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Sulewska, K.; Amarowicz, R.; Denev,

P.; Slavova-Kazakova, A. Phenolic

Profile and Antioxidant Potential of

Beverages from Buckwheat and Side

Streams after Beverages Production.

Processes 2023, 11, 3205. https://

doi.org/10.3390/pr11113205

Academic Editors: Iliyan Ivanov,

Stanimir Manolov and

Chi-Fai Chau

Received: 6 September 2023

Revised: 27 September 2023

Accepted: 7 November 2023

Published: 10 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Phenolic Profile and Antioxidant Potential of Beverages from
Buckwheat and Side Streams after Beverages Production
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Abstract: Plant-based milk alternatives are a fast-growing segment of food industry resulting in the
generation of large amounts of by-products, often containing comparable and even higher amounts
of valuable phytochemicals than the target products. Common buckwheat (Fagopyrum esculentum
M.) Panda variety has been selected for this study, which aims to compare the antioxidant potential
of beverages produced from buckwheat whole and dehulled grains, as well as cakes obtained as
residues. After combining, evaporating and freeze-drying, extracts were subjected to RP-HPLC-
DAD, total phenolics and in vitro antiradical and antioxidant assays (FRAP, ABTS, DPPH and lipid
autoxidation). Flavonoids (3.09 mg/100 mL) exceeded the content of phenolic acids (2.35 mg/100 mL)
in the beverages prepared from dehulled grains, but their content (1.69 mg/100 mL) in the beverages
from whole grains was lower than that of phenolic acids (2.93 mg/100 mL). The antiradical capacity
of beverages did not differ significantly, regardless of the method used. In case of by-products, a
higher ferric-reducing capacity and scavenging activity towards DPPH• of cakes from whole grains
compared to that from dehulled grains was established. The activity of cake extracts under lipid
autoxidation conditions increased with the increase in their concentrations from 0.12 wt% to 0.16 wt%
in the oxidizable substrate.

Keywords: dairy alternatives; buckwheat; functional beverages; polyphenols; antioxidant activity

1. Introduction

Dairy alternatives take the prevailing position in the global health and wellness
food market, especially in the functional beverages sector. The demand for nondairy
beverages has significantly increased (by 61% since 2012) [1]. Many researchers explain this
phenomenon as a result of the rising number of people suffering from lactose intolerance or
consider it as a result of new lifestyles including vegetarian or vegan diets, environmental
issues and ethical concerns regarding the consumption of animal milk [2–7]. Vakima et al.
stated that plant-based milk alternatives (PBMAs) are not an entirely new product category,
as they have historically been part of many food cultures; for example, soy milk in China
and horchata (tigernut milk) in Spain [4]. However, increasing the consumption of plant-
based foods while decreasing the consumption of animal products at the same time has
emerged as a major dietary trend in the last two decades [8].

The most popular PBMA is soymilk, but the market focus is expected to shift from
the common soya, almond or rice-based products to new ones from other plant sources [6].
Thus, their processing leads to the generation of large amounts of by-products, i.e., residues,
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often containing comparable and even higher amounts of valuable phytochemicals than the
target products. Side streams from agriculture and the food industry can be considered as a
permanent and cheap source of high added-value components, since modern technologies
allow their recovery [9–12].

A suitable raw material for PBMAs’ production is buckwheat, which, despite its
advantages over other widespread sources like soy, rice, oat and even almond, does not
fall into the mandatory assortment of most manufacturers. Buckwheat belongs to the
genus Fagopyrum of the Polygonaceae family. The genus contains 15 to 16 species of
plants including two important food crops—buckwheat (F. esculentum Moench) and tartary
buckwheat (F. tartaricum (L.) Gaertn.) and cultivated tall buckwheat (F. cymosum) and
F. homotropicum. Buckwheat does not require chemical treatment (pesticides) like rice fields,
for instance, or even soil improvers. The plant itself renews the ecosystem in which it grows,
improving the soil properties, and also helps to preserve and expand the bee population [13].
In the diet, buckwheat grain is a valuable source of nutrients. It is high in protein, B vitamins
and minerals including potassium, magnesium, calcium, iron, manganese, and zinc [14].
Also noteworthy is the high content of phenolic compounds including phenolic acids,
flavonoids and tannins, which are known for their bioactivity and may have a beneficial
effect on the human body [15–17]. Positive effects attributed to buckwheat consumption
were observed in conditions such as hypertension, hypercholesterolemia, diabetes and
other cardiovascular diseases. Most of the scientific data concerning its primary and
secondary metabolites refer to buckwheat hulls, whole grains or the groats from which
the flour is made [14–18]. In recent years, the use of buckwheat flour or flakes as additives
in the preparation of innovative products with functional food values, including bakery
products (bread, cookies and biscuits), noodles, pasta and porridge, as well as tea and beer,
is being considered [19]. Moreover, there are several studies on the use of buckwheat for the
development of cereal-based non-alcoholic beverages, like kvass and boza, the preparation
of which involves fermentation [20–24].

Plant-based analogues of milk are typically produced from plant grains, seeds and
nuts via classical water extraction [25]. This process can be supported by innovative
technologies with high-pressure processing, pulse electric field, ohmic heating, cold plasma
or ultrasound treatment. Controlled fermentation is also often used in the production of
PBMA beverages [25,26]. After extraction, the beverage is filtered from the solid residue
(cake), which is the main waste in the production of beverages. However, this material is
still valuable from a nutritional point of view, e.g., cake, or in case of soy milk production
‘dregs’, is a functional product that contains proteins, lipids, crude fiber and phenolic
compounds [27]. The research on buckwheat-based milk alternatives is very limited
compared to research on the other crops listed above, and more efforts are required to
continue innovation of less-studied sources for PBMAs production. We hypothesized
that, similarly to other pseudocereals, buckwheat could be a suitable raw material for the
production of PBMA; moreover, seed cakes obtained after processing could be a useful
source of biologically active phenolic compounds. Therefore, the aim of the study was to
evaluate the phenolic profile and antioxidant capacity of the target milk-like beverages
(from dehulled and whole grain buckwheat) and cakes obtained as side streams during
beverages production. Different model systems (autoxidation in model lipid substrate,
ferric-reducing antioxidant power (FRAP) assay, as well as antiradical activity toward
ABTS•+ and DPPH•) have been applied in order to obtain information about the antioxidant
potential of the buckwheat-based beverage(s) and the remaining by-product, i.e., the cake.

2. Materials and Methods
2.1. Plant Material and Chemicals

Whole and dehulled grains of common buckwheat (Fagopyrum esculentum Moench),
Panda cultivars, were obtained from the Department of Cultivation and Production in
Palkije, Poland. They were placed in paper bags and stored at room temperature until the
analyses were performed.
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Folin–Ciocalteu’s phenol reagent (FCR), 2,2-diphenyl-1-picrylhydrazyl (DPPH) rad-
icals, gallic acid, 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt
(ABTS), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), 2,4,6-tris(2-pyridyl)-
s-triazine (TPTZ), high-performance liquid chromatography (HPLC) standards, including
gallic acid, caffeic acid, p-coumaric acid, protocatechiuc acid, p-hydroxybenzoic acid, (+)-
catechin, (–)-epicatechin, orientin (luteolin 8-C-β-d-glucoside), homoorientin (luteolin
6-C-β-d-glucoside), rutin (quercetin 3-O-β-rutinoside), hyperoside (quercetin 3-O-β-D-
galactoside) and quercetin were obtained from Sigma-Aldrich (St. Louis, MO, USA).
Sodium persulfate, ferrous chloride and the solvents were provided by Avantor Perfor-
mance Materials (Gliwice, Poland).

2.2. Preparation of Buckwheat Beverage

Preliminarily soaked (for at least 8 h) dehulled and whole buckwheat grains were
rinsed and ground in a blender with water at ratio 1:4 (v/v). The resulting homogenates
were subjected to filtration using ERNESTO® Veggie Drink Maker (Berlin, Germany) in
order to separate the cream-like beverages and the residues (cakes). Beverages from whole
and dehulled buckwheat grains were called BWG and BDH, respectively, and the names
of cake samples from whole and dehulled grains were abbreviated to CWG and CDH,
respectively. Both separated fractions were freeze-dried (FreeZone 6 Liter Console System,
Labconco, Kansas City, MO, USA) prior to the future analyses. The procedure of obtaining
beverages and cakes was carried out in triplicate for each type of material.

2.3. Extraction Procedure

The freeze-dried beverages and cakes were extracted using 80% methanol (v/v) and
80% acetone (v/v), sequentially [28]. First, solid material was suspended in 80% methanol
(v/v) in ratio of 1:10 (w/v). After 15 min shaking at 60 ◦C with solvent, the suspension
was filtered. The procedure was repeated three times, and the obtained filtrates were
combined. In the next step, the residue after extraction with 80% methanol (v/v) was
mixed with 80% acetone (v/v) and extracted exactly as described in the first step. The
filtrates were combined with the methanolic ones. Organic solvents were removed using a
rotary evaporator (R-210, Büchi Labortechnik AG, Flawil, Switzerland) and water residue
was freeze-dried. Crude extracts were grained using a mortar and pestle and stored in
closed containers in darkness until analyses of total phenolic content, phenolic profile and
antioxidant capacity were conducted.

2.4. Total Phenolic Content Determination

The total phenolic content of the beverages and cakes was determined, according to
Sulewska et al. [29] with (+)-catechin as a standard. The results for beverages were ex-
pressed as mg of (+)-catechin equivalents per 100 mL of final product (mg catechin/100 mL)
and for cakes as mg of catechin equivalents per 100 g of dry weight of cake (mg cate-
chin/100 g DW).

2.5. Analysis of the Phenolic Profile Using RP-HPLC-DAD

Phenolic compound profiles of the buckwheat cakes and beverages were analyzed [30,31]
using the UHPLC Shimadzu Nexera X2 system (Shimadzu, Kyoto, Japan), which consisted
of modules: a CBM-20A system controller, a CTO-20AC column oven, a DGU-20A5R de-
gassing unit, two LC-30AD pumps, a SIL-30AC autosampler and a SPD-M30A photodiode
array detector (DAD). Separation was achieved with a Kinetex C18 column (3 × 75 mm,
2.6 µm; Phenomenex, Torrance, CA, USA). The column oven was set up to 25 ◦C. The
binary gradient mode used with mobile phase consisted of solvent A: acetonitrile–water–
trichloroacetic acid (5:95:0.1; v/v/v) and solvent B: acetonitrile–trichloroacetic acid (100:0.1;
v/v). Gradient was set along these parameters: 0–12 min, 0–20% B; 12–17.5 min, 60% B;
17.5–18 min 0% B; 18–20 min, 0% B. the flow rate was 0.5 mL/min. Before the injection,
(1.5 µL) samples were filtered (0.22 µm, polyethersulfone membrane filter, TPP Techno
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Plastic Products AG, Trasadingen, Switzerland). The elution was monitored over a wave-
length range of 200–400 nm. The phenolic quantification performed using the external
standard method was carried out at a wavelength of 280 and 350 nm for phenolic acids and
flavonoids, respectively. The content of the compounds in beverages was expressed as mg
per 100 mL of final product (mg/100 mL) and in cakes as mg per g of dry weight of cake
(mg/g DW).

2.6. Determination of Antiradical Capacity towards ABTS•+

ABTS•+ scavenging capacity of the beverages and cakes was determined according
to method of Re et al. [32]. The results were calculated as the Trolox equivalent and were
presented as mmol Trolox per 100 mL of final product (mmol Trolox/100 mL) for beverages
and as mmol Trolox per 100 g of dry weight (mmol Trolox/100 g DW) for cakes.

2.7. Determination of Ferric-Reducing Antioxidant Power

FRAP assay was performed in the conditions described by Benzie & Strain [33]. The
results were expressed as mmol of Fe2+ per 100 mL of final product (mmol Fe2+/100 mL)
for beverages and for cakes as mmol of Fe2+ per 100 g of dry weight of cake (mmol
Fe2+/100 g DW).

2.8. Determination of DPPH Radical Scavenging Capacity

Radical scavenging capacity using the stable DPPH• was assayed according to the
previously published method [30,34]. The results were calculated based on the stan-
dard curve on the Trolox and expressed as mmol Trolox per 100 mL of final product
(mmol Trolox/100 mL) for beverages and as mmol Trolox per 100 g of dry weight (mmol
Trolox/100 g DW) for cakes.

2.9. Determination of Chain-Breaking Antioxidant Activity

Lipid substrate (lard) was oxidized at 80 ◦C in a flow of air blowing at a rate of
100 mL/min. Samples containing 0.12 wt%, 0.16 wt%, and 0.2 wt% of the studied extracts
were prepared by adding aliquots of their methanol solutions to 2 g of the substrate [35].
The concentration of peroxides was determined via a modified iodometric method [36], at
certain time intervals, and was monitored graphically. Kinetic curves were plotted based
on the mean values of three independent experiments.

2.10. Statistical Analysis

Three samples of each type of product were prepared. All the analyses were performed
in triplicate. The results were subjected to analysis in the form of Student’s t-test, which was
performed for a pair of products (beverages and cakes). Those analyses were performed
using STATISTICA 10 (StatSoft Inc., Tulsa, OK, USA).

3. Results and Discussion

The total phenolic content of buckwheat grain beverages and cakes is shown in Table 1.
The beverages prepared from dehulled (BDH) and whole (BWG) buckwheat grains did not
differ significantly (p ≥ 0.05) in terms of total phenolic content. In turn, the total phenolic
content of cake from whole buckwheat grains (CWG) was 681 mg catechin/100 g DW and
this value was significantly higher (p < 0.05) than that determined for cake from dehulled
buckwheat grains (CDH) containing 840 mg catechin/100 g DW. It is known that buckwheat
grain phenolics are accumulated mainly in hulls and that the total phenolic content of
buckwheat hulls is 434–525 mg/100 g and is higher than that of dehulled grains [37,38].
With this in mind, the lack of differences in total phenolic content of beverages from whole
and dehulled grains found in our study may be due to the poor extractability of phenolics
with water from hulls. The phenolic compounds of the hulls remained in the cakes, hence
the higher total phenolic content in cakes from whole grain processing compared to cakes
from dehulled grain.
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Table 1. Total phenolic content, antiradical capacity towards ABTS•+ and DPPH•, and ferric-reducing
antioxidant power (FRAP) of the beverage and cake from buckwheat whole grains (BWG and CWG,
respectively) and beverage and cake from dehulled buckwheat grains (BDH and CDH, respectively).

Sample
Total Phenolic Content ABTS Assay FRAP DPPH Assay

[mg catechin/100 mL] [mmol Trolox/100 mL] [mmol Fe2+/100 mL] [mmol Trolox/100 mL]

BDH 44.7 ± 7.0 0.349 ± 0.049 418 ± 52 0.162 ± 0.029
BWG 43.7 ± 2.9 0.331 ± 0.029 385 ± 61 0.148 ± 0.018

[mg catechin/100 g DW] [mmol Trolox/100 g DW] [mmol Fe2+/100 g DW] [mmol Trolox/100 g DW]
CDH 681 ± 83 * 5.70 ± 0.79 6591 ± 964 * 1.349 ± 0.105 *
CWG 840 ± 47 * 5.30 ± 0.34 8157 ± 494 * 1.915 ± 0.187 *

Values marked with * for BDH versus BWG and CDH versus CWG separately for each parameter differ signifi-
cantly with p < 0.05. DW—dry weight.

The beverages prepared from dehulled and whole grains, as well as from cakes
after beverages production, were subjected to RP-HPLC-DAD analysis in order to obtain
information about their phenolic profile. Figure 1 depicts typical phenolic fingerprints of
extracts obtained from cakes and beverages. Of the peaks in the chromatograms, 22 were
identified as corresponding to phenolic compounds. A list of those compounds is shown
in Table 2, in which the contents of individual phenolics in beverages and cakes are also
provided. Ten phenolic acids and 12 flavonoids were detected. Most of the compounds
were identified by comparing the chromatographic data with those for the standards.
However, compounds 3–5, 7, 9, 11, 16, 17, 20 and 21 were only tentatively assigned to
certain classes of phenolics based on their UV-DAD spectra. Compounds 3, 4, 7 and
11 exhibited maxima typical for phenolic acids [39]. Spectra of compounds 5, 16, 17, 20 and
21 were closely related to flavonoids [40], and among them, those of compounds 5 and 21
were characteristic of flavanols [40]. All phenolic acids and flavonoids with recognized
structure in our study were previously reported in buckwheat grains [38,41–43].

Individual phenolic acids, with the exception of protocatechuic acid, were identified
in all beverages and cake extracts (Figure 1, Table 2). Flavonoids differentiated the quality
profile of beverages and cakes to a greater extent. The most diverse flavonoid profile, with
the presence of all detected compounds of this class, was identified in the cakes obtained by
processing whole buckwheat grains. Orientin, homoorientin, hyperoside and flavonoid (20)
were detected only in CWG. In turn, two other flavonoids (16 and 17) were not present in
BDH and CDH. The absence of orientin, homoorientin and hyperoside, as well as protocate-
chuic acid in dehulled grain products (BDH and CDH), was not surprising, considering the
literature reports indicating that these compounds were identified in buckwheat hull, but
not in buckwheat groats [38,44]. In turn, the lack of orientin, homoorientin and hyperoside
in BWG was probably related to their poor extractability from hulls with water, which we
mentioned when discussing the total phenolic content.

The quantitative profile of phenolic compounds also differentiated both beverages
and cakes from each other, as well as products obtained from whole and dehulled grains
(Table 2). Overall, the content of flavonoids was significantly higher than that of phenolic
acids in cakes (2.5 times in CDH and 6.8 times in CWG). In the case of beverages, flavonoids
only slightly exceeded the content of phenolic acids in BDH, and their content in BWG was
even lower (1.69 g/100 mL) than the content of phenolic acids (2.93 g/100 mL). However,
when comparing the proportions of content of compounds of each class in terms of the
type of grains used to obtain beverages and cake, the use of whole grains resulted in a
lower proportion of phenolic acid contents and higher proportion of flavonoid contents
than for dehulled grains. The dominant phenolics of CDH were flavanol (21), rutin, (–)-
epicatechin and (+)-catechin. The contents of the last two was significantly higher (p < 0.05)
in CDH (15.80 and 6.05 mg/g DW, respectively) than in CWG (7.71 and 1.48 mg/g DW,
respectively). This relationship was consistent with literature data on the higher abundance
of these compounds in groats or flour from dehulled grains than in hulls [38,41]. Dziadek
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et al. [37] even reported that among phenolics of dehulled grains, no flavonoids other
than derivatives of flavan-3-ols were found. In turn, in our study, rutin—which in many
reports was mentioned as the main phenolic compound of buckwheat seeds [43,45,46]—
was present in significant amounts in both CDH (10.40 mg/g DW) and CWG (7.72 mg/g
DW), but its contribution to the profile of phenolic compounds of beverages was low. This
was quite surprising, as one would expect that rutin, which contains diglycoside residue
in its chemical structure, should be easily extractable into water. Probably interactions of
rutin with other matrix compounds hindered its extraction. The beverages were dominated
by (–)-epicatechin, flavonoid (21), (+)-catechin and quercetin among flavonoids and the
content of these compounds was significantly higher (p < 0.05) in BHD than in BWG
(Table 2). However, as mentioned above, the contribution of phenolic acids was significant
in the profile of phenolic compounds of beverages, and the contents of most of them were
comparable or higher than the contents of main flavonoids.

Table 2. Phenolic contents in beverage and cake from buckwheat whole grains (BWG and CWG,
respectively) and beverage and cake from dehulled buckwheat grains (BDH and CDH, respectively).

No. Compound
BDH BWG CDH CWG

[mg/100 mL] [mg/g DW]

1 Gallic acid 0.153 ± 0.026 0.148 ± 0.033 1.57 ± 0.32 * 2.4 ± 0.14 *

2 Protocatechuic acid - 0.317 ± 0.110 - 3.62 ± 0.62

3 Phenolic acid 1 0.333 ± 0.054 0.280 ± 0.008 2.84 ± 0.62 ** 1.14 ± 0.11 **

4 Phenolic acid 1 0.655 ± 0.120 0.558 ± 0.069 5.88 ± 1.1 ** 2.29 ± 0.30 *

5 Flavanol 2 0.386 ± 0.065 0.428 ± 0.069 5.37 ± 0.91 *** 12.1 ± 0.89 ***

6 p-Hydroxybenzoic acid 0.032 ± 0.007 * 0.0837 ± 0.024 * 0.29 ± 0.09 ** 0.534 ± 0.051 **

7 Phenolic acid 1 0.106 ± 0.020 ** 0.299 ± 0.063 ** 0.61 ± 0.09 0.612 ± 0.16

8 (+)-Catechin 0.503 ± 0.083 * 0.309 ± 0.065 * 6.05 ± 1.36 ** 1.48 ± 0.198 **

9 Phenolic acid 1 0.522 ± 0.103 * 0.311 ± 0.030 * 4.75 ± 0.88 ** 1.48 ± 0.24 **

10 Caffeic acid 0.062 ± 0.007 * 0.379 ± 0.166 * 0.47 ± 0.26 0.72 ± 0.26

11 Phenolic acid 1 0.447 ± 0.076 0.472 ± 0.090 3.26 ± 0.88 * 1.15 ± 0.18 *

12 (–)-Epicatechin 1.001 ± 0.149 ** 0.354 ± 0.173 ** 15.80 ± 2.65 ** 7.71 ± 0.18 **

13 p-Coumaric acid 0.037 ± 0.006 * 0.085 ± 0.023 * 0.40 ± 0.10 0.32 ± 0.09

14 Homoorientin - - - 2.86 ± 0.13

15 Orientin - - - 2.83 ± 0.027

16 Flavonoid 3 - 0.091 ± 0.019 - 11.30 ± 0.20

17 Flavonoid 3 - 0.076 ± 0.012 - 11.21 ± 0.44

18 Rutin 0.082 ± 0.018 0.043 ± 0.004 10.40 ± 1.53 * 7.72 ± 0.82 *

19 Hyperoside - - - 19.02 ± 2.38

20 Flavonoid 3 - - - 1.83 ± 0.22

21 Flavanol 2 0.656 ± 0.0987 ** 0.209 ± 0.059 ** 11.3 ± 0.63 12.5 ± 0.96

22 Quercetin 0.463 ± 0.071 ** 0.179 ± 0.07 ** 1.14 ± 0.33 *** 6.66 ± 0.18 ***

Sum of phenolic acids 2.35 2.93 20.1 14.3

Sum of flavonoids 3.09 1.69 50.1 97.2
1 Expressed as caffeic acid equivalent. 2 Expressed as (+)-catechin equivalent. 3 Expressed as quercetin equivalent.
No. corresponds to peak numbers. Values for BDH versus BWG and CDH versus CWG separately for each
compound differ significantly with p < 0.05 (*), p < 0.01 (**) or p < 0.001 (***). DW—dry weight.
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Figure 1. Typical chromatograms of extracts obtained from buckwheat beverage (BWG) and cake
(CWG) recorded at λ = 280 nm (A) and λ = 350 nm (B) using RP-HPLC-DAD.

The results regarding the antioxidant capacity of beverages and cakes obtained after
their production from whole and dehulled buckwheat grains are shown in Table 1. The
ferric-reducing antioxidant power of beverages produced from both types of material did
not differ significantly (p ≥ 0.05). Similarly, the antiradical capacity towards ABTS•+ and
DPPH• of beverages prepared using whole grains was not significantly different (p ≥ 0.05)
compared to that of beverages made from dehulled grains. For by-products obtained
from beverage production, significantly higher (p < 0.05) FRAP and DPPH• scavenging
capacity of CWG than CDH was determined. However, the antioxidant capacity of both
cake samples in the ABTS assay was at the same level (p ≥ 0.05). Direct comparison of the
obtained values with literature data is difficult due to the limitations of such data. To the
best of our knowledge, this research is the first to demonstrate the antioxidant potential
of a by-product after the creation of buckwheat drinks. Nevertheless, the results of all
antioxidant assays for beverages and the DPPH and FRAP assays for cakes correlated
with the total phenolic content in beverages and cakes. This confirms that the phenolic
compounds of products were responsible for the detected antioxidant activity. According
to literature data, rutin as a major phenolic compound, together with other flavonoids,
strongly contributed to the antioxidant capacity of buckwheat grains in FRAP, DPPH and
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ABTS assays [43]. In our research, flavonoids may play a significant role as antioxidants only
in cakes. In beverages, due to the lower content of flavonoids, it seems that phenolic acids
may be more important in inducing antioxidant potential. In turn, the stronger antioxidant
potential of CWG than CDH can be attributed to the higher content of flavonoids and
their greater diversity in cake from whole grain. Hyperoside, quercetin, orientin and
homoorientin, which predominate in CWG, are known for their high antiradical activity
and reducing power [41,47]. Furthermore, other compounds than those listed in Table 2
may have been present in the extracts of beverage and cake from whole grains. In the
chromatograms of these products, a “hump” at a retention time of 14–15 min is shown
(Figure 1). This is characteristic of proanthocyanins [43]. The presence of compounds of
this class in whole buckwheat gains and hulls was reported previously [16,48]. Buckwheat
seed proanthocyanins are capable of scavenging free radicals and have a reducing power
greater than that of simple phenolic compounds [49]. Interestingly, Cui et al. found that
cytoprotective activities of flavonoid monomers from buckwheat are closely related to
their antioxidant activity, indicating that buckwheat extracts could serve as cytoprotective
agents [50]. Overall, using buckwheat whole grain for the production of dairy alternatives
(BWG) from one side resulted in a product with an antioxidant potential similar to that
of products prepared with dehulled grains (BDH) but with a greater variety of phenolic
compounds. From the other hand using whole grains resulted with a residue that was more
differentiated in terms of its phenolic profile, especially its flavonoid profile, and more
potent in terms of antioxidant activity. It can be successfully used as a side stream that can
be valorized to obtain added-value products, e.g., extracts rich in certain phenolic class.

Concerning that, the beverage is water-based and extracts obtained are lipid insol-
uble, the antioxidant activity under lipid autoxidation conditions has been studied only
for extracts from the by-product, i.e., the cake. Kinetic curves of lipid hydroperoxides
accumulation during autoxidation of a lipid substrate at 80 ◦C in the presence of CDH and
CWG are given on Figure 2.

The kinetic parameters obtained after processing the curves are summarized in Table 3.
Conclusions can be drawn not only on the basis of the parameters obtained for CWG and
CDH within this model system, but also by comparing the results for both cakes’ extracts
from different model systems (Tables 1 and 3).

The chain-breaking antioxidant activity of the studied buckwheat extracts obtained
from the cake depends on their concentration in the oxidizable substrate. The highest
activity has been observed for CWG at concentrations of 0.16 wt% and 0.20 wt% (Figure 2,
Table 3). Increasing the concentration of CWG from 0.12 wt% to 0.16 wt% leads to an
increase in the induction period IPA of more than 10 h, and the initial oxidation rate RA
decreases almost twice (Table 3). An increase in activity was also observed for CDH, for
the same concentration range, but to a lesser extent. A further increase in concentration
from 0.16 wt% to 0.20 wt% did not result in a significant change in the parameters (Table 3).
The sum of flavonoids is almost twice as high in the cake when whole grains are used as
raw material (CWG), but phenolic acids are more abundant in CDH (Table 2). Furthermore,
only half of the flavonoids expressed as mg per 1 g dry weight of CWG in Table 2 are found
in CDH. The main structural features of the radical scavenging capability of flavonoids are
the presence of a catechol fragment in ring B, which possesses excellent electron-donating
properties; an OH-group at position 3 in ring C; and a 2,3-double bond conjugated with
the 4-oxo group responsible for the electron delocalization [51,52]. Quercetin meets all
the requirements exhibiting the highest activity. CWG contains a six-fold higher amount
of quercetin compared to CDH but four- and two-fold lower content of catechin and
epicatechin, respectively. Glycosides show a decrease in the inhibitory effect compared
to aglycones, and even the appearance of a pro-oxidant effect under lipid autoxidation
conditions [45,52,53]. A lack of correlation between rutin contents and antioxidant activity
of buckwheat was reported by Oomah et al. [45]. According to Kancheva et al. [54], the
effect of the glycoside depends on its concentration and on the nature and position of the
sugar. Thus, the activity of the studied extracts can be a result of overlapping antioxidant
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and/or pro-oxidant effect of the phenolic compounds, especially flavonoids. Possible
synergistic or antagonistic interactions between the phenolic acids and/or flavonoids may
also explain the results obtained [54,55].
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Figure 2. Kinetic curves of accumulation of lipid hydroperoxides during lipid autoxidation at 80 ◦C
in the presence of 0.12 wt%, 0.16 wt% and 0.20 wt% of the obtained cake extracts CWG (A) and
CDH (B).
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Table 3. Kinetic parameters characterizing autoxidation at 80 ◦C in the presence of extracts from the
cake obtained after filtration of the milky-like buckwheat beverage.

Cake Extracts The Main Kinetic Parameters during TGSO Autoxidation

Abbr. Concentr.
wt%

IPA
h

PF
-

RA, 10−7

Ms−1
ID
-

CDH
0.12 20.5 ± 1.5 1.2 1.56 ± 0.08 0.9
0.16 24.7 ± 1.5 1.5 0.97 ± 0.06 1.4
0.2 25.5 ± 1.5 1.5 1.21 ± 0.09 1.1

CWG
0.12 20.0 ± 1.5 1.2 1.49 ± 0.09 0.9
0.16 33.0 ± 2.0 1.9 0.76 ± 0.04 1.8
0.2 32.0 ± 2.0 1.9 0.69 ± 0.06 2

Control sample parameters: IPC = 17 ± 1.5 h; RC = 1.36, 10−7 Ms−1.

4. Conclusions and Future Outlook

The antioxidant capacity of beverages obtained from dehulled or whole buckwheat
grains, which was measured by applying ABTS and FRAP assays, revealed similar out-
comes. Buckwheat dairy alternatives from whole grains exhibit a total phenolic content
and an antioxidant potential similar to those prepared with dehulled grains but were char-
acterized by greater flavonoid variety. On the other hand, cake obtained as a by-product
from whole grains processing was more differentiated in terms of its phenolic profile and
more potent in terms of antioxidant activity than the target beverage. Cakes from dehulled
and whole grains exhibited differences within total phenolic content, FRAP, antiradical
activity towards DPPH• and under lipid autoxidation conditions. The chain-breaking
antioxidant activity of the buckwheat extracts obtained from the cake depended on their
concentrations in the oxidizable lipid substrate. The highest activity has been observed
for CWG at concentrations 0.16 wt% and 0.20 wt%. An interesting opportunity to increase
the content of extractable polyphenols from buckwheat by-products is the use of pectolitic
enzymes and cellulases. The phenolic profile after enzymatic hydrolysis needs to be further
investigated, as starch may comprise up to 70% of buckwheat’s dry weight [56], which
could cause problems during thermal processes applied to extend the microbial shelf life of
the product [1,3,57]. Amylase family enzymes are often used for starch liquefaction and
to achieve the desired viscosity. Due to their high amount of oligosaccharides, i.e., fer-
mentable sugars [58], buckwheat-based milk alternatives have promising applications in
fermentation and in the production of dairy free yoghurt-type products. Furthermore, due
to their nutritional composition and pH, they are a suitable food matrix for incorporation
of probiotics. In addition, buckwheat by-products CWG and CDH could be used for the
fortification of food formulations with phenolic compounds and dietary fiber [59].
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