, it is evident that the pre-training
method can significantly enhance the model’s performance. It demonstrated superior
accuracy in prediction compared to five other existing models, achieving the highest level
of prediction accuracy. Based on the experimental case studies, the following can be
concluded:

(a) The hybrid model retains the advantages of the two single models, and therefore, its
more useful features can be extracted by the hybrid model, improving its performance
at temperature prediction.

(b) The pre-training method can help the model to obtain a better optimization path to
obtain optimal parameters. Thus, the ability of the anti-interference of the model can
be improved.

(c) From the results of the experiments based on measured temperature data, the appro-
priateness of the proposed model in real applications is demonstrated.

Meanwhile, the research exhibits certain limitations that necessitate additional investi-
gation. The following aspects, in particular, warrant further research:

(a) The deep learning-based approach demonstrates strong generalization capabilities;
it is reasonable to do further research on its universality. Employing the proposed
method to predict the operational temperature of some other mechanical equipment,
such as cement production machinery, aerospace engines, and so on, is worthy of
further research.

(b) The predictive accuracy of the proposed model in Case 1 is observed to be lower than
in the other two cases. This is probably attributed to the insufficient data volume
and the high complexity of the dataset. Therefore, in subsequent research, further
refinement of the model’s structure and parameters can be performed. Additionally,
designing a dynamic loss function to capture dynamic biases could be considered,
eventually achieving higher prediction accuracy based on a small sample size dataset.
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