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Abstract: As gas wells enter the middle and late stages of production, they will become low-yielding
gas wells due to fluid loading and insufficient formation pressure. For many years, there has been
a lack of effective dynamic monitoring methods for low-yielding gas wells, and it is difficult to
determine the production of each phase in each production layer, which makes further development
face great uncertainty and a lack of basis for measurement adjustment. In order to solve this problem,
this paper proposes an intelligent dynamic monitoring method suitable for low-yielding gas wells,
which uses an ultrasonic Doppler logging instrument and machine learning algorithm as the core
to obtain the output contribution of each production layer of the gas well. The intelligent dynamic
monitoring method is based on the HGWO-SVR algorithm to predict the flow of each phase. The
experimental data are selected for empirical analysis, and the effectiveness and accuracy of the
method are verified. The research shows that this method has good application prospects and can
provide strong technical support for gas reservoir production stability and development adjustment.

Keywords: low-yield gas wells; gas–liquid two-phase flow; ultrasonic Doppler; hybridizing gray
wolf optimization; support vector regression

1. Introduction

With the deepening of the exploration and development of oil and gas fields, the
dynamic monitoring technology of oil and gas reservoirs comes into being. Through
dynamic monitoring technology, workers can effectively grasp the dynamic changes of
oil and gas formations, which can help workers to do more research on the dynamic
adjustment of oil and gas wells. At the same time, it can provide a perfect scientific basis
for the relevant problems of oil and gas field exploitation, so as to effectively ensure the
orderly development of oil and gas well exploitation.

Gas–liquid two-phase flow widely exists in petrochemical, energy power, nuclear
reactor, aerospace, and other industrial fields; the study of gas–liquid two-phase flow is
of great significance to the safe production in such related fields [1–4]. Production profile
logging is an important monitoring technology in the development of oil and gas reservoirs;
using the data can obtain the properties and production of the fluid produced by each
reservoir [5]. With the continuous development of gas reservoirs, the gas production is
gradually weakened, accompanied by the production of formation water. At this time, the
low-velocity gas–liquid two-phase flow will occur in the well, and a large amount of liquid
will appear at the bottom of the well, which seriously affects the normal production of gas
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wells. Due to the complex relative motion and interaction of the phase interface in the gas–
liquid two-phase flow in the wellbore, it is extremely difficult to measure the split-phase
flow rate and gas holdup, and the conventional gas–liquid two-phase production profile
logging methods and interpretation models are not applicable. It is urgent to establish a new
low-velocity gas–liquid two-phase flow production profile logging interpretation model.

In the gas–liquid two-phase flow, the interface of the gas–liquid two-phase structure
is complex and changeable. To describe the change law of gas–liquid two-phase flow
in more detail, scholars define the distribution state of fluid in the pipeline as the flow
pattern. The formation of the flow pattern depends on the fluid density, viscosity, pipe
diameter, and the flow rate of each phase, among which the flow rate of each phase plays
the most important role. After numerous physical experiments, our predecessors divided
the gas–liquid two-phase flow pattern of the vertical rising pipeline into bubbly flow, slug
flow, churn flow, and annular flow [6–8].

The development of computational fluid dynamics has greatly promoted the research
of the flow characteristics of gas–liquid two-phase flow in pipes. The VOF model has
been widely used to solve multiphase flow problems since its development [9]. In 2008,
Schepper et al. established a 3D horizontal pipeline model and used the VOF model
and PLIC method to calculate the flow condition of the air and water in the horizontal
pipeline, and the calculation results could be reproduced in Baker’s horizontal well flow
pattern distribution map [10]. In 2016, Lopez et al. carried out physical experiments and
CFD calculations on the gas–liquid two-phase flow in horizontal tubes. By comparing the
experimental and numerical simulation results, the results show that the VOF multiphase
flow model and SST k-ω can determine the gas–liquid two-phase flow pattern [11]. In 2020,
Garcia et al. discussed the application of the VOF model in ANSYS-Fluent software (ANSYS
FLUENT Release 15.0) to slug flow in two-dimensional horizontal pipelines, and proposed
a reduced-order model for predicting the nonlinear flow dynamics of laminar liquid–liquid
flow [12]. In the same year, to deepen the understanding of the transient characteristics
of gas–liquid two-phase slug flow in horizontal pipelines, Deendarlianto et al. conducted
CFD numerical simulation and experimental research on relevant phenomena [13]. In
2023, Zhao et al. simulated the gas–liquid two-phase flow pattern of horizontal and near-
horizontal wells by using the VOF model, which was consistent with the experimental
observation [14].

The most commonly used instruments for production profile logging in gas fields
are spinner flowmeters (including collectors flow and arrays) and optical fiber gas holdup
meters. However, the nonlinear response and low resolution of the instruments make the
measurement accuracy not ideal under low flow rates. With the development of science and
technology, more and more technologies are being used to measure gas–liquid two-phase
flow parameters, including the capacitive method or conductometric method [15], optical
fiber method [16], microwave method [17], gamma ray attenuation method [18], ultrasonic
method [19], etc. These measurement methods have their characteristics, and ultrasonic
wave has unique advantages in medical and pipeline fluid parameter monitoring because
it generally does not damage the measured flow field in the process of propagation and can
achieve non-invasive and non-disturbing parameter detection [20,21]. Currently, widely
used ultrasonic methods include the reflection method, transmission method, Doppler
method, and imaging method [22]. In 2004, Vatanakful et al. used a transmissive ultrasonic
sensor to measure the dispersed phase holdup in a gas–liquid-solid three-phase flow [23].
Zheng et al. studied the effect of gas phase and solid phase on the response of an ultrasonic
sensor in a gas–liquid-solid three-phase flow by measuring the velocity and attenuation of
ultrasonic waves through the medium [24]. In 2016, Gong et al. suggested an ultrasonic
pulse transmission method based on the ultrasonic sound pressure attenuation theory for
monitoring gas holdup in gas–liquid two-phase bubble flow [22]. In 2020, Jin et al. used
ultrasonic sensors and optical fiber sensors to investigate the measurement characteristics
of gas holdup by ultrasonic sensors for typical flow patterns in oil–gas–water three-phase
flows vertically rising with an inner diameter of 20 mm [25].
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The Doppler effect is the basis for the ultrasonic Doppler method of flow measurement.
The received signal frequency that is reflected or scattered on the sensor varies when the
fluid being detected contains minute-moving bubbles or suspended particles. The fluid
flow rate is then quantitatively measured by the frequency change value. In 2022, to explore
the problem of the production profile logging of low-yield oil wells, Song et al. conducted
an oil–water two-phase experimental investigation of ultrasonic Doppler logging tools
based on the measurement theory of ultrasonic Doppler logging tools. Through the DCA
and PCA methods, the water cut calculation chart and the ultrasonic oil flow rate prediction
model are established and used in field interpretation, with a good application effect [26].
Wang et al. proposed a novel approach to production profile logging that used a converging
annular logging tool and an ultrasonic Doppler logging tool to precisely determine the
flow rate of each phase of an oil–water two-phase flow at a low flow rate, and verified its
measurement characteristics through experiments. Last but not least, the PLS-SVR model
was established to predict the flow rate of oil and water, and compared with the measured
value, the results show high accuracy [5].

With the rise of artificial intelligence and society as a whole, more and more indus-
tries have bid farewell to traditional production methods, but have combined traditional
equipment with modern scientific and technological means to enter an era of intelligence.
In the production profile logging of low-yield gas wells, the phase distribution and velocity
distribution of gas–liquid two-phase fluid in the wellbore become complicated due to the
influence of gas well fluid accumulation, which makes the existing conventional production
profile logging interpretation methods such as the drift model and slippage model not
applicable. To accurately determine the gas–liquid two-phase flow parameters, the relevant
knowledge of machine learning is applied to the production profile logging interpretation
model. Support vector regression (SVR) is a statistical learning-based machine learning
approach primarily utilized for regression issues. It has been extensively utilized in finan-
cial forecasting, data mining, biomedicine, and other fields due to its superior performance
when dealing with problems involving small samples, nonlinearity, high dimensionality,
and others [27–29]. The prediction effect of the SVR algorithm is heavily influenced by the
model parameters (penalty coefficient and kernel function parameters) that are chosen,
despite its theoretical and practical advantages. Therefore, the question of how to select
the appropriate parameters has always been a contentious and challenging aspect of SVR
algorithm research. Cross-validation, gradient descent, grid search, and other methods
are the traditional SVR parameter optimization methods [30–32], all of which have the
disadvantages of huge computation amounts and large errors.

The swarm intelligence algorithm originates from imitation research on the behavioral
laws of biological populations, mainly imitating the foraging process of individual bio-
logical populations. Given the foraging process of biological populations, it is abstracted
into a certain swarm intelligence algorithm [33]. Since genetic algorithm (GA) and ant
colony optimization (ACO) were proposed, domestic and foreign scholars have succes-
sively proposed particle swarm optimization (PSO), artificial fish swarm algorithm (AFSA),
firefly algorithm (FA), bat algorithm (BA), fruit fly optimization algorithm (FOA), grey wolf
optimizer (GWO), whale optimization algorithm (WOA), and other swarm intelligence
algorithms [34]. The swarm intelligence algorithm has a strong robustness, extensibility,
generality, and simplicity of implementation. Since it was first proposed, it has gained a lot
of popularity. It has performed well in nonlinear parameter optimization problems and has
been used to optimize SVR prediction model parameters [35–38].

The flow pattern and velocity field distribution of gas–liquid two-phase flow at various
phase flow rates are derived by numerically simulating the flow characteristics of low-
velocity gas–liquid two-phase flow using CFD technology in this paper. The ultrasonic
Doppler logging tool’s response to the different flow rates of gas–liquid two-phase flow is
then examined through physical experiments. The correlation between the flow parameters
and the characteristic parameters of the ultrasonic power spectrum was determined using
distance correlation analysis. Finally, the parameters of the support vector regression
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prediction model were then optimized using the hybridizing gray wolf optimization with
differential evolution, and the HGWO-SVR prediction model was established. Gas flow, gas
holdup, and water flow are predicted, and the proposed combined optimization model’s
effectiveness and accuracy are demonstrated.

2. Numerical Simulation
2.1. Creation and Meshing of Geometric Models

According to the pipe string structure of field production wells in oil and gas fields,
this paper established a three-dimensional geometric model of vertical circular pipe with an
inner diameter of 124 mm and a length of 20 m. The main body is a transparent plexiglass
pipe, and the geometric model’s schematic is depicted in Figure 1a.
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Figure 1. Wellbore pipeline 3D geometric model and meshing: (a) Wellbore model; (b) Vertical grid
diagram; (c) Grid top view.

After the geometric model is established, meshing is a necessary process for solving,
a prerequisite for subsequent iterative solutions, and a key step in the entire numerical
simulation calculation. The quality of meshing will directly affect the accuracy of subse-
quent calculation results. When building the geometric model, the convenience of volume
division should be considered as much as possible. When dividing the object into meshes,
the boundary line (namely the pipe wall) to which the object is attached is restricted, and
the mesh density of this edge is delimited, to better control the mesh classification using
structured mesh in the mesh model. All mesh types of the section of the geometric model
adopted in this paper are triangular free-surface mesh types, and the side sections are
divided into 1000 elements. The minimum element size of the section (circular plane) is
0.005 m, which is the order of linear elements, and is divided by program control and global
variables. There are 569,569 nodes and 1,058,000 cells in total, as shown in Figure 1b,c.

2.2. VOF Multiphase Flow Model

In numerical simulations, the flow is treated as transient and the problem is three-
dimensional, so computational fluid dynamics (CFD) methods must be used to solve it.
This polyphase coding can solve mass, momentum, and energy conservation equations
and describe physically closed models through different methods and strategies. To solve
the above problems, the flow characteristics of gas–liquid two-phase flow with low velocity
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in a vertical ascending pipe are simulated by using the VOF model of multiphase flow in
computational fluid dynamics method.

In 1981, Hirt and Nichols first proposed the VOF model [9]. The VOF model is a
surface tracking method built on a fixed Euler grid, which is an Euler method in which
the fluid moves through a fixed computational grid or grid cells [13]. In this model, it
is assumed that the two or more fluids involved in the simulated flow are incompatible
with each other, but the fluids can be distributed within the computational domain at
scales defined by the volume size of the computational grid [39]. In the VOF model, the
computational domain is divided into small computational units, and the phase interface of
each computational unit is tracked by introducing the phase volume fraction. Within each
control volume, the sum of all phase volume fractions is 1. The attribute region assigned by
all variables in the calculation domain is shared by all phase fluids, and this attribute is
called volume average value. The volume fraction of any phase at any position is known.
Therefore, whether the fluid properties in a given unit are single-phase or multiphase
mixtures depends on the value of phase volume fraction. For example, in the gas–liquid
two-phase flow, the volume fraction of liquid phase fluid is assumed to be denoted as αl
in the grid cell. When αl is 0, it means that the grid cell does not contain liquid phase
fluid, but is filled with gas phase fluid. When αl is 1, it means that all the grid cells are
filled with liquid fluid. When the value of αl is between 0 and 1, it means that there is a
gas–liquid two-phase fluid phase interface in the grid cell. The governing equations of the
VOF multiphase flow model are as follows:

Phase volume fraction equation (continuity equation):
Tracking the interface between phases is accomplished by solving the continuity

equation for the volume fraction of one or more phases. For the phase q, the equation is
as follows:

∂αq

∂t
+
→
u ·∇αq =

Sαq

ρq
(1)

In Equation (1), αq represents the volume fraction of phase q; t stands for time, s;
→
u is

the velocity vector, m/s; Sαq is the mass source term. By default, the right source phase of
Equation (1) is zero, but it is not zero when you specify a constant or user-defined mass
source for each phase. ρq represents the fluid density of phase q. The calculation of the
volume fraction of the main phase is based on the constraints of Equation (2):

∑n
q=1 αq = 1 (2)

Phase property equation:
The properties that appear in the transport equations are determined by the phasing

present in each control volume. In general, for the n-phase system, the average density is
calculated using Equation (3):

ρ = ∑n
q=1 αqρq (3)

Momentum equation:
By solving a single momentum equation over the entire region, the resulting velocity

field is shared by the phases. The momentum equation depends on the volume ratio of all
phases through the properties ρ and µ, and the equation is as follows:

∂

∂t

(
ρ
→
u
)
+∇·

(
ρ
→
u
→
u
)
= −∇p +

[
µ

(
∇→u +∇→u

T
)]

+ ρ
→
g +

→
F (4)

In Equation (4), µ is the hydrodynamic viscosity, Pa·s;
→
g is the acceleration of gravity,

m/s2;
→
F is the surface tension, N/m3; p is the pressure, Pa.

Energy conservation equation:
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The energy equation is also shared among the phases and is expressed as follows:

∂

∂t
(ρE) +∇·

[→
u (ρE + p)

]
= ∇·

(
ke f f∇T

)
+ Sh (5)

In Equation (5), E represents the total energy, including internal energy, kinetic energy,
and potential energy, J/kg; ke f f denotes the effective heat conductivity, W/(m·K); T stands
for temperature, K; Sh represents the source term, including radiation and other user-
defined volumetric heat sources. E in Equation (5) is mass-averaged to obtain Equation (6).

E =
∑n

q=1 αqρqEq

∑n
q=1 αqρq

(6)

In Equation (6), Eq represents the energy shared by phase q.

2.3. Boundary Conditions and Control Parameter Settings

For simulating gas–liquid two-phase flow, this paper makes use of water and air as
fluid materials, both of which are incompressible fluids, and their heat transfer is negligible.
Since the flow of air and water is an incompressible flow, the properties of the fluid
such as density and viscosity are not affected by temperature and pressure, and the fluid
density and viscosity are constant constants. Table 1 depicts the fluid medium’s physical
parameters used in the simulation. The inlet (below the pipe) boundary of the pipe selects
the velocity inlet boundary, and the outlet (above the pipe) boundary selects the pressure
outlet boundary; the surrounding wall is still considered a no-slip wall surface, selection
pressure solver for transient simulation; the simulation of environmental pressure is set
to the standard atmospheric pressure; considering the influence of gravity and surface
tension factor, the acceleration of gravity g = 9.8 m/s2 is set along the straight direction of
the pipeline.

Table 1. Simulate the physical properties of fluid media.

Fluid Material ρ (kg/m3) µ (Pa·s) σ (N/m)

air 1.23 1.7894 × 10−5 0
water 998.2 0.001003 0.072

This paper mainly studies the fluid charging problem in the vertical circular tube. To
better deal with the problem of the distribution of fluid velocity field at the same time in
the complex interface, complex surface, and all points of space in the two-phase flow, the
VOF model is selected according to the principle that the multiphase flow model is selected
under the condition of simplified simulation. Among them, the ε model is selected for the
turbulence model. The k-ε model has the characteristics of wide application range and
reasonable solution accuracy, and the effect of solving the fully developed turbulence issue
is better. The following are the equations for the k-ε model’s dissipation rate ε and turbulent
kinetic energy k:

∂

∂t
(ρk) +

∂

∂Xi
(ρkui) =

∂

∂Xj

[(
µ +

µt

σk

)
∂k

∂Xj

]
+ Gk + Gb − ρε−YM + Sk (7)

∂

∂t
(ρε) +

∂

∂Xi
(ρεui) =

∂

∂Xj

[(
µ +

µt

σε

)
∂ε

∂Xj

]
+ C1ε

ε

k
(Gk + C3εGb)− C2ερ

ε2

k
+ Sε (8)

In Equations (7) and (8), Gk represents the generation term of turbulent kinetic energy
caused by the average velocity gradient. Gb represents the generation term of turbulent
kinetic energy caused by buoyancy; in compressible turbulence, the contribution of fluc-
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tuating expansion to the total dissipation rate is shown by YM. Sk and Sε represent the
custom source terms of turbulent kinetic energy and dissipation rate. C1ε, C2ε, and C3ε are
constant, and generally take C1ε = 1.44, C2ε = 1.92, C3ε = 0.09; σk and σε denote the turbulent
Prandtl number of k and ε, respectively. Generally, σk = 1.0, σε = 1.3; µt represents turbulent
viscosity, and the calculation formula is shown in Equation (9).

µt = ρCµ
k2

ε
(9)

In Equation (9), Cµ is a constant, and generally, Cµ = 0.09.
The liquid phase is referred to as the secondary phase when employing the VOF

model, while the gas phase is referred to as the prime phase. When setting the boundary
conditions at the velocity inlet, it is necessary to input the average velocity of the inlet
fluid, the volume fraction of the second phase fluid, the hydraulic diameter and turbulence
intensity, and other model-related parameters. The hydraulic diameter is equal to the inner
diameter of the vertical circular pipe, and the turbulence intensity needs to be calculated
according to the Reynolds value. The following formula can be used to determine the
Reynolds number Re and the turbulence intensity I:

Re =
Dvρ

µ
(10)

I = 0.16× Re−0.125 (11)

In Equations (10) and (11), D is the pipe inner diameter, m; v is the average flow rate
of the fluid, m/s; ρ is the fluid density, kg/m3; µ is the fluid viscosity, mPa·s.

At the middle and late stage of production, most gas wells will produce less than
5000 m3/d of surface gas per well, and some will even produce around 1000 m3/d. A
low-velocity gas–liquid two-phase flow simulation scheme is designed in accordance
with the actual situation of low-yield gas wells. The daily surface gas volume range is
defined as 1000–4000 m3/d, and the total underground flow is designed to be 10, 20, and
30 m3/d, according to the gas volume coefficient (Bg) of the corresponding block being
1/130. The water cut of gas–liquid two phases is 10%, 30%, 50%, 70%, and 90%, a total of
15 simulation points.

2.4. Simulation Results and Analysis

The study of the gas–liquid two-phase flow law is based on the flow pattern of gas–
liquid two-phase flow. The flow pattern’s variation law is simulated using the simulation
scheme for a variety of total flow rates and water cuts. Figure 2 shows the flow pattern
distribution diagram under the condition of different water cuts with the total flow rate of
gas–water two-phase 20 m3/d, which is presented in the form of a cloud map. Figure 2a–e,
respectively, represent the distribution characteristics of gas–liquid two-phase flow patterns
when the water cut is 90%, 70%, 50%, 30%, and 10%, in which blue represents liquid phase
and red represents gas phase. It may be seen from Figure 2 that when the total flow rate of
the gas–liquid two-phase is 20 m3/d, no matter how small the water cut is, the flow pattern
is a typical bubbly flow. At this time, numerous bubbles will continue to be produced in
the vertical circular tube, and the size and time interval of the bubbles are different. In the
continuous liquid phase, the bubbles are not evenly distributed. Most of the bubbles exist
in the pipeline in the shape of ellipses or narrow lengths, and the bubble diameter is much
smaller than the inner diameter of the pipeline. With the continuous reduction in the water
cut, that is, the continuous increase in the gas flow rate, the number and size of the bubbles
in the pipeline continue to increase. Figure 3 shows the phase distribution diagrams under
different total flow rates with a 10% water cut in the gas–water two-phase. The distribution
characteristics of the gas–liquid two-phase flow patterns with total flow rates of 10 m3/d,
20 m3/d, and 30 m3/d, respectively, are depicted in Figure 3a–c. It is evident from Figure 3
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that, in the event of the same water cut, an increase in the total flow rate will result in an
increase in the relative number and size of the bubbles in the pipeline. In addition, it is
possible to explain that the only flow pattern that exists for the gas–liquid two-phase low
flow rate in the vertically rising pipeline is typical bubbly flow.
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The gas–liquid two-phase flow velocity was used to further quantitatively characterize
the characteristics of the gas–liquid two-phase flow, and the velocity distribution law was
analyzed under various total flow rates and water cuts under bubble flow. This provided
a foundation for determining the parameters of the gas–liquid two-phase interpretation
model in low-yield gas wells. Figure 4 shows the distribution diagram of the phase state
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and velocity field under various water cuts with a total flow rate of 20 m3/d for the gas–
water two-phase. The position intercepted is the XY plane at 12 m of the vertical pipeline.
The left side is the phase state distribution diagram and the right side is the contour map
of the velocity field. Combining the left and right figures, it can be seen that the velocity
contour map at the position where the gas phase is located presents a high value, that is,
the rising speed of bubbles in the vertical rising pipe is faster than that of water, and the
overall velocity value of the gas–liquid two-phase exhibits a downward trend as the water
cut increases. The maximum rising speed of bubbles with a 10% water cut is about 1.1 m/s,
and then gradually decreases to about 0.24 m/s with a 90% water cut. Figure 5 shows
the phase state distribution and velocity field distribution of the various total flow rates
of the gas–water two-phase when the water cut is 50%. The overall velocity values of the
gas–liquid two-phase show an upward trend with the increase in the total flow rate when
the water cut is the same.
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Figure 3b shows the flow pattern diagram of the gas–water two-phase flow rate of
20 m3/d and water cut of 10%. The position of the flow pattern diagram is the YZ plane at
the center of the pipeline. The 20 m long pipeline was divided into upper and lower parts,
and the bubbly flow in the middle of the upper and lower parts (3~7 m, 13~17 m) was
divided at an equal interval of 1 m, respectively. The flow velocity of gas–liquid two-phase
at this depth position was obtained, and the relationship between the flow velocity and
the radial position of the pipeline was established, as shown in Figure 6. The different
color curves in Figure 6 represent radial velocity profiles at different pipe heights. On
the whole, each curve obviously presents an irregular peak-shaped distribution, and the
peak positions of each curve are different. The peak positions of the fluid velocity curves
represent the positions of the bubbles in the pipes.

As can be seen from Figure 6, the gas–liquid two-phase flow velocity range of the
3~7 m pipeline is 0.04~0.47 m/s, and the gas–liquid two-phase flow velocity range of the
13~17 m pipeline is 0.07~0.67 m/s. The steeper peak velocity of each curve represents the
rising velocity of the bubbles, and the flatter part of the curve represents the flow velocity
of the surrounding liquid phase. The overall velocity of the upper part is slightly higher
than that of the lower part, and the overall curve is significantly more stable than that of
the lower part. Overall, the interval of the fluid flow rate is increased when the increase in
the pipe height decreases after a periodic first increase, which is mainly due to the pipe
gas superficial velocity being low; the tube gas and liquid phase being in shearing action
to promote each other by gas existing in the form of tiny air bubbles; and small bubbles
rising constantly in the process of polymerization and bursting. The convergence of small
bubbles into large bubbles will lead to an increase in the fluid velocity, and the collapse of
large bubbles into small bubbles will lead to a decrease in the fluid velocity.
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The gas holdup is of great significance to gas production profile logging, and its main
purpose is to determine the fluid properties and assist in the calculation of the fluid flow
rates in each phase. Gas holdup, also known as void fraction, refers to the proportion of
the gas phase area to the total flow cross-section area in a two-phase flow [40]. When the
gas–liquid two-phase flow is relatively stable in the numerical simulation, the gas holdup
is calculated by replacing the area ratio with the ratio of the volume of the gas phase to the
total volume. Figure 7 is the relationship between the gas holdup and the total flow rate
and water cut of the gas–water two-phase obtained by the numerical simulation. When the
total flow rate remains the same, it is evident that the gas holdup decreases as the water
cut rises. When the water cut is the same, the gas holdup increases with the increase in the
total flow rate, and the increase in the gas holdup decreases with the increase in the equal
interval flow rate. In the low-velocity gas–liquid two-phase flow, the gas holdup value is
very small, and the maximum gas holdup value in the figure is only 7.98%, which means
that there will be a lot of liquid accumulation in the underground of the low-yield gas wells,
which increases the difficulty of interpretation of the gas production profile logging data in
low-yield gas wells.
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3. Experiment
3.1. Experiment Setup

The dynamic simulation experiment of low flow rate gas–water two-phase flow was
carried out on the multiphase flow simulation platform of a horizontal well with large
deviation at Yangtze University. The experimental platform simulated the wellbore height
of 12 m, the wellbore inner diameter of 124 mm and 159 mm. The material is a transpar-
ent plexiglass pipe, two kinds of transparent plexiglass pipe installed on a fixed frame
connected to a U-shaped pipe, and the top and bottom of each pipe are installed with a
fast-closing solenoid valve to ensure that the fluid can be closed instantly. A ruler with a
minimum scale of 1 mm is fixed in the middle of the two pipes, which can help to measure
the holdup by the quick-closing valve method. The schematic diagram of the experimental
device is shown in Figure 8. The wellbore can be positioned in any direction, from horizon-
tal to vertical. The inclination angle of the wellbore can be adjusted by a hydraulic drive,
and the switch is set on the ground for manual control. The simulated flow range of the
laboratory liquid phase is 0.2~600 m3/d, and the simulated flow range of the gas phase is
0.1~1000 m3/d. The gas phase and liquid phase are transported to the pressure regulator
tank by an industrial grade peristaltic pump and then into the metering pipeline, which
guarantees that the pump pulse has no effect on the fluid flow in the transport pipeline,
and the high-precision mass flowmeter monitors the fluid in the transport pipeline online
in real time. Then, the gas phase and liquid phase fluid enter the mixing tank, after mixing
into the simulation wellbore. Through the online monitoring of the flow of the fluid flow
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parameters, and data into the computer, the console interface is used to adjust the gas
phase liquid valve opening, and according to the experiment plan, the parameters are set
by adjusting the input of the gas phase and liquid phase flow [41].
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Figure 8. Schematic diagram of gas–liquid two-phase flow experiment device.

The wellbore angle was 90 degrees (a vertical well, in relation to the horizontal
direction of the ground), the experimental fluid medium was air and tap water, and the
experiment was carried out in a wellbore with an inner diameter of 124 mm. The specific
experimental fluid parameters and experimental scheme are shown in Table 2, with the
input gas and water with different flow rates according to the experimental scheme. In
order to guarantee that the fluid fully developed, we waited half an hour before starting
the instrument for measurement after the ratio of gas–water flow at each experimental
point was stable. The probe of the instrument was located 6.0 m from the fluid inlet of
the simulated wellbore, and the image data of the flow pattern were recorded during
the instrument’s measurement process. After the instrument test, the quick closing valve
switch was opened through the console, and the calibration position of the phase interface
was recorded after the gas–water phase interface was stable, to facilitate the subsequent
experimental processing. We repeated the above experimental process to complete all the
experimental points in turn.

Table 2. Experimental fluid parameters and tests ranges.

Experimental Parameters Units Range

Air density (ρg) kg/m3 1.23
Water density (ρw) kg/m3 998.2
Air viscosity (µg) Pa·s 1.7894 × 10−5

Water viscosity (µw) Pa·s 0.001003
Operate pressure MPa 0.1~0.15

Operate temperature ◦C 25~30
Interfacial tension (σg−w) N/m 0.072

Test section diameter mm 124
Gas flow rates (Qg) m3/day 0~35

Water flow rates (Qw) m3/day 0~35
Mixtures flow rates (Qm) m3/day 5, 8, 10, 12, 15, 18, 20, 23, 25, 28, 30, 35

Water cut (Cw) % 0~100
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3.2. Experiment Instrument

The instrument used in the low-velocity gas–water two-phase flow experiment is an
ultrasonic Doppler multiphase flow logging instrument, as shown in Figure 9. During the
experiment, the ultrasonic probe was positioned at the bottom of the instrument string,
and the instrument string was connected with the centralizer, so that the instrument was
centered for measurement (as shown in Figure 10). The diameter of the instrument was
23 mm, the maximum operating temperature was 150 ◦C, and the maximum working
pressure was 60 MPa. The instrument adopts a non-collecting flow mode, does not affect
the flow state of the downhole fluid, and can be measured in the sand wells, so that the
test results are more accurate and are unaffected by the formation water salinity and fluid
properties. The instrument’s measurement method is point measurement, and the collection
speed is fast, with each test point test time being about 3 min. The basic measurement
principle of the ultrasonic Doppler multiphase flow logging instrument can be found
in [26].
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3.3. Analysis of Experimental Data

Figure 11 shows the total flow of 20 m3/d of the gas–water two-phase recorded by the
camera during the experiment, and the flow patterns of various water cuts. Figure 11a–e
represent the flow patterns when the water cut is 90%, 70%, 50%, 30%, and 10%, respectively.
It can be seen that the flow patterns are all bubbly flow, and with the decrease in the
water cut, the relative number of bubbles and bubble diameter show an increasing trend,
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corresponding to the results obtained in the numerical simulation. Only one flow pattern,
bubble flow, appears in the whole experimental process.
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The frequency and amplitude are the initial data that the ultrasonic Doppler logging
tool gathered. In order to eliminate the influence caused by accidental errors, 5–6 cycles of
data are collected for each experimental point (as shown in Figure 12), and the frequency
and amplitude data of this experimental point are obtained by calculating the average
value. A power spectrum analysis was performed on the instrument’s logging data in order
to investigate the ultrasonic Doppler logging instrument’s response to the bubble flow.
The instrument’s measurement principle analysis shows that the strength of the ultrasonic
emission signal, which is related to factors like the relative number of bubbles and the
size of the bubble diameter at the experimental point, is reflected in the amplitude of the
power spectrum curve. The relative velocity of the bubbles and other factors influence
the frequency of the power spectrum curve. The power spectrum curves of the gas–water
two-phase flow with various water cuts are depicted in Figure 13, using the total flow
rates of 5 m3/d, 12 m3/d, 18 m3/d, and 25 m3/d as examples. The power spectrum that
follows demonstrates that, under the condition of constant total flow, the peak amplitude
decreases with an increasing water cut, with the decrease being more pronounced at a high
water cut. This is primarily attributable to an increase in the water cut, which results in a
decrease in the gas flow rate and the proportion of discrete bubbles in the continuous water
phase. These factors weaken the ultrasonic wave reflection on the surface of the bubbles
and reduce the reflected waves received by the ultrasonic probe, resulting in a decrease in
the peak amplitude. For the same reason that was mentioned earlier, the peak amplitude
increases with the increasing total gas–water two-phase flow under a constant water cut.
The center frequency, on the other hand, did not significantly alter with the water cut or
total flow.
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(d) Qm = 25 m3/d.

The characteristic parameters of the ultrasonic power spectrum, such as gas amplitude,
gas frequency, gas variance, and gas peak area, which reflected the information on the
bubble distribution and flow rate, were obtained using the Gaussian function to fit the
power spectrum curve in order to mine additional data. The distance correlation analysis
(DCA) method was used to analyze the gas flow rate, water flow rate, gas holdup measured
by the quick-closing valve method, and the characteristic parameters of the ultrasonic
power spectrum in order to determine the relationship between the gas–water two-phase
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flow parameters and these parameters. Specific data processing details can be found in [5].
The results are shown in Figure 14. The correlation between variables can be observed in the
figure. The redder the color, the better the positive correlation between variables; the darker
the blue or even the purplish color, the better the negative correlation between variables;
the lighter the color (light green or light blue), the worse the correlation between variables.
It can be seen from the results that the gas flow rate and gas holdup are well-correlated
with many characteristic parameters, while the water flow rate is not strongly correlated
with the characteristic parameters of the ultrasonic power spectrum. This is mainly related
to the measuring principle of the instrument, which is more sensitive to the movement
of bubbles. If only one or two parameters are used to calculate the oil or water flow rate
by the traditional linear or nonlinear fitting formula, the results obtained will be greatly
different from the real value. Some artificial intelligence algorithms can make full use of
the characteristic information of each parameter to improve the interpretation accuracy of
the phase flow.
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4. Interpretation Model
4.1. Support Vector Regression (SVR)

In 1995, Corinna Cortes and Vapnik et al. proposed the support vector machine (SVM)
algorithm [42], a type of statistical learning-based machine learning algorithm that has
garnered widespread interest and development in recent years. As an extension of the
support vector machine, support vector regression (SVR) is mostly used to solve function
fitting and regression estimation problems. When it comes to solving high-dimensional,
nonlinear, and small-sample pattern recognition and prediction problems, SVR has a
number of distinct advantages. In order for the sample data to be as close to the hyperplane
as possible, the core of the SVR model is to use a kernel function to map the sample data
from the input space to the high-dimensional feature space. Next, the model looks for
a decision function that can accurately reflect the distribution of the sample data in the
high-dimensional feature space [43].

Detailed SVR implementation steps can be found in [5]. SVR is a type of supervised
machine learning technique with a solid theoretical foundation. However, the model’s
generalizability and prediction accuracy are directly influenced by the various SVR pa-
rameters. The parameters of the ε− SVR model include the insensitive loss coefficient
ε, the penalty coefficient C, and the kernel function parameter σ. The insensitivity loss
coefficient ε is related to the number of support vectors; the penalty coefficient C affects
the complexity and stability of the model; the kernel function parameter σ reflects the
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distribution of samples in the feature space, and the three parameters affect each other
and jointly determine the complexity and generalization performance of the SVR model.
Therefore, selecting the parameters of SVR with precision and efficiency is necessary to
improve the model’s prediction accuracy and generalization performance.

4.2. Hybridizing Gray Wolf Optimization (HGWO)
4.2.1. Basics of Gray Wolf Optimizer (GWO)

The swarm intelligence algorithm is an iterative optimization search algorithm, which
has the characteristics of flexibility, global optimization, self-organization, and strong
parallel processing ability, so it has become the most representative parameter optimization
method for support vector regression, and has been successfully applied in many fields.

The grey wolf optimizer (GWO) is a novel pack intelligence optimization algorithm
proposed by Australian Griffith University academics [44], which was inspired by the study
of the strict social hierarchy and hunting behavior of gray wolf populations. The GWO
algorithm achieves optimization based on the mechanism of wolf group cooperation by
simulating gray wolf hunting behavior. It is easy to use, has few parameters that need
to be changed, and has a simple structure. Mechanisms that can dynamically adjust the
convergence factor and information feedback are among these. This allows the system
to strike a balance between local optimization and global search, resulting in a good
problem-solving accuracy and convergence speed.

It is possible to formulate the mathematical model of the gray wolf population’s
hunting behavior, as in [44]:

(1) Social Hierarchy

The gray wolf social hierarchy must be constructed first, and the fitness of each
member of the population must be calculated before the gray wolf optimization algorithm
can be designed. The wolf pack’s three gray wolves with the highest fitness (optimal
solution) are designated as α, β, σ, and the remaining gray wolves (candidate solution) are
labeled as ω.

(2) Encircling Prey

During the hunt, the behavior of the gray wolf surrounding the prey was defined as
follows:

→
D =

∣∣∣∣→C ·→Xp(t)−
→
X(t)

∣∣∣∣ (12)

→
X(t + 1) =

→
Xp(t)−

→
A·
→
D (13)

Equation (12) denotes the distance that separates the individual from the prey, and
Equation (13) is the gray wolf’s formula for updating its position. Where t is the current

iteration number,
→
Xp and

→
X are the position vector of the prey and the position vector of the

gray wolf, respectively, and
→
A and

→
C are the coefficient vectors. The calculation formulas

of
→
A and

→
C are as follows: →

A = 2
→
a ·→r1 −

→
a (14)

→
C = 2

→
r2 (15)

where
→
r1 and

→
r2 are random vectors in [0, 1], and

→
a is a motion vector that decreases linearly

from 2 to 0 over an iterative process.

(3) Hunting

It is assumed that “α, β, σ” have a strong ability to identify potential prey locations in
order to simulate the search behavior of gray wolves. As a result, the positions of other
search agents (including ω) are updated in accordance with their location information after
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the best three gray wolves (α, β, σ) in the current population are retained in each iteration.
This behavior’s mathematical model can be expressed as follows:

→
Dα =

∣∣∣∣→C1·
→
Xα −

→
X
∣∣∣∣

→
Dβ =

∣∣∣∣→C2·
→
Xβ −

→
X
∣∣∣∣

→
Dδ =

∣∣∣∣→C3·
→
Xδ −

→
X
∣∣∣∣

(16)



→
X1 =

∣∣∣∣→Xα −
→
A1·

→
Dα

∣∣∣∣
→
X2 =

∣∣∣∣ →Xβ −
→
A2·

→
Dβ

∣∣∣∣
→
X3 =

∣∣∣∣→Xδ −
→
A3·

→
Dδ

∣∣∣∣
(17)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(18)

In Equation (16),
→
Dα,

→
Dβ and

→
Dδ distributions represent the distances between α, β, σ

and other individuals.
→
Xα,

→
Xβ and

→
Xδ distributions represent the current positions of

α, β, σ;
→
C1,

→
C2,

→
C3 are random vectors;

→
X is the current location of the gray wolf. Equation

(17) defines the step size and direction of individual ω in the wolf pack toward α, β, σ,
respectively. Equation (18) defines the final position of ω.

(4) Attacking Prey

According to Equation (14), as the attack prey model is being constructed,
→
A is a

random value in the interval [−a, a] and is decremented along with
→
a . We can force the

gray wolves to attack the prey when |A| < 1 and, conversely, force them to diverge from
the prey in order to hopefully find a better prey when |A| > 1. This will help the gray wolf
optimizer’s global search capability.

(5) Search for Prey

To find prey, gray wolves mainly rely on α, β, σ information. They begin by dispersing
their search for the location of their prey before concentrating on attacking it. For the
dispersion model, through |A| > 1, it keeps its search agent from prey. This way of

searching the GWO is a global search.
→
C is another search coefficient in the GWO algorithm,

as shown in Equation (15), in which the
→
C vector is a random vector with values between 0

and 2 in the interval. This coefficient gives the prey a random weight that can either go up
(|C| > 1) or down (|C| < 1). During optimization, this assists GWO in exhibiting random
search behavior to prevent the algorithm from falling into local optima. It is important to

note that
→
C is not a linear decline; rather,

→
C is a random value during the iterative process.

This coefficient helps the algorithm get out of the local area, particularly in the later stages
of the iteration.

4.2.2. Basics of Differential Evolution (DE)

A heuristic parallel search technique based on group differences, the differential evolu-
tion (DE) algorithm, was developed in 1997 by Storn and Price [45]. The original intention
was to solve the Chebyshev polynomial fitting problem. As a new and efficient heuristic
parallel search technology, the differential evolution algorithm has the characteristics of
fast convergence, few control parameters, simple setting, and robust optimization results.
It has important academic significance for the theoretical and application research of evolu-
tionary algorithms. The DE algorithm’s main process can be broken down into four steps:
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population initialization, mutation, crossover, and selection. The following is a detailed
description of these steps [45]:

(1) Population initialization

Define the population size as NP in the D-dimensional search space, and randomly
generate NP initial population individuals in the whole search space. The formula is
as follows:

xij(0) = xL
ij + rand(0, 1)·

(
xU

ij − xL
ij

)
(i = 1, 2, . . . , NP; j = 1, 2, . . . , D) (19)

In Equation (19), xU
ij and xL

ij are the upper and lower bounds of the individual popula-
tion in the j-dimensional search space, respectively; rand (0, 1) denotes a random number
that follows a uniform distribution between [0, 1].

(2) Mutation

The mutation process of differential evolution is the key to differential evolution, and
the mutant individuals are generated by the following formula:

vij(g + 1) = xr1(g) + F·(xr2(g)− xr3(g)) (20)

In Equation (20), g represents evolutionary algebra; xr1, xr2, xr3 are three different
parameter vectors randomly selected in the population, and r1 6= r2 6= r3 6= i; F is the
scaling factor between [0, 1].

(3) Crossover

The crossover operation can increase the diversity of the population, and is operated
as follows:

uij(g + 1) =

{
vij(g + 1), i f rand(0, 1) ≤ CR or j = rand(1, n)

xij(g), i f rand(0, 1) > CR and j 6= rand(1, n)
(21)

In Equation (21), CR is a number between 0 and 1, called the crossover probability.

(4) Selection

In order to decide whether the test vector ui(g + 1) will become a member of the next
generation, the differential evolution algorithm compares the test vector with the target
vector xi(g) in the current population according to the greedy criterion. The operation is
as follows:

xi(g + 1) =

{
ui(g + 1), f [ui(g + 1)] < f [xi(g)]

xi(g), f [ui(g + 1)] ≥ f [xi(g)]
(22)

where f is the fitness function, and here corresponds to the minimization problem. From the
selection process of differential evolution, it can be seen that the result of the low fitness of
the differential evolution algorithm replaces the original result, that is, the better result pro-
duced after mutation replaces the previous poor result, which plays the role of optimization
selection and makes the whole population closer in the direction of optimization.

4.2.3. Hybridizing Gray Wolf Optimization with Differential Evolution (HGWO)

Using the differential evolution algorithm and gray wolf optimizer algorithm to solve
optimization problems prone to premature aloneness, poor stability, easily falling into the
local most superior defects, and through integrating the advantages and disadvantages of
the two algorithms, Zhu et al. [46] proposed a hybrid optimizer that combined differential
evolution with gray wolf optimization (HGWO), also known as the DE-GWO algorithm.
Figure 15 depicts the algorithm flow chart. Firstly, in order to avoid the population iteration
to a certain area, the phenomenon of the difference decreases. The crossing and selection
operation of the difference optimization algorithm is used to maintain the diversity of the
population. As the initial population of the wolves optimization algorithm, calculate the
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individual objective function values, and choose the best three individual Xα, Xβ and Xδ,
according to the updated position of the other wolves. Then, the crossover and selection
operations of the differential evolution are used to update the positions of the individual
gray wolves, and the update is repeated iteratively until the optimal output of objective
function value is selected. The hybrid algorithm not only improves the global search
ability but also can effectively avoid the defects of premature stagnation and falling into
local optimum.
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4.3. The HGWO-SVR Model

In this paper, the improved gray wolf optimization algorithm based on differential
evolution is used to optimize the penalty coefficient C and the kernel function parameter σ
in the support vector regression model. The penalty coefficient C and the kernel function
parameter σ are mapped to the position of the optimal wolf α in the gray wolf population,
and the position of the optimal solution of the gray wolf population obtained in this way is
used as the value of these two parameters in the support vector regression model. Figure 16
depicts the HGWO-SVR algorithm’s flowchart, and the specific steps of model building are
as follows:

(1) Divide the input data into a training set and test set, and normalize them.
(2) Set the parameters of the HGWO algorithm: population size, maximum number of

iterations, crossover probability, scale factor range, search dimension, and search
range. Initialize the SVR parameters: set the value range of penalty coefficient C and
kernel function parameter σ.

(3) Initialize the population, randomly generate the parent, mutant, and offspring gray
wolf population, and set the number of iterations to one.

(4) Train the SVR prediction model using the processed training set data.
(5) Calculate the fitness of each individual gray wolf in the population, sort according

to the size of the fitness function, and select the first three wolves as α, β, σ wolves,
respectively, and record and save the positions of these three wolves.

(6) According to Equations (16)–(18), update the positions of the other gray wolf individ-
uals, except the α, β, σ wolves.
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(7) Use Equation (20) to perform the mutation operation in the differential evolution
algorithm on the gray wolf individual to generate the intermediate individual, and
perform the crossover processing according to Equation (21) to retain the high-quality
part of the population, and perform the selection operation.

(8) Recalculate the fitness of each individual in the population, update the fitness values
of the α, β, σ wolves and their corresponding positions.

(9) Determine whether the total number of iterations has been reached, if so, the algorithm
will stop and output the position Xα of the global optimal solution α wolf, otherwise,
go back to step 4.

(10) The SVR prediction model is constructed by taking the position Xα of the α wolf
as the value of the penalty coefficient C and the kernel function parameter σ in the
SVR model.
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4.4. Model Application

Based on the results of the ultrasonic Doppler experimental data and correlation
analysis of the ultrasonic power spectrum characteristic parameters with the gas–water
two-phase flow parameters at low flow rates, the amplitude peak, center frequency, gas
amplitude, gas frequency, gas variance, gas peak area, amplitude ratio, and logarithm of
the amplitude ratio of each group of experimental data are the input variables, and the
gas flow rate and gas holdup of each group of experimental data are the output variables.
There were a total of 77 sets of experimental data, 67 sets of data as the training set, 10 sets
of data as the test set. To validate the effectiveness of the HGWO-SVR algorithm, both the
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support vector regression (SVR) and back propagation (BP) neural network algorithms
are used for the prediction of the gas flow and gas holdup. When using the HGWO-SVR
model for prediction, we set the population size to 30, the maximum number of iterations
to 500, the upper bound of the scaling factor to 0.8, the lower bound to 0.2, the crossover
probability to 0.1, and the convergence factor to dynamically decrease from 2 to 0. The
SVR adopts the ε− SVR model, and the kernel function adopts the most commonly used
Gaussian kernel function in the radial basis function. The prediction results are shown in
Figures 17–19, and the prediction errors are shown in Tables 3 and 4.

Processes 2023, 11, x FOR PEER REVIEW 23 of 27 
 

 

Gaussian kernel function in the radial basis function. The prediction results are shown in 

Figures 17–19, and the prediction errors are shown in Tables 3 and 4. 

  

(a) (b) 

Figure 17. Fitness function curve of HGWA-SVR model ((a) is gas flow; (b) is gas holdup). 

 

Figure 18. Comparison of gas flow prediction results under different models. 

 

Figure 19. Comparison of gas holdup prediction results under different models. 

Table 3. Statistical table of gas flow prediction error under different models. 

 𝑴𝑺𝑬 𝑹𝟐 𝑴𝑨𝑬/(𝐦𝟑/𝐝) 𝑴𝑨𝑷𝑬/(%) 

HGWO-SVR 0.00525 0.98861 0.547 6.146 

0 100 200 300 400 500
0.005

0.006

0.007

0.008

0.009

0.010

F
it

n
es

s

Iteration
0 100 200 300 400 500

0.006

0.009

0.012

0.015

0.018

F
it

n
es

s
Iteration

Figure 17. Fitness function curve of HGWA-SVR model ((a) is gas flow; (b) is gas holdup).
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Figure 19. Comparison of gas holdup prediction results under different models.
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Table 3. Statistical table of gas flow prediction error under different models.

MSE R2 MAE/(m3/d) MAPE/(%)

HGWO-SVR 0.00525 0.98861 0.547 6.146
SVR 0.02947 0.92665 1.472 14.011
BP 0.02169 0.93319 1.536 22.705

Table 4. Statistical table of gas holdup prediction error under different models.

MSE R2 MAE/(%) MAPE/(%)

HGWO-SVR 0.00571 0.98491 0.197 6.278
SVR 0.02632 0.93247 0.470 12.526
BP 0.01343 0.94642 0.407 18.180

Figure 17 shows the fitness function curve of the HGWO-SVR model for predicting dif-
ferent output variables. The fitness function adopted by the model is the mean square error
(MSE). When the output data is gas flow, the optimal fitness is 0.00525, the corresponding
optimal parameter of penalty coefficient C is 8.5421, and the optimal parameter of kernel
function σ is 0.6669. When the output data is gas holdup, the optimal fitness is 0.00571, the
corresponding penalty coefficient C optimal parameter is 13.1991, and the kernel function
parameter σ optimal parameter is 0.5888. Combining Figures 18 and 19 and Tables 3 and 4
reveals that the HGWO-SVR model’s prediction results are significantly superior to those of
the SVR model and the BP neural network model and are closer to the actual data. Among
them, the HGWO-SVR model has a mean absolute error of 0.547 m3/d in the prediction of
gas flow in a low-velocity gas–water two-phase flow, and the accuracy is as high as 93.85%;
the mean absolute error of the prediction of gas holdup is 0.197%, and the accuracy is as
high as 93.72%. For the prediction results of the gas flow rate and gas holdup, the mean
absolute percentage error of all the data of the HGWO-SVR model is less than 15%, and
the mean absolute percentage error of most of the data is less than 5%. Figures 18 and 19
also reflect the fact that the prediction accuracy of all models decreases when comparing
high gas flow rate and high gas holdup. This has a strong relationship with the measure-
ment principle of the ultrasonic Doppler logging instrument, which mainly probes the
motion parameters of the discrete phase in the continuous phase. In the measurement
of low-velocity gas–water two-phase flow, the instrument mainly measures the motion
parameters of discrete bubbles. However, when these bubbles are more numerous and
concentrated, its detection effect is not as good as that in the case of fewer bubbles, which
will lead to the situation in Figures 18 and 19. From Figure 14, it can be seen that the
correlation between the water flow and characteristic parameters of each ultrasonic power
spectrum is poor. The HGWO-SVR model is used to predict the water flow, and the results
are shown in Figure 20. The optimal fitness of the model is 0.01676, the optimal parameter
of the corresponding penalty coefficient C is 32.0248, and the optimal parameter of the
kernel function parameter σ is 1.3581. The mean absolute error of the water flow prediction
is 1.581 m3/d, and the mean absolute percentage error is 50.03%. When the water flow is
large, the prediction error will be smaller.

Combining the correlation analysis with the model of the gas flow, the gas holdup and
water flow prediction result shows that the ultrasonic Doppler tool in the low-velocity of
gas–water two-phase flow monitoring can reflect well the status of the flow of the gas phase,
and can accurately obtain the gas flow and the gas holdup. However, for the monitoring
of the water flow conditions, the situation is a little worse, but in the case of a high water
cut, the prediction accuracy of the water flow will be higher. This is due to the fact that
the ultrasonic Doppler logging tool is mainly on the motion parameters of the continuous
phase and discrete phase detection, and in the low-velocity gas–water two-phase flow, the
flow pattern is bubbly flow, the water phase is the continuous phase and the gas phase in
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the bubbles form a water phase, so the instrument can accurately obtain the gas flow and
the gas holdup. The measured water flow error is larger.
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Figure 20. HGWO-SVR predicted water flow diagram ((a) is the fitness curve; (b) is the comparison
between the model predicted value and the experimental value).

5. Conclusions

The dynamic monitoring of oil and gas wells is the key to the development of oil
and gas fields. However, the current method based on conventional production profile
interpretation cannot achieve the expected effect. The aim of this study was to test a practical
approach for the dynamic monitoring of low-yielding gas wells using an ultrasonic Doppler
logging instrument and a machine learning technique.

In the first part, the flow pattern and velocity field distribution of the gas–liquid two-
phase flow with a low flow velocity are studied by CFD numerical simulation technology
based on the production rate and well depth structure of actual produced low-yielding
gas wells. It is found that the flow pattern is a typical bubbly flow when the gas–liquid
two-phase flow has a low flow rate in the vertical riser pipeline, and the number and size of
bubbles in the pipeline continue to increase with the continuous increase in the gas phase
flow. The bubble rises faster than the water phase, and with the increase in the water cut,
the overall velocity of the two phases decreases. In addition, in low-yielding gas wells, the
water holdup is almost above 90%.

In the second part, the ultrasonic Doppler logging instrument is used to carry out
a physical experiment examining the low velocity gas–liquid two-phase flow, and the
characteristic parameters of the ultrasonic power spectrum under different gas–liquid two-
phase flow conditions are obtained, and the gas holdup is obtained by the quick closing
valve method. Through the distance correlation analysis between the flow parameters
and the extracted ultrasonic power spectrum characteristic parameters in the process of
gas–liquid two-phase flow at low flow rate, it is obtained that the gas flow and gas holdup
have a good correlation with many ultrasonic power spectrum characteristic parameters.
However, the water phase flow rate is not strongly correlated with the characteristic
parameters of the ultrasonic power spectrum.

In the third part, the HGWO-SVR model is established to predict the flow parameters
of the low flow rate gas–liquid two-phase, and the data set is based on the experimental
data in the second part. Through the comparative analysis of the SVR and BP prediction
methods, it is proved that the HGWO-SVR model has the best prediction effect, and the
multiple prediction results are better. The HGWO-SVR model is adopted to predict the
gas–liquid two-phase flow parameter, the gas flow rate and gas holdup have a good
predictive effect, and the water flow prediction error is larger. The proposal in this situation
of production profile logging using a gas stringer ultrasound Doppler tool and flow-
concentrating spinner flowmeter is a combined measurement to improve the accuracy of
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water flow interpretation. It is suggested that the combination of the ultrasonic Doppler
logging instrument and flow-concentrating spinner flowmeter should be used to improve
the accuracy of the water phase flow interpretation when logging the production profile of
low-yielding gas wells in fields.
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