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Abstract: A combined approach of computational fluid dynamics, the discrete phase model, and the
wall erosion model was used to numerically investigate the hydrodynamics, separation efficiency, and
erosion rate in cyclone separators for s-CO2 solar power plants. Moreover, the results were compared
with those for air and CO2 as carrier phases. The experimental data from the literature were used to
validate the numerical model, and it was observed that the simulated gas velocities and wall erosion
rate accurately aligned with the experimental measurements. The numerical results reveal that s-CO2

had the largest tangential velocity compared to the other two media; its area-weighted axial velocity
of upward flow was the lowest in the middle part of the cyclone body, and varied considerably in the
bottom region of the conical section. The particles were all collected at the bottom surface of air and
CO2, but the separation efficiency of s-CO2 was 81.51%, due to the poor distribution of the vortex
and short circuit. Finally, the erosion rate distribution and averaged surface erosion rate were also
analyzed for the three carrier phases.

Keywords: solar tower power; cyclone separator; supercritical CO2; erosion rate; separation efficiency

1. Introduction

Solar power tower (SPT) plants convert solar thermal energy into electricity by using
concentrated solar radiation to heat the heat transfer fluid (HTF) in a solar receiver [1,2].
Thanks to the implementation of the thermal energy storage (TES) system, SPT plants are
able to store and utilize energy more efficiently [3,4]. Figure 1 sketches a configuration
of an SPT plant using supercritical CO2 (T > 31.1 ◦C and P > 7.38 MPa) as HTF [5]. The
properties of s-CO2 fall between those of gases and liquids, providing the benefits of high
diffusivity and low viscosity. As a result, it finds wide application in diverse industries
such as chemical engineering, energy, pharmaceuticals, and materials science. Here, the
s-CO2 produced under high-pressure and -temperature conditions is suitable as a superb
working fluid for supercritical CO2 Brayton cycles [6]. As illustrated in Figure 1, a TES tank
containing granular material is suggested for the purpose of storing surplus thermal energy
generated during peak sunlight hours and utilizing it when required in the future. The
TES tank is suggested to operate in a fluidized bed regime [7]. Throughout the processes
of charging and discharging, particles may be carried out of the tank and flow into the
turbine, due to the drag force exerted by the gas. As shown in Figure 2, stationary blades
can be eroded by high-pressure steam streamlines laden with particles [8]. Hence, cyclone
separators are incorporated into the s-CO2 circulation system to safeguard the turbine
against particle erosion.
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Figure 1. Sketch of solar power plant using supercritical CO2 as working fluid. 

 
Figure 2. Particle erosion of blades in a high-pressure turbine [8]. 

Cyclone separators are crucially important in a variety of industrial applications be-
cause of their uncomplicated geometries and cost-efficient manufacturing and operation. 
The impurities will be separated from fluids under the action of centrifugal force. For air 
cyclone separators, numerous experimental and numerical studies have been conducted 
on the effects of various geometric designs and operating conditions on flow behavior, 
separation efficiency, and erosion rates [9–12]. For CO2 cyclone separators, Yamasaki et al. 
[13] proposed a novel CO2 dry-ice cyclone separator to separate solid-gas CO2, where the 
working condition is below 0.518 MPa and −56.6 ℃. Li et al. [14] used a mixture of super-
critical water and s-CO2 as the working medium and found that a significant increase in 
the pressure drop would occur with the rise in the content of s-CO2 at the inlet. Tang et al. 
[15] improved the axial-flow cyclone to realize the separation of gas–liquid phases of su-
percritical CO2 and water. It can be found that very few attempts have been focused on 
cyclone separators using pure s-CO2 as the carrier phase, and it remains unclear how tra-
ditional air cyclone separators’ structure and operating parameters would perform when 
applied to s-CO2. 

Due to the high-pressure conditions of s-CO2, the CFD-DPM method is a highly im-
portant numerical technique used to predict the behavior of particles and flow fields 
within a cyclone. For instance, Li and Lu [16] applied this method to design supercritical 
water cyclones with different circular inlets at a pressure of 23 MPa. Li et al. [17] utilized 
CFD-DPM simulations to enhance the design of the axial-flow cyclone for separating wa-
ter droplets from natural gas at pressures between 7.21 MPa and 7.80 MPa. In the present 
work, the performance of cyclones with different carrier phases was investigated using 
the Eulerian–Lagrangian two-phase method. Experimental data available in the literature 
were used to validate the numerical model. The hydrodynamics, separation efficiency, 
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Cyclone separators are crucially important in a variety of industrial applications
because of their uncomplicated geometries and cost-efficient manufacturing and operation.
The impurities will be separated from fluids under the action of centrifugal force. For air
cyclone separators, numerous experimental and numerical studies have been conducted
on the effects of various geometric designs and operating conditions on flow behavior,
separation efficiency, and erosion rates [9–12]. For CO2 cyclone separators, Yamasaki
et al. [13] proposed a novel CO2 dry-ice cyclone separator to separate solid-gas CO2, where
the working condition is below 0.518 MPa and −56.6 °C. Li et al. [14] used a mixture of
supercritical water and s-CO2 as the working medium and found that a significant increase
in the pressure drop would occur with the rise in the content of s-CO2 at the inlet. Tang
et al. [15] improved the axial-flow cyclone to realize the separation of gas–liquid phases
of supercritical CO2 and water. It can be found that very few attempts have been focused
on cyclone separators using pure s-CO2 as the carrier phase, and it remains unclear how
traditional air cyclone separators’ structure and operating parameters would perform when
applied to s-CO2.

Due to the high-pressure conditions of s-CO2, the CFD-DPM method is a highly
important numerical technique used to predict the behavior of particles and flow fields
within a cyclone. For instance, Li and Lu [16] applied this method to design supercritical
water cyclones with different circular inlets at a pressure of 23 MPa. Li et al. [17] utilized
CFD-DPM simulations to enhance the design of the axial-flow cyclone for separating water
droplets from natural gas at pressures between 7.21 MPa and 7.80 MPa. In the present
work, the performance of cyclones with different carrier phases was investigated using the
Eulerian–Lagrangian two-phase method. Experimental data available in the literature were
used to validate the numerical model. The hydrodynamics, separation efficiency, and wall
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erosion rate when using air and (supercritical) CO2 as carrier phases were compared. The
objective is to explore the performance of traditional air cyclone-separator dimensions and
operating conditions in s-CO2 and provide suggestions for optimization.

2. Numerical Model Description
2.1. Governing Equations of Continuous Phases

The continuous phases are determined by solving the three-dimensional Reynolds-
averaged Navier–Stokes equation. The continuity and momentum equations are provided
as:

∂ρ

∂t
+∇ · (ρu) = 0 (1)

∂

∂t
(ρu) +∇ · (ρuu) = −∇p +∇ · (τ) + ρg + Sp (2)

In Equations (1) and (2), the variable u represents gas velocity and ρ represents the
density of the gas phase. The acceleration caused by gravity is denoted as g. p and τ are
the static pressure and stress tensor of carrier phases, respectively [18]. Sp stands for the
interaction of particles on fluids.

The Reynolds Stress Model (RSM), a widely utilized model for simulating gas cyclone
separators, is employed to address turbulent flow. The transport equation of the Reynolds
stress term can be written as:

∂
∂t

(
ρu′iu

′
j

)
+ ∂

∂xk

(
ρuku′iu

′
j

)
= − ∂

∂xk
[ µt

σk

∂u′iu
′
j

∂xk
] + ∂

∂xk
[µ ∂

∂xk
(u′iu

′
j)]

− µt
ρPrt

(gi
∂ρ
∂xj

+ gj
∂ρ
∂xi

) + p′( ∂u′i
∂xj

+
∂u′j
∂xi

)− 2
3 δij(ρε + YM)

(3)

where subscripts i, j, and k are coordinates. On the right side of Equation (3), five terms
refer to turbulent diffusion (DT,ij), molecular diffusion (DL,ij), buoyancy production (Gij),
pressure strain (Φij), and dissipation (εij), respectively. Φij is modeled using the linear
pressure–strain model [19].

2.2. Dispersed-Phase Equations

Solids are tracked in the Lagrangian framework, whereby their motion is calculated
using Newton’s second law. The expression for the linear momentum of a particle is
given by:

dup

dt
=

18µ

ρpd2
p

CDRep

24
(u− up) +

ρp − ρ

ρp
g +

ρ

ρp
up∇u (4)

where up represents the velocity of the discrete phase and ρp refers to the particle density.
µ stands for the molecular viscosity of the continuous phases, and dp denotes the particle
diameter. The particle acceleration (force per unit particle mass) is acted upon by three
forces on the right side of Equation (4): drag, buoyancy, and pressure gradient. Moreover,
the drag coefficient is represented by CD:

CD = a1 +
a2

Rep
+

a3

Rep
(5)

The constant coefficients of smooth spherical particles, namely a1, a2, and a3, are
determined by the Reynolds number [20]. Rep is given by:

Rep =
ρdp
∣∣up − u

∣∣
µ

(6)

The turbulence might influence the dispersion of particles. Therefore, a particle–eddy
interaction model [21] was employed to illustrate how the turbulent velocity fluctuations
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at that moment affect the trajectory of particles. It is assumed that the turbulent pulsation
velocity conforms to a Gaussian probability distribution and can be represented as:

u′ = ζ

√
u′2 (7)

In Equation (7), ζ represents a normally distributed random number. u′ stands for the
fluctuation velocity.

2.3. Erosion Modeling

Erosion on the wall surface results from particle impacts, and depends on particle
velocities and angles. In the present work, an erosion model [22], which adopts Finnie’s [23]
formulation, was used to describe discrete particles abrading the cyclone surface. As
illustrated in Equations (8) and (9), ER represents the erosion rate, n denotes the power-law
exponent of the particle impact velocity, and K stands for the scaling parameter. The
expression of Chen et al. [24] was used to describe the incidence-angle effect on surface
erosion. The values for K, n, and other parameters are listed in Table 1.

ER = Kun
p f (θ) (8)

f (θ) =

{
Bθ2 + Cθ2 for θ ≤ 23◦

X cos2 θ sin(Wθ) + Y sin2 θ + Z for θ > 23◦
(9)

Table 1. Erosion model empirical constants [22].

Parameter Value

B −7
C 5.45
X 0.4
Y −0.9
Z 1.556056
W −3.4
n 2.2
K 1.44 × 10−8

2.4. Computational Geometry

The geometric model of the cyclone separator is demonstrated in Figure 3a, with
specific dimensions provided in Table 2. The center of the top cover served as the reference
point for the coordinates, and the direction of gravity was oriented along the negative
y-axis. GAMBIT 2.4.6 software, developed by ANSYS Inc. in Canonsburg, PA, USA, was
used to generate structured hexahedron grids for the computational domain of the cyclone
separator (see Figure 3b). The grid independence verification is discussed in Section 2.6.

Table 2. Structural parameters of cyclone separator.

Parameter Value Parameter Value

D (mm) 290 Dc/D 0.37
a/D 0.5 H/D 4.0
b/D 0.2 he/D 0.5

De/D 0.5 hc/D 2.5
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2.5. Boundary Conditions and Numerical Schemes

The physical properties of air, CO2, and s-CO2 are listed in Table 3. Their densities are
calculated using the incompressible ideal gas law, provided as:

ρ = p/(
R

Mw
T) (10)

Table 3. Parameters used in the simulations.

Media Density
(kg/m3)

Viscosity
(Pa·s)

Temperature
(K)

Pressure
(MPa)

air Ideal gas law 1.82 × 10−5 293 0.1
CO2 Ideal gas law 1.47 × 10−5 293 0.1

s-CO2 Ideal gas law 4.12 × 10−5 973 15

The operating temperature and pressure are represented by T and p, respectively,
while the molecular weight of the carrier phase is denoted by Mw, and R signifies the
universal gas constant.

The discrete particles were considered to be spherical sand solids with a density
of 2650 kg/m3 and a diameter of 10 µm. The inlet mass flow rate of the particles is
0.001354 kg/s. As reported in the literature [25,26], the inlet velocity of cyclone separators
ranges from 10 m/s to 30 m/s. Hence, for this work, a gas velocity of 16.1 m/s was
specified at the tangential inlet. The “pressure-outlet” boundary condition was utilized
at the end of the exhaust pipe. Sand particles are trapped when they move to the bottom
and escape through the exhaust pipe. The standard wall functions were utilized to describe
the alterations in momentum in the near-wall zone. A “no-slip” boundary condition was
applied to the wall for the continuous phases, and the momentum of particles would be
reduced after colliding with the wall. The reduction in kinetic energy can be expressed as
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elucidated by the restitution model developed by Grant and Tabakoff [27], which can be
expressed as:

en = 0.993− 1.76θ + 1.56θ2 − 0.49θ3 (11)

et = 0.998− 1.55θ + 2.11θ2 − 0.67θ3 (12)

where θ is the impact angle of the particles. en and et are the normal and tangential coefficients.
The CFD-DPM method was employed in ANSYS FLUENT 19.2, which utilizes the

finite volume method in structured meshes to solve the gas-phase equations mentioned
above and tracks particles in the domain using Lagrangian coordinates [28,29]. All the
simulations were carried out in parallel on a workstation with a 48× 2.8 GHz processor and
256 GB RAM. The continuous phase and discrete particles mutually influenced each other’s
motion, through drag force. For pressure–velocity coupling, the SIMPLEC algorithm was
employed. A second-order scheme was utilized to discretize the convective and divergence
terms, while the pressure interpolation was performed using the PRESTO! discretization
scheme. The convergence criterion accuracy was set to 1 × 10−4. A time-step size of
1 × 10−4 s and 20 interactions per time-step were used in the simulations.

2.6. Grid Independence Study

Mesh independence was performed to achieve a balance between computational
cost and the quality of results, where four different grid strategies were selected. The
simulations of the single-phase flow of air were calculated. Figure 4 depicts the radial
distribution of gas magnitude velocity at y = −400 mm and the pressure drop between the
entrance and outlet, respectively. As shown in Figure 4a, the tangential velocities of grid
numbers of ~0.58 million and ~1.14 million were relatively consistent. From Figure 4b, it
can be observed that the pressure drop had a maximum error of 1.77% when the number of
grids exceeded 0.29 million. Consequently, the remaining simulations were carried out on
a medium-sized grid of ~0.58 million.
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3. Results and Discussion
3.1. Model Validation

To confirm the reasonableness of the hydrodynamics and erosion rate estimated by
the current numerical model, simulations were carried out in this subsection using the
experimental arrangements of Hoekstra [30] and Solnordal et al. [22]. Figure 5 shows
the comparison of mean tangential and axial velocities of the gas phase at axial location
|y/D| = 0.75 between simulation and experiment, and Figure 6 illustrates the calculated
erosion rate on the 90◦-bend wall compared with the experimental results. The numerical
results obtained from the present flow and erosion models fall within an acceptable range
and show good agreement with the experimental data, indicating the reliability of the
current findings for further analysis.
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3.2. Hydrodynamics

Gas movement within a cyclone separator predominantly results from the tangential
velocity, inducing particle migration towards the sidewall, due to centrifugal acceleration.
This phenomenon significantly influences separation efficiency [14,31]. Figure 7 displays
the contour plots of tangential velocity at x = 0 mm under different carrier phases. The
presented tangential velocity distributions showcased the characteristic formations of the
Rankine vortex model, which encompassed both the Inner Quasi-Forced Vortex (IQFV) and
the Outer Quasi-Free Vortex (OQFV). In IQFV, the gas exhibited nearly rigid-body rotation,
characterized by radial growth in tangential velocity. In OQFV, tangential velocity exhibited
a decline along the radial direction. It can also be noted that the dividing point of IQFV
and OQFV was in the bottom region of the exhaust pipe. For different carrier phases, the
largest peak tangential velocity of the Rankine vortex occurred with the utilization of s-CO2.
Figure 8 shows radial profiles of tangential velocity at different heights. The curves were
M–shaped and symmetrical with respect to the y-axis, which is consistent with the results
in the literature [32–35]. For different carrier phases, the maximum tangential velocity
of s-CO2 in both cross-sections was ~1.82 times the inlet velocity, while the other two
conventional media were ~1.07 times (air) and ~1.23 times (CO2), respectively. Moreover,
the radius position of the maximum tangential velocity (rmax) of air, CO2, and s-CO2 were
~0.56, ~0.49, and ~0.43, respectively. From the literature [36], the tangential velocity in IQFV
and OQFV can be respectively written as:

ut,IQFV(r) = Ω0 × r (13)

ut,OQFV(r)× r = Γ = K0 × uin × (
D
2
− Din

2
) (14)
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where Ω0 represents the angular velocity, r is the radial distance, Γ denotes the circulation
of OQFV, K0 is a constant value that increases with the Reynolds number, D is the diameter
of the cyclone body, and Din is the hydraulic diameter of the inlet. The correlation between
Γ and Ω0 can be determined by rmax, which is given by:

r2
max ×Ω0 = Γ (15)
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From the above equations, s-CO2 had a higher Reynolds number and then a larger K0,
due to its small kinematic viscosity (υ = µ/ρ), than other media, leading to the increase in
tangential velocity.

The axial movement of particles within the cyclone body is dictated by the prominent
influence exerted by the gas phase’s axial velocity. Ultimately, this determines whether
the particles will be collected at the bottom or escape from the outlet [37]. Figures 9 and 10
illustrate the contours and radial profiles of axial velocity under different carrier phases,
respectively. It can be observed that axial velocity distributions at x = 0 mm of s-CO2
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and CO2 were asymmetrical with the geometric axis of the cyclone separator, while the
distribution of air was symmetrical. In addition, the axial velocities of air and CO2 contained
two main regions, i.e., the positive velocity at the center and the negative velocity near
the sidewall. A positive axial velocity indicates an upward motion of the carrier phase,
whereas a negative axial velocity implies downward movement of the fluid. However, a
negative axial velocity appeared in the central region of s-CO2, indicating the disruption of
upstream flow, thus reducing the separation efficiency. Figure 11 depicts the Zero Axial
Velocity Envelope (ZAVE) of cyclones with different carrier phases. The ZAVE showed
a slight distortion, as the flow was unstable under the one-side inlet. For the carrier
phase of s-CO2, the shape of ZAVE was wider, and the surface at the bottom region was
not enclosed.
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Figure 10. Radial profiles of axial velocity at different heights.
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Figure 12 shows the streamlines on section x = 0 mm under different carrier phases.
Vortex structures were visible in the cylindrical section and the conical section, as well as in
the bottom region of the top cover for various carrier phases. For air and CO2, the vortex
was flattened along the axial direction, which had a minimal impact on the upstream flow.
However, in the case of s-CO2, the vortex extended in the radial direction, disrupting the
upstream flow. This led to the enclosed surface of ZAVE.
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To quantitatively characterize the variations in the upward flow of different carrier
phases, the area-weighted axial velocity (uaxial,UF) and intensity (Iaxial) of upward flow on
different cross-sections were obtained, respectively. In Equations (16) and (17), uaxial,UF,i
and uaxial,DF,j are the axial velocity of upward flow and downward flow in ith and jth grid
on a specific cross-section, and ai and aj are the corresponding grid area, respectively. As
illustrated in Figure 13a, uaxial,UF of air and CO2 increased with the y-axis. In the case of
s-CO2, uaxial,UF was lower in the middle part (−700 mm < y <−400 mm) of the cyclone, and
varied considerably in the bottom region of the conical section. Moreover, from Figure 13b,
it can be seen that, compared with air and CO2, Iaxial of s-CO2 was the lowest.
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3.3. Separation Efficiency

The study of cyclone efficiency is highly important because cyclone separators are
commonly used gas–solid separation equipment in various carrier phases. The cyclone
efficiency for particles of a given diameter is given by:

η = (1−
mp,out

mp,in
)× 100% (18)

In the above equation, mp,out and mp,in are the mass flow rate of particles leaving
through the exhaust pipe and entering the cyclone separator, respectively. Table 4 presents
the separation efficiency of particles with a diameter of 10 µm in cyclone separators with
different carrier phases. The particles were all collected at the bottom surface of air and
CO2, while the separation efficiency of s-CO2 was 81.51%. For conventional media such as
air, particles with a diameter above 5 µm can be effectively captured [38]. The inefficiency
of the separation of s-CO2 is due to the poor distribution of the vortex, as illustrated in
Figure 12c. The particles that reached the walls would be carried back to the central region
and would escape with the upstream flow. Figure 14 shows the particle paths inside the
cyclone separator under different carrier phases. The particle flow in s-CO2 was unable to
maintain a good spiral shape in the column section. Some particles can also escape from the
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exhaust pipe through a short circuit to reduce the separation efficiency. Hence, to enhance
the separation efficiency of s-CO2, it is necessary to address the short-circuit issue and
improve the distribution of vortices.

Table 4. Separation efficiency of different carrier phases.

Media Air CO2 s-CO2

η 100% 100% 81.51%
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3.4. Erosion

Figure 15 demonstrates the contour of erosion rate on the wall for various carrier
phases. It can be observed that the overall erosion-wear zone of the cyclone separator
followed spiral trajectories, and the erosion spiral bands had a certain width. As the axial
height of the cyclone increased, the spacing between the spiral bands decreased. Moreover,
the spiral erosion-wear pattern became more prominent at lower heights.

ERave =
l

∑
k=1

ERkak
A

(19)

For the carrier phase of s-CO2, the erosion peak at the end of the cone was caused
by the high velocity of OQFV and the movement of the vortex. The particles would be
drawn into the vortex and impact this area with high speed for a prolonged period. In
addition, erosion was observed on the exhaust wall surface, due to the impact of particles
that had escaped. The averaged surface erosion rate ERave, given by Equation (19), was
3.69 × 10−7, 8.15 × 10−7, and 7.09 × 10−6 kg/(m2·s) for air, CO2, and s-CO2, respectively.
In Equation (19), A is the total surface area of the cyclone; ak and ERk are the surface area
and wall erosion rate of each wall grid, respectively. Figure 16 shows the erosion rate at
line A-A (as shown in Figure 3b) on the surface of cyclone separators with different carrier
phases. In the case of s-CO2, the erosion rate was an order of magnitude higher than the
other two media, and the rate of erosion increased significantly with the increasing height
of the cyclone separator.
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4. Conclusions

In the present work, a preliminary investigation comparing the hydrodynamics, sepa-
ration efficiency, and erosion rate in cyclone separators with different carrier phases (air,
CO2, and s-CO2) was introduced, using the CFD-DPM method. The main goal is to explore
the performance of traditional air cyclone-separator dimensions and operating conditions
in s-CO2.

(1) The tangential velocity distributions of various carrier phases demonstrated exem-
plary Rankine vortex structures. Nevertheless, among the different media, s-CO2
exhibited a higher Reynolds number and consequently a larger K0. This was attributed
to its low kinematic viscosity, resulting in an elevated tangential velocity. The axial
velocities of air and CO2 contained two main regions, i.e., the positive velocity at
the center and the negative velocity near the sidewall, while a negative axial velocity
appeared in the central region of s-CO2, indicating the disruption of upstream flow.

(2) For the carrier phase of s-CO2, the shape of ZAVE was wider, and the surface at
the bottom region was not enclosed, as a result of the vortex extending in the radial
direction. In the case of s-CO2, uaxial,UF was lower in the middle part of the cyclone
body, and varied considerably in the bottom region of the conical section; Iaxial was
the lowest.

(3) The particles were all collected at the bottom surface of air and CO2, while the
separation efficiency of s-CO2 was 81.51%. The inefficiency of the separation of s-CO2
is due to the poor distribution of the vortex and short circuit. Hence, to improve the
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separation efficiency of s-CO2, the vortex distribution needs to be improved and the
short-circuit problem needs to be solved.

(4) The overall erosion-wear zone of the cyclone separator with various carrier phases
followed spiral trajectories, and the erosion spiral bands had a certain width. In the
case of s-CO2, the erosion rate was an order of magnitude higher than in the other
two media, and the rate of erosion increased significantly with the increasing height
of the cyclone separator. The erosion peak at the end of the cone was caused by the
high velocity of OQFV and the movement of the vortex.
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