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Abstract: To prepare boron doped perovskite CaTiO3 nanocubes coupled with graphene oxide (B-
CaTiO3/GO), B-CaTiO3 photocatalyst was initially synthesized by the solvothermal method and
subsequently attached on GO by a simple hydrothermal process. The phase structure and optical
features of the prepared materials were efficiently characterized by several techniques. The XRD
patterns indicated that boron doping could not give rise to lattice disruption of CaTiO3. The results
of XPS, HRTEM and Raman measurements revealed that the presence of B-CaTiO3 is anchored
on the surface of GO effectively. The morphology of the B-CaTiO3/5GO was nanocube particles.
The photocatalytic capacity of B-CaTiO3/GO nanocomposites was determined by investigating the
degradation of a model dye, methylene blue (MB). Their degradation performance could be enhanced
by altering the ratio between B-CaTiO3 and GO. The most effective GO incorporation is 5 wt%, and
at this loading percentage, B-CaTiO3/GO nanocomposite showed improved photocatalytic activity
compared with CaTiO3 and B-CaTiO3 photocatalyst, which could be attributed to the synergistic
efficacy of the adsorbed MB molecule on the GO followed by their degradation after 180 min of visible
light. Additionally, the active species trapping tests confirm the dominant role performed by ·OH and
O2·− during the degradation of MB. The presence of HCO3

− and Cl− indicated moderate prohibitive
effect on the degradation of MB, while NO3

− and SO4
2− negatively affected the catalytic activity

in a non-significant way. In brief, the results of this study show that boron doped perovskite-type
semiconductor catalysts by combining with graphene has significant efficiency in the removal of MB
from aqueous solution, which can be employed as effective photocatalyst materials for the treatment
of other organic pollutants.

Keywords: perovskite; boron doped CaTiO3; visible light induced photocatalysis; methylene blue

1. Introduction

Water pollution is a significant concern that arises from the contamination of water
bodies with harmful substances. Dye pollution from textile dyes represents the main
source of water pollution from colored compounds. The contamination of wastewater
with these dyes uses up dissolved oxygen, affecting aquatic life, and causes environmental
problems [1,2]. Methylene blue (MB) is a synthetic dye commonly used as a colorant in
paints and other applications, and its release into water bodies can have detrimental effects
on the environment and human health [3].

Solar light driven photocatalysis is one of the encouraging methods for environmental
remediation in a more environmentally friendly approach [4–6]. Semiconductor-based
photocatalysis has been widely studied and applied in various environmental applications,
particularly in the field of environmental pollution remediation [7,8]. The basic principle of
semiconductor photocatalysis involves the absorption of photons with energy equal to or
greater than the band gap of the semiconductor. This results in the formation of e−/h+ pairs
which then react with the oxygen and hydroxyl ions to produce radical species that can
decompose the water pollutants on the surface of catalyst particles easily and rapidly [9,10].
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In this context, several semiconductor-based processes and their composites have been
widely studied and applied in various environmental applications [11–13]. Among the
wide range of photocatalytic samples synthesized to date, perovskite-based semiconductors
of the form ABO3 have recently taken widespread attention because of their great properties
such as electron mobility, stable photo-electrochemistry properties, band gap tunability,
and high thermal and photocorrosion stability [14–18]. Generally, in this crystal structure,
the A cation typically has a larger size, and the B cation has a smaller size, relative to the
oxygen ions. The size difference gives rise to the aforementioned properties of perovskite
oxides [19–21]. Thus, this n-type semiconductor can be a good substitute for industrial
catalyst TiO2, as it has a more negative conduction band potential than the TiO2, which
is widely and effectively used. Particularly, calcium titanate (CaTiO3) with a perovskite
crystal form has been used in several areas containing environmental remediation, energy
conversion, biomedical application, and industrial processes [22–25]. Although CaTiO3
is an effective perovskite material used in a wide range of fields, due to its large band
gap (~3.5 eV) and low quantum efficiency, its catalytic performance is restricted to UV
irradiation only [26,27]. Also, photo-formed electron-hole pairs can recombine quickly,
which is another concern that adversely affects photocatalytic performance [28,29]. Gen-
erally, the most important points for achieving the high photocatalytic performance of
CaTiO3 are the efficient separation of photoinduced charge carries and the need to expand
the absorption into the visible range. In this regard, several attempts have been made
in which graphene-based supporting materials are utilized to overcome these issues in
recent years [30–32]. The synergistic mutual effect of graphene-coupled composite and
semiconductor can improve different stages of photocatalysis: (i) the light absorption range
can shift to the red region to make better use of sunlight; (ii) the induced electrons can
be effectively moved to sp2-hybridized carbon structure, so quenching e−/h+ recombina-
tion; (iii) it can increase the adsorption of pollutants with the large specific surface area
since the adsorption of pollutants on the CaTiO3 surface is a key point in the aqueous
phase [33–35]. So, graphene-semiconductor nanostructured materials are of great interest
and have maintained to be studied recently to improve catalytic activity. Kumar et al.
prepared nitrogen doped CaTiO3 (NCT)-reduced graphene oxide (RGO) catalyst with very
effective visible light induced catalytic performance for the removal of methylene blue and
assigned this to the efficient interaction of the adsorption of MB on the graphene and the
subsequent decomposition [35]. Xian et al. prepared CaTiO3-graphene nanocomposites by
stirring CaTiO3 particles and graphene into ethanol, followed by drying with improved UV-
light-driven photocatalytic degradation for methyl orange (MO) [36]. Chen et al. reported
magnetically recoverable CaTiO3/RGO/NiFe2O4 ternary material with increased degrada-
tion for methylene blue and rhodamine B contaminants under the sunlight irradiation [37].
Lalan et al. synthesized Ag-CaTiO3@rGO nanocomposite with enhanced photocatalytic
degradation for the sulforhodamine B under natural sunlight and attributed this to the
synergistic effect of plasmon-driven visible light because of Ag and increased adsorption
and electron-transport features due to rGO [38]. Luo et al. reported CaTiO3 integrated with
rGO composites with increased photocatalytic capacity towards the removal of MO [39].
Also, by doping with foreign atoms with CaTiO3, studies have reported visible light activity
for degradation of pollutants. Boron doping is an alternative way, which is documented
in the literature to obtain photocatalysis under visible irradiation [40,41]. Recently, in a
study reported by Wu et al., it was stated that compared to other dopants, boron can be
immobilized much more easily into the graphene structure by substituting the carbon atom
owing to its theoretical size compatibility. Due to the electron-deficient nature of boron,
this doping can improve its p-type conductivity properties, allowing its application in pho-
tocatalysis. Therefore, the active sites of boron can become electron acceptors. Unlike the
n-type transfer property, the boron atom, which acts as a strong charge acceptance center,
ensures the p-orbital and supports charge transfer, which is useful for the photocatalysis
procedure [42]. However, there are no such studies in the case of CaTiO3 perovskite catalyst
according to the literature review so far.
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With this perspective, this study reports the preparation, characterization, and com-
parative study of the photocatalytic activity of series of B-CaTiO3/GO nanocomposites
(with 1 to 15 wt% of GO). The solvothermal method was performed to synthesize B-CaTiO3
photocatalyst and then the prepared GO were decorated on it using the hydrothermal
process. Due to its easy accessibility, and cost-effective and versatile application in industry,
the boron element was selected for this study. The photocatalytic performances of the B-
CaTiO3/GO nanocomposites were investigated for the removal of MB under the irradiation
of visible light. The effect of loading quantity of GO on the light absorbency and photo-
catalytic activity was studied. The physical features of the most efficient nanocomposite
(namely B-CaTiO3/5GO) were deeply characterized. For the same photocatalyst, the effect
of different experimental conditions such as pH, initial MB concentration, catalyst mass,
humic acid (natural organic substance (NOM), and inorganic ions has been assessed as
much as its stability and reusability. Additionally, a possible photocatalysis mechanism
has been proposed by trapping tests. The notable catalysis results and recyclability of the
B-CaTiO3/5GO composite material can be a sign of a potential effective material in the
photocatalysis system for environmental remediation. Therefore, the results of this study
may be helpful for the plan of visible/solar irradiation induced photocatalyst and reusable
perovskite-based catalysts for many industrial applications.

2. Materials and Methods
2.1. Materials

Titanium (IV) butoxide (Ti(OC4H9)4), Ca(NO3)2·4H2O, H3BO3, PEG4000, NaOH, HCl,
H2SO4, NaNO3, KMnO4, H2O2 (35% in water), NaHCO3, Na2SO4, KCl, humic acid sodium
salt, isopropyl alcohol, benzoquinone, and ethylenediaminetetraacetic acid disodium salt
dehydrate were used from Sigma-Aldrich company (Bengaluru, India). Deionized water
utilized during the whole study was obtained by an ultra-filtration system (1.47 µs/cm
at 25 ◦C).

2.2. Synthesis and Characterization
2.2.1. Synthesis of CaTiO3 and B-CaTiO3

The samples were synthesized using NaOH as a mineralization reagent through the
solvothermal method [43]. In a typical procedure, 2.5 mL Ca(NO3)2·4H2O (4 M) and 2.5 mL
H3BO3 (2 M) were dissolved in 172 mL of PEG 4000 solvent with constant stirring. Then,
3.3 mL of Ti(OC4H9)4 was added dropwise to the above solution under constant stirring.
To this suspension, 22 mL of NaOH solution (10 M) was added dropwise and stirred for a
further 2 h. Subsequently, the milky white suspension was solvothermally treated at 180 ◦C
for 15 h. The resulting product was then washed with ethanol and DI water, centrifuged,
and dried at 80 ◦C. After drying, the resultant material was further sintered at 700 ◦C
for 2 h. The synthesis of CaTiO3 catalyst was similar to the above procedure without
adding H3BO3.

2.2.2. Synthesis of Graphene Oxide

Graphene oxide (GO) was synthesized by graphite through the Hummers method [44].
Briefly, 2 g of graphite flakes (from Kropfmuhl GmbH, Hauzenberg, Germany) were
dissolved with 92 mL of H2SO4 (conc.) and then of 2 g of NaNO3 was put in it under
stirring in ice bath for 30 min until it to about 0 ◦C. Moreover, 12 g of KMnO4 was added
very slowly to the above solution and maintained at 35 ◦C and stirred for 2 h. Then, 140 mL
of DI water was slowly added to this mixture and the final suspension was left mixing
at 95 ◦C for a further 1 h in the silicon oil bath. This mixture was then cooled to room
temperature and then 400 mL of DI water was added and 14 mL H2O2 was then added
slowly to get the yellow color of the mixture. Then, the resulting yield was washed with DI
water and centrifuged at 10,000 rpm for 10 min. Eventually, GO powder could be prepared
by drying at room temperature.
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2.2.3. Synthesis of B-CaTiO3/GO Composites

The B-CaTiO3/GO composites were prepared in an easy hydrothermal way. In a
typical procedure, a certain amount of GO (which is equal to 1, 5, 10, and 15% of B-CaTiO3
mass, respectively) was ultrasonicated in 10 mL of DI water. Then, 250 mg of B-CaTiO3 was
also dispersed in 10 mL of DI water. Then, both suspensions were mixed, ultrasonically
dispersed for 30 min, and stirred for 24 h to get B-CaTiO3/GO photocatalysts. Finally, the
resulting suspension was dried overnight at 70 ◦C (Scheme 1).

Processes 2023, 11, x FOR PEER REVIEW 4 of 26 
 

 

slowly to get the yellow color of the mixture. Then, the resulting yield was washed with 
DI water and centrifuged at 10,000 rpm for 10 min. Eventually, GO powder could be 
prepared by drying at room temperature. 

2.2.3. Synthesis of B-CaTiO3/GO Composites 
The B-CaTiO3/GO composites were prepared in an easy hydrothermal way. In a 

typical procedure, a certain amount of GO (which is equal to 1, 5, 10, and 15% of B-CaTiO3 
mass, respectively) was ultrasonicated in 10 mL of DI water. Then, 250 mg of B-CaTiO3 
was also dispersed in 10 mL of DI water. Then, both suspensions were mixed, 
ultrasonically dispersed for 30 min, and stirred for 24 h to get B-CaTiO3/GO 
photocatalysts. Finally, the resulting suspension was dried overnight at 70 °C (Scheme 1). 

 
Scheme 1. The preparation processes of B-CaTiO3 nanopowder (I) and B-CaTiO3/GO 
nanocomposites (II)  

2.2.4. Material Characterization 
The crystallographic studies of the prepared materials were performed in the 2θ 

range from 10–90° by using a PANanalytical Empyrean diffractometer with a CuKα 
radiation (λ = 0.1542 nm). Raman spectroscopic analyses were carried out with a WITech 
alpha 300R using a 532 nm laser for excitation. Surface morphology was assessed by field 
emission scanning electron microscopy (FESEM-EDS, Zeiss Sigma 300, St. Louis, MO, 
USA) and high-resolution transmission electron microscopy (HR-TEM FEI TALOS F200S 
at 200 kV). X-ray photoelectron spectroscopic (XPS) analysis was carried out on a Thermo 
Scientific (Waltham, MA, USA) K-Alpha having an Al-Kα radiation micro-focused 
monochromator with variable spot size (30–400 µm in 5 µm steps) to detect the elemental 
composition of the material. The ultraviolet-visible (UV-vis) diffuse reflectance spectra 
(DRS) were measured using a UV-VIS-NIR spectrophotometer (Shimadzu UV-3600 Plus, 
Kyoto, Japan). The photoluminescence (PL) spectra were measured with Edinburgh 
Instruments FLSP920 fluorescence spectrometer. The Brunauer–Emmett–Teller (BET) 
specific surface area (SBET) and nitrogen adsorption–desorption isotherms were measured 
at 77 K on a Micromeritics 3Flex Version 4.02. The isoelectric point, pHpzc, was determined 
using Zeta-sizer equipment (Malvern Zetasizer Nano ZSP, Malvern, UK). The total 
organic compound (TOC) analysis was carried out by Shimadzu TOC-L. 

  

Scheme 1. The preparation processes of B-CaTiO3 nanopowder (I) and B-CaTiO3/GO nanocomposites (II).

2.2.4. Material Characterization

The crystallographic studies of the prepared materials were performed in the 2θ range
from 10–90◦ by using a PANanalytical Empyrean diffractometer with a CuKα radiation
(λ = 0.1542 nm). Raman spectroscopic analyses were carried out with a WITech alpha 300R
using a 532 nm laser for excitation. Surface morphology was assessed by field emission
scanning electron microscopy (FESEM-EDS, Zeiss Sigma 300, St. Louis, MO, USA) and
high-resolution transmission electron microscopy (HR-TEM FEI TALOS F200S at 200 kV).
X-ray photoelectron spectroscopic (XPS) analysis was carried out on a Thermo Scientific
(Waltham, MA, USA) K-Alpha having an Al-Kα radiation micro-focused monochromator
with variable spot size (30–400 µm in 5 µm steps) to detect the elemental composition
of the material. The ultraviolet-visible (UV-vis) diffuse reflectance spectra (DRS) were
measured using a UV-VIS-NIR spectrophotometer (Shimadzu UV-3600 Plus, Kyoto, Japan).
The photoluminescence (PL) spectra were measured with Edinburgh Instruments FLSP920
fluorescence spectrometer. The Brunauer–Emmett–Teller (BET) specific surface area (SBET)
and nitrogen adsorption–desorption isotherms were measured at 77 K on a Micromeritics
3Flex Version 4.02. The isoelectric point, pHpzc, was determined using Zeta-sizer equipment
(Malvern Zetasizer Nano ZSP, Malvern, UK). The total organic compound (TOC) analysis
was carried out by Shimadzu TOC-L.

2.3. Photocatalytic Activity Study

The photocatalytic performance of the prepared materials was investigated through
MB dye removal under visible irradiation (450 nm, the light source was fabricated with
5 Philips Mercury (Hg) lamps-TL-K 40W/10R ACTINIC BL REFLECTOR, 2.3 mW/cm2). In
a typical reaction, 50 mg of each catalyst was put in 50 mL of 10 mg L−1 aqueous solution
of MB and stirred for 30 min in the absence of light to achieve the adsorption–desorption
equilibrium between MB and the catalyst surface. Photodegradation of the pure MB in
the absence of the catalyst or dark experiments in the presence of the catalyst was also
evaluated under the same experimental conditions as control experiments. After definite
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time intervals of 30 min, 4 mL of the suspension taken out from the test quartz tube was
centrifuged to remove any residual solid catalyst particles for 5 min at 10,000 rpm. After
separation, the supernatant was monitored at λ = 668 nm using a spectrophotometer and
the amount of dye in the supernatant was calculated in relation to the reaction time. The
removal percentage (%) of dye was estimated using the formula:

Degradation(%) = (1− Ct/C0)× 100 (1)

Here C0 is the initial MB concentration, and the MB concentration after sample irradia-
tion is Ct. Separated catalysts were simply washed with DI water and dried at 80 ◦C, and
then kept for reusability experiments. Moreover, effects of some experimental parameters
such as pH, pollutant concentration, catalyst mass, and water matrix have been investigated
as much as reusability of the best composite B-CaTiO3/5GO. The effect of anions on photo-
catalytic activity was studied for the best composite B-CaTiO3/5GO via the introduction of
NaNO3, NaHCO3, Na2SO4, and KCl, respectively. The effect of the presence of humic acid
on the degradation efficiency was also evaluated to simulate water more realistically. In
order to further usability of best sample B-CaTiO3/5GO as a catalyst for water treatment,
the dye degradation was studied by performing the decomposition in sea water, tap water,
and drinking water-spiked MB. Furthermore, the effect of pH on the photocatalytic activity
was evaluated by adjusting the pH of the reaction solution with 0.1 M NaOH or 0.1 M
HCl solutions. To determine the generation of different reactive oxygen species (ROS),
ethylenediaminetetraacetic acid, benzoquinone, and isopropyl alcohol were evaluated.

3. Results and Discussions
3.1. Structural and Morphological Analysis

The X-ray diffraction (XRD) analysis was carried out on GO, CaTiO3, B-CaTiO3, and
B-CaTiO3/GO nanocomposites to predict the crystal structure and phase composition and
the XRD patterns are shown in Figure 1.

 

 

 

Figure 1. XRD patterns of the prepared photocatalysts. 

 

Figure 1. XRD patterns of the prepared photocatalysts.



Processes 2023, 11, 3191 6 of 24

The major peak of GO appears at 2θ = 10.8◦ which can be attributed to the oxidation
of graphite into GO. The characteristic peak of GO at 10.8◦ could not be seen in the XRD
pattern of the B-CaTiO3/GO composites. This can be attributed to the fact that a big
proportion of GO layers in the nanocomposite are intercalated via B-CaTiO3 particles,
aggregation in an irregular pattern, and a low amount of GO in the composites. Meanwhile,
there is no observable peak of boron ion in the XRD, which may because of the small weight
ratio of boron incorporated into the lattice of CaTiO3. However, more intense peaks were
obtained compared to the peaks of CaTiO3. All possibilities can also lead to relatively
weak diffraction intensity of both GO and boron in comparison to the other peaks. All the
XRD peaks of nanocubes catalysts can be indexed to the orthorhombic phase (JCPDS card
no. 82-0228), indicating the purity and orthorhombic phase of CaTiO3 [43]. It can be seen
in Figure 1 that the intensities of the fundamental phases of CaTiO3 are not significantly
affected and the XRD patterns of modified CaTiO3 and pure CaTiO3 are similar. Since the
ionic radius of the Ca2+ is bigger than the B3+ ion (180 pm and 85 pm, respectively), this
shows the substitution of Ca2+ sites with B3+ in the crystalline lattice of CaTiO3 resulting
in some internal strain [45]. Furthermore, the average crystallinity of CaTiO3, B-CaTiO3,
B-CaTiO3/1GO, B-CaTiO3/5GO, B-CaTiO3/10GO, and B-CaTiO3/15GO were computed
using the Scherrer equation [46] as 28.0, 25.2, 26.9, 27.3, 26.4, and 27.8 nm, respectively. In all
situations, a nanometric distribution of B-CaTiO3 catalyst is seen, and it is estimated that the
crystal size decreases as the weight percentage of GO loaded increases, resulting in a good B-
CaTiO3/GO interaction. Also, B-CaTiO3/GO composites with different mass percentages of
GO indicated XRD peaks similar to that of B-CaTiO3 without affecting the main structure in
all catalysts powder. Considering the photocatalytic results, structural and morphological
analyses were performed only on the best photocatalyst, namely B-CaTiO3/5GO. The
optical properties of CaTiO3, B-CaTiO3, and B-CaTiO3/5GO were determined by UV-
visible DRS in the range of 200–800 nm and their band gap energies can be estimated using
the formula:

Eg = 1240/ λg (2)

where Eg is optical band gap energy, and λg is the absorption of the catalyst [47].
As can be shown in Figure 2, the neat CaTiO3 has an adsorption edge at 372.3 nm and

the band gap energy was calculated to be 3.33 eV and accordingly, there is no absorption
in the visible range. Since the incorporation of boron into the structure remarkably has
an effect on the electronic structure of CaTiO3, exhibiting a shift to about 414.4 nm, this
ascribes to the band gap of 2.99 eV and an absorption near the visible region is obtained.
This reduction in the band gap indicates that additional energy levels excited by B-doping
occur above the valence band (VB) of the CaTiO3 and shift its absorption to the visible
region. The red shift observed in the absorption wavelength of B-CaTiO3 compared to
CaTiO3 also shows the successful doping of B into the lattice structure of CaTiO3. In
addition, the absorption edge of B-CaTiO3/5GO is observed at 434.4 nm and its calculated
band gap energy is 2.85 eV. Hence, the absorption in the visible range is increased for B-
CaTiO3/5GO composite as compared to the pure CaTiO3 and B-CaTiO3. This suggests the
strong photoactivity of this sample under the visible light. This data is compatible with the
incorporation of graphene, which increases the visible region absorption and consequently
increases the catalytic capacity [48]. Hereby, the DRS data obviously shows that the
synergistic effect of both B and GO loading in CaTiO3 bricks increases the absorption
of the visible range by the catalysts and accordingly the photocatalytic activity was also
improved. Attou et al. [49] investigated the band gaps of undoped and B-doped CaTiO3
semiconductor perovskites with Density Functional Theory (DFT) and Boltzman transport
theory (BoltzTraP) using the full potential linearized augmented plane wave (FP-LAPW)
method with the GGA-PBE approach. They stated that by incorporating B into CaTiO3, the
band gap efficiently decreased and as a result, the ability to absorb visible light increased.
They demonstrated that the conduction band minimum (CBM) for pure CaTiO3 is the
hybridization of Ca 2s, 4p, Ti 3p, 3d, and O 2s, 2p orbitals. In their study, incorporating
B into a CaTiO3 lattice resulted in the hybridization of CBM orbitals with B 2s, 2p, and
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accordingly, the energy of the B 2s orbital decreased and the energy band gap decreased.
Raman analyses were carried out to confirm the presence of GO and B-doped CaTiO3.
As can be seen in Figure 3, the curve of B-CaTiO3 exhibits typical peaks at 79.1 cm−1,
137.03 cm−1, and 184.2 cm−1 corresponding to the vibrations of B-CaTiO3 [50].
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The Raman band located at 184.2 cm−1 is corresponding to the motion of Ca2+ ions 
[51,52]. Moreover, the bands in GO at 1339.8 cm−1 and 1579.6 cm−1 show the defect-
pertaining D and the graphitic G bands. The G band is based on the vibration of sp2 carbon 
atoms in the layer and the D band shows the breaking of sp2 hybridized C=C bonds to sp3 
hybridized C-C bonds during the oxidation of graphite [53]. Photoluminescence (PL) 
analysis was performed to examine the effect of GO loading in B-CaTiO3/5GO composite 
and the obtained PL spectra of B-CaTiO3 and B-CaTiO3/5GO catalysts are shown in Figure 
4. Figure 4a–d shows the PL spectra of bare CaTiO3 (a), B-CaTiO3 (b), B-CaTiO3/5GO (c) 
catalysts, and GO (d) in the wavelength range between 300 and 1000 nm with excitation 
wavelength of 532 nm. The catalysts samples displayed strong luminescence under UV 
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Figure 3. Raman spectra of B-CaTiO3 (insert), GO (black line), and B-CaTiO3/5GO (red line).

The Raman band located at 184.2 cm−1 is corresponding to the motion of Ca2+ ions [51,52].
Moreover, the bands in GO at 1339.8 cm−1 and 1579.6 cm−1 show the defect-pertaining
D and the graphitic G bands. The G band is based on the vibration of sp2 carbon atoms
in the layer and the D band shows the breaking of sp2 hybridized C=C bonds to sp3

hybridized C-C bonds during the oxidation of graphite [53]. Photoluminescence (PL)
analysis was performed to examine the effect of GO loading in B-CaTiO3/5GO composite
and the obtained PL spectra of B-CaTiO3 and B-CaTiO3/5GO catalysts are shown in
Figure 4. Figure 4a–d shows the PL spectra of bare CaTiO3 (a), B-CaTiO3 (b), B-CaTiO3/5GO
(c) catalysts, and GO (d) in the wavelength range between 300 and 1000 nm with excitation
wavelength of 532 nm. The catalysts samples displayed strong luminescence under UV
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excitation. CaTiO3 exhibits an emission intensity at 652 nm. Simultaneously, local vibrations
in the lattice structure and thermal vibrations resulted in luminescence spectra with a broad
band [54,55]. The PL intensity of B-CaTiO3/5GO at 652 nm was higher than B-CaTiO3
and CaTiO3 under the same measuring conditions. Figure 4d shows the PL spectra of
GO. Three emission peaks located at approximately 452, 654, and 687 nm, respectively, are
observed in GO. This suggests that the doping of boron and incorporation of GO caused an
enhancement of the emission properties [55]. To understand more details of the surface
feature of the B-CaTiO3/5GO, the XPS analysis is carried out.

The survey spectra of the B-CaTiO3/5GO composite in Figure 5a shows all the elements
of Ca, Ti, O, B, and C arriving from the composite sample. The high-resolution Ti 2p is
seen in Figure 5b, the peaks located at 460.29 and 465.79 eV for Ti 2p3/2 and Ti 2p1/2,
respectively, of Ti4+ of CaTiO3 [56]. As we see from Figure 5c, the B 1s XPS spectrum has
three different peaks at 190.72, 194.04, and 200.43 eV, respectively. The peak at 190.72 eV
shows the presence of boron that is probability interstitially waved in the CaTiO3 with
Ti-O-B structure, that at 194.04 eV represents the B-O-B groups, typical of the H3BO3 or
B2O3 phase, that at 200.43 eV could be assigned to the boron doped into TiO2 by occupying
O sites to generate O-Ti-B bond [57,58]. From Figure 5d, the O 1s divides into two peaks
of 531.08 eV and 533.46 eV, which can be attributed to the oxygen present in the lattice
and surface -OH groups, respectively [59]. The XPS spectrum of Ca2+ is given in Figure 5e,
two typical peaks at 351.97 eV and 348.82 eV are attributed to Ca 2p1/2 and Ca 2p3/2,
respectively [56]. Furthermore, as revealed in Figure 5f for C 1s, the binding energies at
291.30 eV and 286.88 eV for the partially oxidized carbonaceous moieties (C-O bonds)
and C-C bonds, respectively [60]. To examine the impact of GO nanolayers on the surface
area of CaTiO3 and to explore the impact of GO on improving the photocatalytic capacity
of the B-CaTiO3/5GO composite, the BET surface area of B-CaTiO3 and B-CaTiO3/5GO
samples has been investigated. Figure S1 in Supplementary Materials shows the N2
adsorption–desorption isotherms for B-CaTiO3 and B-CaTiO3/5GO heterojunction. As
given in Table 1, the BET surface area of the B-CaTiO3 and B-CaTiO3/5GO are 0.0573 m2/g
and 3.9303 m2/g, respectively. The total pore volumes of B-CaTiO3 and B-CaTiO3/5GO
materials are 0.0012 cm3/g and 0.0350 cm3/g, respectively. Regarding the pore size, the
pore width of B-CaTiO3/5GO (10.53 nm) is smaller than that of B-CaTiO3 (202.76 nm).
After GO loading on B-CaTiO3, the BET surface area of the B-CaTiO3/5GO composite
was increased to 3.9303 m2/g, which is larger in comparison to that of B-CaTiO3. Thus,
B-CaTiO3/5GO heterojunction catalyst with the high surface area supplies further reaction
area for the adsorption and subsequent degradation of MB dye and therefore results in the
improvement of photocatalytic performance.
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Table 1. Structural characteristics of B-CaTiO3 and B-CaTiO3/5GO catalysts.

Catalysts SBET
a PS, Pore Size (nm) b Vpore (cm3/g)

B-CaTiO3 0.0573 m2/g 202.76 nm 0.0012 cm3/g
B-CaTiO3/5GO 3.9303 m2/g 10.53 nm 0.0350 cm3/g

a Average pore diameter calculated from BJH desorption average pore width (4V/A). b Single point total pore
volume at the relative pressure of ca. 0.966.

The general morphology of B-CaTiO3 and B-CaTiO3/5GO catalysts was investigated
using the FESEM-EDS technique. The FESEM images taken at different magnifications
and perspective of B-CaTiO3 are shown in Figure 6a–c, which shows irregular cube-like
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morphology. Also, the FESEM images taken at different magnifications and perspectives
of B-CaTiO3/5GO are shown in Figure 6d–f. As shown in Figure 6d–f, the formation of
GO nanolayers in the form of nanobelts can be seen, and the B-CaTiO3 particles deposited
on GO sheets, thus confirming the successful heterojunction formation, which indicates
B-CaTiO3 particles and GO sheets were not isolated from each other. In this manner,
this can be advantageous for separation of e−/h+ pairs, facilitating their transfer and
reducing aggregation of nanoparticles. Figure 6g presents EDS spectra of Ca, Ti, O, B, and
C element loaded on B-CaTiO3/5GO composite material confirming the presence of all the
constituent elements. Moreover, these results also show that the heterostructure formed
by B-CaTiO3 and GO was formed using the hydrothermal method, which is a simple
economical preparation. Further, the HR-TEM images of B-CaTiO3/5GO with different
magnifications are shown in Figure 7a–f. The SAED pattern given in Figure 7g suggests the
presence of B-CaTiO3 crystalline structure [61].
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3.2. Photocatalytic Activity Studies

The photocatalytic performance of the CaTiO3, B-CaTiO3, and all B-CaTiO3/GO
nanocomposites was studied by evaluating the removal of methylene blue (MB) dye
pollutant under visible irradiation. For comparison purposes, control tests, including dark
tests (with catalyst, no light) and light without catalyst, were performed under the same
parameters. The impact of GO amounts on the photocatalytic activities of B-CaTiO3/GO
composites was studied. The corresponding results are shown in Figure 8.

As indicated in Figure 8a, the adsorption removal percentages of MB (experiments in
the dark) over the CaTiO3, B-CaTiO3, B-CaTiO3/1GO, B-CaTiO3/5GO, B-CaTiO3/10GO,
and B-CaTiO3/15GO were 6.8%, 10.8%, 33.9%, 39.6%, 41.8%, and 45.3% respectively. The
best adsorption removal efficiency was obtained for B-CaTiO3/15GO composite (45.3%).
It was observed that the adsorption of MB pollutant on the graphene increased as the
amount of GO increased. These improved adsorptions of dye molecules can be assigned
to the large surface area of GO modified with the perovskite photocatalyst and more dye
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molecules are adsorbed on the surface of the B-CaTiO3/GO composite to overcome the
resistance of all mass transfer with the increase in MB concentration. Figure 8b shows
the photocatalytic activities of the photocatalysts that are studied using the visible light
driven photocatalysis for MB degradation. Initially, it was found that the photodegradation
of the pure MB solution in the absence of the photocatalyst is only around 5.4% in a
time of 180 min, signifying its high photo-stability. The first reduction in the degradation
rate of MB increases with the increase in the GO amount, which could be attributed to
the improved adsorption during the adsorption–desorption equilibrium for 30 min to
provide adsorption–desorption equilibrium. Also, the decrease in absorption is due to
the degradation of MB. After 180 min of visible light, the degradation rates (%) of MB
calculated for CaTiO3, B-CaTiO3, B-CaTiO3/1GO, B-CaTiO3/5GO, B-CaTiO3/10GO, and
B-CaTiO3/15GO were 10.1%, 31.3%, 75.8%, 87.4%, 82.3%, and 77.6%, respectively. As
shown in Figure 8b, pure CaTiO3 shows relatively low catalytic activity (10.1%) due to
its weak visible light utilization and high recombination of e−/h+ pairs. Furthermore,
the degradation of MB of B-CaTiO3 catalyst is slightly increased to 31.3%. Notably, the
degradation rate of MB with B-CaTiO3/5GO is significantly enhanced to 87.4%, which is
around 8.65 and 2.79 times higher than those of neat CaTiO3 and B-CaTiO3. The better
activity of the B-CaTiO3/5GO nanocomposite is ascribed to the presence of heterojunction
and synergistic effect of GO and B in the structure, which can inhibit the electron-hole
recombination and transport efficiency of photogenerated charge carries due to the big
surface area and more active photocatalytic sites of GO [35,62]. Figure 8b also shows
that the incorporation of GO amounts in higher than 5% can cause a decrease in the light
penetration through the GO sheets and thus results in a decrease in the activity of the CaTiO3
perovskite catalyst for the formation of reactive species (ROS) [63]. Furthermore, Figure 8c
shows the TOC removal activity of MB over B-CaTiO3 and B-CaTiO3/5GO heterostructure.
It is clear that the mineralization ratio of the B-CaTiO3/5GO heterostructure (60.1%) is
better than that of B-CaTiO3 (12.4%), which shows that the B-CaTiO3/5GO heterostructure
has a far higher mineralization ability and MB is decomposed into smaller molecules
and by-products [64,65]. The impact of the initial MB concentration on its degradation
over B-CaTiO3/5GO under visible irradiation degradation tests were performed out by
changing the concentration of MB (5–20 mg/L) with a constant amount of catalyst (50 mg).
Figure S2 indicates that with increase in the concentration of MB solution from 5 mg/L to
20 mg/L, the photocatalytic degradation of the MB decreased. The effect of catalyst mass
on MB photodegradation (Figure S3) was also determined. As the catalyst increases, the
amount of dye adsorbed on the surface increases. As the concentration of catalyst increases,
the turbidity of the solution may increase and, accordingly, photocatalytic activity may
decrease as light is prevented from reaching the catalyst. However, in this study, since
B-CaTiO3 nanopowder was immobilized on the GO surface, there was no turbidity as the
concentration of catalyst increased from 0.5 g/L to 2.5 g/L. When the catalyst concentration
increased from 0.5 g/L to 2.5 g/L, the removal percentage of MB increased from 79.9% to
98.3%. The photocatalytic degradation kinetics was determined by performing the pseudo
first order kinetic model:

ln(C0/Ct) = kt (3)

In the formula, k is the pseudo-first-order reaction rate coefficient (min−1), t is the reac-
tion time (min), and C0/Ct is normalized MB concentration. Figure 8d shows that the first
order reaction kinetic is suitable for the degradation of MB and Figure 8e presents the kinetic
constant values of all the prepared catalysts for degradation of MB in a histogram form.
Based on the experimental system for the degradation of MB, the reaction rate coefficient
increases from 0.0019 min−1 for B-CaTiO3 to 0.0106 min−1 for the B-CaTiO3/5GO, more
than 5.6 times increase. The comparison between the B-CaTiO3/5GO composites prepared
in this study and other CaTiO3-modified graphene catalysts is shown in Table 2 [35–37,39].
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Table 2. Comparison of CaTiO3 and graphene-activated nanostructures reported by several researchers.

Pollutant Photocatalyst Light Source [Pollutant] [Catalyst] % Removal Time Refs.

MB RGO-N-CaTiO3 Visible light 4 × 10−5 M 50 mg ~95 180 [30]

Methyl
orange CaTiO3-graphene UV light 1 mg/L 1 g/L ~98 60 [31]

MB CaTiO3/rGO/NiFe2O4 Sunlight 5 mg/L 0.1 g/L ~83 180 [32]

Methyl
orange CaTiO3/rGO UV light 5 mg/L 100 mg ~93 60 [34]

MB B-CaTiO3/5GO Visible light 10 mg/L 1 g/L 87.4 180 This
work
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degradation (d), and histogram representing the values of the rate constants of all photocatalysts
[C0 = 10 mg L−1; Catalyst amount = 1 g L−1; pH 6.05] (e).

3.2.1. Effect of pH

To evaluate the most suitable pH of MB dye solution for its degradation over B-
CaTiO3/5GO, degradation tests were performed in pH range from 3 to 12 during a 180 min
treatment period with a constant amount of photocatalyst (50 mg) and initial concentration
of MB (10 mg L−1). To evaluate the point of zero charge (pHpzc), zeta potential evaluation
was performed as a function of the suspended B-CaTiO3/5GO sample. It is an important
phenomenon that the pollutant to be decomposed is first adsorbed on the catalyst surface,
while pH also affects the speciation of ionic species and the properties of the catalyst surface.
Figure 9a shows the point of zero charges of the B-CaTiO3/5GO in water and the pHpzc
of B-CaTiO3/5GO composite was at the pH value of 3.39. This value is close to the value
at which commercial CaTiO3 reaches zero load point at pH 3 [66]. Hence, B-CaTiO3/5GO
surface is positively charged at a lower pH (pH < 3.39), whereas it is negatively charged
under alkaline conditions (pH > 3.39) [67,68]. At a pH higher than pH 3.39, the performance
of the MB degradation is anticipated to enhance with increasing pH due to the electrostatic
interactions between the negatively charged B-CaTiO3/5GO surface and the MB cations.
Figure 9b shows the effect of pH on the degradation of MB by B-CaTiO3/5GO composite.
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The maximum degradation percentage is obtained at pH 6.05 (its natural pH of MB). At
the same time, the lower removal efficiency of MB at pH 3.06 may be due to the presence
of Cl− ions formed from the ionization of HCl acid used in pH adjustment. However, the
degradation performance did not significantly change between pH 6.05 and 12.08. This
can be an advantage because no additional pH arrangement is required for degradation
process of MB.
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3.2.1. Effect of pH 
To evaluate the most suitable pH of MB dye solution for its degradation over B-

CaTiO3/5GO, degradation tests were performed in pH range from 3 to 12 during a 180 min 
treatment period with a constant amount of photocatalyst (50 mg) and initial 
concentration of MB (10 mg L−1). To evaluate the point of zero charge (pHpzc), zeta potential 
evaluation was performed as a function of the suspended B-CaTiO3/5GO sample. It is an 
important phenomenon that the pollutant to be decomposed is first adsorbed on the 
catalyst surface, while pH also affects the speciation of ionic species and the properties of 
the catalyst surface. Figure 9a shows the point of zero charges of the B-CaTiO3/5GO in 
water and the pHpzc of B-CaTiO3/5GO composite was at the pH value of 3.39. This value is 
close to the value at which commercial CaTiO3 reaches zero load point at pH 3 [66]. Hence, 
B-CaTiO3/5GO surface is positively charged at a lower pH (pH < 3.39), whereas it is 
negatively charged under alkaline conditions (pH > 3.39) [67,68]. At a pH higher than pH 
3.39, the performance of the MB degradation is anticipated to enhance with increasing pH 
due to the electrostatic interactions between the negatively charged B-CaTiO3/5GO surface 
and the MB cations. Figure 9b shows the effect of pH on the degradation of MB by B-
CaTiO3/5GO composite. The maximum degradation percentage is obtained at pH 6.05 (its 
natural pH of MB). At the same time, the lower removal efficiency of MB at pH 3.06 may 
be due to the presence of Cl- ions formed from the ionization of HCl acid used in pH 
adjustment. However, the degradation performance did not significantly change between 
pH 6.05 and 12.08. This can be an advantage because no additional pH arrangement is 
required for degradation process of MB. 
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3.2.2. Effect of Water Matrix

Since real secondary wastewater bodies contain common inorganic ions such as
bicarbonate, nitrate, sulfate, and chloride, the influence of co-existing anions (C0: 2 mM
for all ions) on MB degradation was analyzed. Figure 10a shows that all the coexisting
elements cause a decrease in the degradation efficiency of MB. As given in Figure 10a, the
presence of bicarbonate, nitrate, sulfate, and chloride showed different blocking effects on
the degradation of MB and the corresponding degradation rates are 81.2%, 70.2%, 65.8%,
and 77.9%, respectively, starting from 87.4%. The inhibitory effects of coexisting ions may
be due to their role as scavengers for reactive oxygen species responsible for degradation.
Although these ions have been converted into new radical species, their photocatalytic
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performance was less effective than the reactive oxygen species (ROS) [69]. Consequently,
the degradation rate of MB may be decreased in the presence of these anions. However,
their impacts on decomposition of MB can be assigned to specific experimental parameters
such as catalytic reaction procedure, the kind of pollutant and the kind of the catalyst, and
so on [70]. As indicated in Figure 10b, the degradation activities were found as 82.2% and
71.4% in terms of tap and sea water, respectively. The data showed that MB removal was
adversely affected in the sea water while the degradation rate slightly decreased in the
tap water compared to photocatalytic studies with DI water. One of the possible reasons
for this decrease may be competitive adsorption between the anions (SO4

2− and Cl−) in
the water matrix and on the surface of the photocatalyst. Another reason for the decrease
in photoactivity can be clarification with the interaction of ·OH formed in photocatalytic
processes with sulfate and carbonate ions in the aqueous medium. In addition, humic acid
(HA), a natural organic substance typically presented in surface water, was used to simulate
real water samples. HA may negatively affect the photocatalytic degradation reactions
because of the interferences with the ROS during the photocatalytic processes. HA usually
presents in surface natural water ranging from 2 to 10 mg/L, so 5 or 8 mg/L HA were
tested under the same experimental settings in this study [71]. As seen in Figure 11, the
photocatalytic removal of MB slightly decreased in the presence of HA. Particularly, in the
case of adding 5 mg/L HA and 8 mg/L HA to the reaction, the MB degradation percentage
declined from 87.4% to 79.2% and 71.1%, respectively. Thus, it can be suggested that the
adsorption of HA on the photocatalyst surface is competitive with MB and the decrease in
the light penetration would be reasons for the decrease in the photocatalytic activity for MB
degradation [72]. These facts suggest that the MB degradation is anticipated to be slower
in real water samples containing both co-existing ions and HA.
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3.2.3. Mechanism of Photocatalytic Degradation

The potential mechanism responsible for the degradation of MB by B-CaTiO3/GO
catalyst is given in Scheme 2 and discussed below.
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Scheme 2. Schematic illustration of the possible photocatalytic mechanism of B-CaTiO3/5GO.

The performance of high capability of charge separation and formation of ROS on
the surface of B-CaTiO3/GO nanocomposite during a photocatalytic process have a key
role in the improvement of the photocatalytic performance. The band gap of the CaTiO3
photocatalyst has been reported as 3.5 eV in the literature [73]. In this work, the band
gap energies of CaTiO3, B-CaTiO3, and B-CaTiO3/5GO were estimated as 3.33 eV, 2.99 eV,
and 2.85 eV, respectively. In B-CaTiO3/5GO, during light irradiation, the electrons in the
valence band are induced from the VB to the CB, with simultaneous formation of holes (h+)
in the VB. These photoexcited e−/h+ pairs can be moved to the B-CaTiO3/5GO catalyst
surface and participate in redox reaction. Furthermore, graphene can act as an acceptor of
photo-induced electrons from the CB of the B-CaTiO3 catalyst because of its large specific
surface area and high conductivity. These photoexcited electrons react with adsorbed
oxygen to form superoxide radical anions (O2·−). At this time, the holes react with H2O or
OH− adsorbed on the surface of the B-CaTiO3/5GO to generate ·OH radical. These strong
oxidative species play a role in the degradation of MB to further degrade or mineralize
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MB. To confirm the proposed mechanism and to get an idea of the role performed by ROS,
trapping tests were carried out for MB removal using the B-CaTiO3/5GO photocatalyst
under visible irradiation. The trapping experiments results are given in Figure 12.
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Figure 12. Photocatalytic degradation of MB in the presence of scavengers under visible light [C0 = 
10 mg L−1; B-CaTiO3/5GO = 1 g L−1; pH 6.05]. 
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[C0 = 10 mg L−1; B-CaTiO3/5GO = 1 g L−1; pH 6.05].

The photocatalytic removal of MB was dramatically quenched in the presence of BZQ,
indicating that the O2

.− radical species was dominant in the degradation experiments
(Figure 12). Additionally, a considerable reduction in the degradation rate also occurred in
the presence of IPA, indicating the effective role of ·OH radical anions in the degradation of
MB. However, h+ species do not make a contribution much as the presence of BZQ or IPA
and had only a minor active role on the removal of MB. Hence, the above results show that
all three species play an active role in the photocatalytic capacity of B-CaTiO3/5GO in the
order O2

.− > ·OH > h+. Moreover, to further clarify the redox reactions of photoinduced
carries, it is essential to calculate the CB and VB edge potentials of B-CaTiO3. The CB and
VB potentials of B-CaTiO3 can be estimated using Mulliken electronegativity theory and
are estimated to be −0.60 eV and +2.40 eV, respectively (Supplementary Materials) [74].
The VB edge of B-CaTiO3 (2.40 eV) is close to the redox potential of H2O/·OH (2.72 V
vs. NHE) but is higher positive potential than OH−/·OH (+1.89 V vs. NHE) [75]. This
suggests that the photoinduced h+ can easily react with OH− (but not nearly with H2O) to
generate ·OH radicals. Also, the reduction potential of O2/O2

− is about −0.13 V versus
NHE [76], which is more positive than the potential of the B-CaTiO3 catalyst. The dissolved
O2 present in the reaction can react with photoinduced e− to generate superoxide radical
(O2·−) (Equation (6)). O2·− is one of the active species leading to dye degradation; it
tends to participate more in the reactions defined in Equations (6)–(8). This is one of the
alternative ways to generate ·OH radicals, and in this study O2 is continuously pumped
into the reaction and dominant reactive oxygen species because the CB band of B-CaTiO3 is
more negative than the reduction potential of O2/O2·−. Scheme 2 schematically shows the
photocatalytic mechanism of B-CaTiO3/5GO for dye degradation.

The general possible photocatalytic reaction mechanism can be summarized as follows
Equations (4)–(11) [77]:

CaTiO3/GO + hv(visible light)→ CaTiO3/GO
(
e+ + h+

)
(4)

e− + GO→ GO
(
e−

)
(5)

GO
(
e−

)
+ O2 → GO + O2.− (6)
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O2.− + 2H+ + e− → H2O2 (7)

H2O2 + e− → OH− + •OH (8)

h+ + H2O→ •OH + H+ (9)

h+ + OH− → •OH (10)

ROS + MB→ Degradation products (11)

3.2.4. Photocatalyst Reusability

It is essential to evaluate the photocatalytic stability and reusability of the catalysts
since it could significantly decrease the costs of the photocatalytic operation in water
treatment processes and disclose most hopeful photocatalysis candidates. Therefore, five
successive cycles of degradation of MB to determine the reusability of the B-CaTiO3/5GO
heterojunction as an effective nanocomposite were carried out. After each MB photocat-
alytic test was carried out, the precipitates were taken after centrifugation and kept for
the next cycle. The results obtained are presented in Figure 13. It can be seen that the
degradation rate of MB for the first and fifth cycling has decreased slightly from 87.4% to
82.8%, which may be because of the loss of the catalysts during each test process, which
contains some recovery stages such as centrifugation, washing, and drying. However,
the high degradation performance of the B-CaTiO3/5GO photocatalyst shows its high
photostability, likely because the adsorbed by-products were decomposed for the following
degradation tests.
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4. Conclusions

In conclusion, a series of boron doped CaTiO3 were supported on GO nanosheets
(B-CaTiO3/5GO nanocomposites) for the first time and showed their effective visible
light driven photocatalysis activity for the decomposition of a colored dye (MB). The B-
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CaTiO3/5GO composite is found to be the most effective nanocomposite among other
composites since it has the best degradation efficiency of MB-dyed molecules. It was
observed that 31.3% MB photodegraded due to B-CaTiO3 while 87.4% MB photodegraded
due to the B-CaTiO3/5GO nanocomposite. The increased catalytic efficiency can be corre-
sponded to the incorporation of GO in the composite because the GO has a large surface
area and excellent electronic properties to carry charge carrier species. Furthermore, the
noteworthy recyclability of the most effective catalyst is also shown. This work could be
a good example for a field-based study and feasibility of visible irradiation driven and
perovskite-based bifunctional photocatalysts for the environmental remediation.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/pr11113191/s1. Figure S1: N2 isotherms of (a) B-CaTiO3
and (b) B-CaTiO3/5GO catalysts; Figure S2: The effect of initial concentration of MB on photocatalytic
removal [Catalyst amount = 1 g L−1; pH 6.05]; Figure S3: The effect of catalyst mass on photocatalytic
removal [C0 = 10 mg L−1; pH 6.05]. Reference [78] is cited in the Supplementary Materials.
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