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Abstract: An innovative yet sustainable approach for industrial deaeration is proposed, with demon-
strated results and analyses, to contribute to finding solutions to improve energy efficiency in this
field. Vacuum bubbling deaeration, sharing the same working principles of solubility control and
the mass diffusion through vapor (or steam) with conventional thermal deaeration processes, works,
however, at lower vacuum pressures. It neither resorts to heating nor requires any third-party
materials such as membranes or gases, achieving orders of magnitude of reduction in the expected
energy consumption in a simple and concrete way. In this study, the mechanisms of vapor bubble
generation and retention were discussed by employing a vacuum bubbling model based on the
experimental apparatus at Kongju National University, which uses a venturi-nozzle bubbler. The
four parameters influencing vapor bubble generation and retention were identified as vessel pressure
p1, nozzle depth ∆h, nozzle performance p4 − p3, and water temperature Tw. A series of deaeration
experiments using the present approach for a tap water sample of 360~400 L were conducted under
four different conditions to investigate the effects of the water temperature, vessel pressure, and
bubbler nozzle depth. Final dissolved oxygen (DO) concentrations close to zero could be achieved
with a vessel pressure of p1 = 1 kPa, with different bubbling times to reach a zero mg/L reading
of DO concentration (case 2 and 3), which demonstrates the vital roles of the vapor bubble gen-
eration condition of (psat − p3) and retention condition of (p4 − psat) in achieving the lowest DO
concentration. Analysis of the test results, based on the discrete-bubble model with the measured DO
concentrations and degassing rates, showed promising results in reproducing the experimental data.
Though the potential of vacuum bubbling deaeration is demonstrated, for the first time, to its full
extent, further research efforts are encouraged in many areas, including more case-specific validation
test cases with optimum operating conditions along with the study of more detailed modeling for
performance prediction, including energy analysis.

Keywords: vacuum; deaeration; vapor bubble; solubility; diffusion

1. Introduction

Dissolved gas in liquids and its removal have long been issues of interest for diverse
applications from “artificial gills” [1–4] to deaeration processes in the energy [5,6], food and
beverage [7,8], and semi-conductor manufacturing industries, etc. The required level of
deaeration varies depending on the application field, while the highest levels of degassing
are required in the energy industry [9] and semiconductor manufacturing processes. The
heated pressure degassing process is most commonly used in energy applications [5] where
the feed water is routinely heated. The overall system is complex and large-scale and
uses considerable energy for deaeration through a condition-sensitive process. The feed
water undergoes heating, evaporation, and condensation before the water is stripped using
a portion of the steam produced in a separate boiler. In this process, spraying or tray
structures are used to achieve better phase separation. Therefore, the traditional degassing
process has high energy costs, high initial equipment costs, a complex system structure, and
is operationally complicated. However, pressure deaerators are still widely used because
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they can achieve low dissolved O2 concentrations on a large scale [9]. Membrane deaerators
have gained popularity as an alternative to pressure deaerators and are currently applied
in many processes [10]. Conventional methods generally require high temperature and
pressure. Recently, the interest in low-energy processes and improved process efficiency
to lower energy consumption has increased, and alternative technologies using vacuum
technology are being introduced to mitigate the need for high pressure [11–19]. Other than
the vacuum membrane system [20], vacuum deaeration systems still rely on a solubility
limit with an extended surface area realized through either static packing materials [21,22]
or dynamic rotating discs [23], but any processes that actively utilize vapor bubble diffusion
under room conditions, which is the original contribution of the present study, have not
been identified. Current commercially available deaerators can achieve DO concentrations
of 0.5 to 0.005 mg/L, based on the literature data summarized in Table 1. As shown in
Table 1, the DO concentrations vary according to the application fields and associated
mechanisms. Note that boiler feed-water applications require the lowest DO concentrations
where deaeration is achieved using thermal pressure deaerators. This process is based
on the solubility of the gas and diffusion through steam sparging as the basic physical
principles. Note also that the proposed vacuum bubbling deaeration relies on the same
working principles, but works at a lower pressure and without the need for excessive
heating. It should be emphasized here that mass diffusion is much more favorable with
vapor bubbles under vacuum than with hot steam sparged at a higher pressure, because the
partial pressure of O2 inside the vapor bubble should be orders of magnitude less than that
of hot steam. In short, it is proposed herein that vapor bubbles under vacuum conditions
have a much higher degassing potential than hot steam bubbles from steam sparging.

Table 1. State-of-the-art deaerator performance criteria.

Application Required DO Level
(mg/L) Method Source (s)

Boiler feed water ≤0.005 Pressure deaerator U.S. DOE * [9]
Food industry ≤0.01 Packing w/gas Bucher Unipektin [21]

Beverage ≤0.01 Vac. Packing w/o gas Corosys [19]
District heating ≤0.2 Vac. Evap. w/fillers Eurowater [22]
Lab and pilot

equipment ≤0.5 Vac. Disc. and spray OMVE ** [23]

* U.S. DOE: The United States Department of Energy (DOE). ** OMVE: OMVE Lab and Pilot Equipment.

Lower pressure operations have not received much attention thus far, mainly because
of the difficulty in achieving the desired vacuum conditions in real-life situations. However,
due to recent advances in technology, such as semiconductor manufacturing processes,
different vacuum levels are being extensively used. As indicated in Table 2, vacuum
levels of interest for deaeration, around 1 kPa, are categorized as low vacuum and are
considered achievable.

Table 2. Degrees of vacuum and their pressure boundaries [24].

Pressure Boundaries (mbar) Pressure Boundaries (Pa)

Low vacuum (LV) 1000–1 105–102

Medium vacuum (MV) 1–10−3 102–10−1

High vacuum (HV) 10−3–10−9 10−1–10−7

Ultra-high vacuum (UHV) 10−9–10−12 10−7–10−10

Extreme vacuum (EV) <10−12 <10−10

Based on the reviews so far, degassing experiments had been conducted at different
vacuum levels [25,26], which revealed the role of hydrostatic pressure and the temperature,
as well as that of vessel pressure, on the achievable degassing level. In this study, the
potential of vacuum bubbling was evaluated for deaeration applications via analyses of
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the test conditions. For this purpose, a vacuum deaeration model is proposed based on
a proprietary experimental apparatus for vacuum bubbling. Four important parameters
affecting vapor bubble generation and retention are delineated, namely, the water tempera-
ture (Tw), vessel pressure (p1), nozzle performance (p4 − p3), and the nozzle depth (∆h),
which are directly related to the vapor generation condition psat − p3 and vapor retention
condition p4 − psat. This study presents experimental results that reflect the effect of the
vapor bubble retention conditions on vacuum bubbling at two different nozzle depths, that
is, 30 cm and 20 cm from the water surface. By monitoring the volume of the extracted
gas captured, as well as the DO concentration over time, important performance metrics
such as the lowest DO concentration, time, and energy consumption are determined. The
experimental results are discussed in relation to the analysis of a model developed based
on the measured extracted gas volume data.

2. Materials and Methods
2.1. Background Physics
2.1.1. Solubility Behavior with Respect to Temperature and Pressure

Solubility decreases with temperature, as illustrated in Figure 1, and is proportional to
the partial pressure of the solute gas, which is known as Henry’s solubility law.

Cs,i = HiPi . (1)
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Here, Cs,i is the solubility (mol/L·atm), Hi is Henry’s constant, and Pi is the partial
pressure of a specific gas (atm). Figure 2 illustrates the variation of the solubility of O2 and
N2 in water at 25 ◦C, according to Henry’s law, with the constant values shown in Table 3.
Note that heating can lower the solubility of a gas in a liquid, thereby eliminating the
dissolved gas species [6]; however, the same effect can be achieved using depressurization,
with less energy.

Table 3. Henry’s solubility constants for O2 and N2 in water at 25 ◦C [28].

Species Unit Henry’s Constant H

O2 mol/(L·atm) 1.28× 10−3

N2 6.48× 10−4

Once the solubility decreases, regardless of the trigger (heating or vacuum), the portion
of supersaturated solutes that are in an unstable state can escape from the liquid, in the form
of bubbles, without much difficulty. However, manipulating the solubility by controlling
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the pressure has a lower limit for application, because a phase change is induced at low
pressures near the saturated vapor pressure, below which the solvent (water), at least
theoretically, may no longer exist in a stable liquid state.
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Figure 2. Solubility of O2 and N2 in water at 25 ◦C with variation of the pressure.

A solvent such as water undergoes a phase change according to its thermodynamic
state, which is represented by a phase-change diagram. Henry’s law deals with the sat-
urated solubility of a solute in a liquid solvent; however, if the pressure is so low that it
falls below the saturated vapor pressure of the liquid solvent, the phase of the solvent
may change from liquid to vapor, and Henry’s solubility law may no longer be applicable.
Figure 3 illustrates Henry’s law for the solubility of O2 in water at different temperatures,
with the lower limit set by the saturated vapor pressure of water at each temperature [29].
Henry’s law is only effective if the solvent remains in a liquid state. Once the liquid solvent
is vaporized under vacuum, vapor bubbles may be generated as a gas mixture composed
of water vapor and the dissolved gas at the point of vaporization.
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2.1.2. Bubble Generation—Tension vs. Superheating

Vapor bubbles are cavitation bubbles that may appear when the local pressure de-
creases below the vapor pressure of the liquid, which is a function of temperature. Figure 4
presents a phase-change diagram based on the saturated vapor pressure of water.
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During heating, vaporization occurs at the superheated locations of a surface after
reaching the saturation temperature, whereas under a vacuum, vaporization may occur if
the local pressure falls below the saturated vapor pressure of the liquid. One important
aspect of the two different paths for vaporization (heating vs. depressurization) lies in the
fact that while heating is a direct input of energy into the water system, depressurization is
not. Depressurization affects only the surrounding conditions and not the system itself,
resulting in a significant difference in energy use. For example, let us consider the energy
required to reach the vaporization state from the assumed room conditions (T1 = 25 ◦C,
p1 = 101.3 kPa) via heating to a state of T2 = 100 ◦C, p2 = 101.3 kPa, or depressurization
or vacuuming to a state of T′2 = 25 ◦C, p′2 = 3.17 kPa. Assuming there is m = 400 kg
of water in the vessel with V1 = 21.1 L of headspace, which corresponds to one of the
present experimental conditions described later, in the case of heating, the heat energy of
Q = mc(T2 − T1) = 400 kg× 4.18 kJ/(kg·◦C)× (100− 25)◦C = 125, 400 kJ = 34.8 kWh is
required before the phase change is initiated. Here, the specific heat of water at 25 ◦C is
assumed to be 4.18 kJ/(kg·◦C). In comparison, in the case of the depressurization of air
under an assumed constant-temperature process, the work required to decompress the

headspace becomes W = p1V1
∫ V′2

V1
dV
V = p1V1ln

(
V′2
V1

)
. Noting that V′2 = V1

p1
p′2

= 21.1×
101.3
3.17 = 674.3 L, W = p1V1ln

(
V′2
V1

)
= 101.3× 21.1× ln

(
674.3
21.1

)
= 7.4 kJ = 0.00206 kWh.

The ratio of the work energy required for process 1 to change to 2′, with respect to the
heat energy required for process 1 to change to 2, is 7.4

125,400 = 0.00006, which is negligible.
Although this estimation is based on ideal thermodynamic relationships, the data indicate
that the burden of the heating energy can be almost completely eliminated by utilizing
vacuuming as an alternative process.

When one considers a phase-change phenomenon, such as the generation of vapor
bubbles, uniform equilibrium conditions are usually difficult to achieve. Instead, local and
transient phenomena are important. Brennen [30], one of the pioneers in vapor bubble
studies, describes:
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“If a pure liquid at a subcooled state is depressurized at constant temperature,
and pressure is reduced below that of the saturated vapor pressure without
significant nucleation sites, the depressurization may lead to continuation of the
state down the theoretical isotherm to a point where the pressure is below the
saturated vapor pressure. The pressure difference between this local pressure
and the saturated vapor pressure is the magnitude of the tension.” Brennen also
notes that “the necessary condition for vapor bubble generation is related to the
extent of tension and the duration.”

Brennen’s description of material behavior near the phase change is significant. First,
if insufficient energy is supplied to induce a phase change from the liquid state to the
vapor state, no phase change may occur. The energy for vaporization, h f g, is a well-known
property of liquids such as water and is only a function of temperature. This suggests that
in a metastable region near the phase-change line, the extent of vaporization will depend on
the amount of energy input, regardless of the energy form, either heat or pressure. Second,
once the material is in a metastable region and is in a certain phase, this phase will remain
unchanged; otherwise, energy input is required to induce the phase change, which means
that once the liquid is vaporized and the thermodynamic condition is maintained, the
vapor will remain in its current phase.

2.1.3. Diffusion Potential of Steam and Vapor Bubbles

Based on the assumption that dry air is composed of 79.1% N2 and 20.9% O2, if vapor
bubbles are created instantly by decompressing the inside of liquid water that is initially
in phase equilibrium with atmospheric pressure, the concentrations of O2 and N2 in the

liquid are CO2 = 8.3 mg/L =
8.3 × 10−3 g × 1 mol

32 g

1 L × 10−3 m3/L
= 0.259 mol/m3 and CN2 = 13.9 mg/L =

13.9 × 10−3g × 1 mol
28 g

1 L × 10−3 m3/L
= 0.496 mol/m3, respectively. If the pressure of this solution is reduced,

for example, to 1 kPa, which is lower than the saturated vapor pressure, the saturated
solubility becomes undefinable according to Henry’s law, because the solvent (water)
would no longer exist in the liquid phase. In this case, the volume of each component
originally contained in 1 L of water is ascertained to calculate the concentration of each
constituent inside the bubble, instead of using the saturation solubility at the interface.

VO2 =
mO2 RO2 T

p
=

8.3× 10−6 kg× 0.2598 kJ/kg·K× 298.15 K
1 kPa

= 0.00064 m3

VN2 =
mN2 RN2 T

p
=

13.9× 10−6 kg× 0.2968 kJ/kg·K× 298.15 K
1 kPa

= 0.00123 m3

Vvap =
mvapRvapT

p
=

0.997 kg× 0.4615 kJ
kg ·K× 298.15 K

1 kPa
= 137.183 m3

From this, the volume fraction of O2 inside the bubble becomes yO2 =
VO2

VO2+VN2+Vvap
=

0.00064
0.00064+0.00123+137.183 = 4.6× 10−6.

The result of this calculation suggests that the volume fraction of O2 inside the evapo-
rated water is very low, close to zero, even though no pre-degassing was involved, and
similar results hold for water evaporated at high temperatures under atmospheric pressure
conditions. However, it should be emphasized that even though the volume fractions in
the two cases were similar, the partial pressure levels of the dissolved gas, which are the
working variables in the diffusion process [31], were significantly lower under vacuum.
Noting that this low concentration originates from the volume expansion of water to the
vapor state, the concentration difference is maintained throughout the deaeration process,
which provides a strong drive for mass diffusion and accounts for why, compared to
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other methods, vapor-bubbling deaeration is expected to provide the lowest dissolved
O2 concentration.

2.1.4. Bubble Diffusion

Modeling was attempted as part of the present study, based on a discrete-bubble
model [32,33] developed for aeration applications. Unlike aeration practices, where air is
supplied to a specific bubbling aeration system at a certain rate, the bubbling parameters
in the case of deaeration, including the bubble generation rate, initial bubble size, and
composition, should be determined separately, possibly through experiments. With these
in mind, the discrete bubble model for aeration was extended to deaeration applications.

Herein, the following assumptions are made: (1) the initial bubble size can be de-
termined from its Sauter mean diameter (SMD), and the rate of bubble formation can be
determined from the experiments, (2) the mass transfer of O2 and N2 occurs with no bubble
coalescence, (3) the temperature of the water and air is constant and equal, and (4) the mass
transfer through the free surface of the water at the top is negligible.

The mass-transfer flux (subscript i for either O2 and N2) across the surface of a
bubble is

Ji = KL(Csi − Ci)
(

molm−2s−1
)

, (2)

where KL is the liquid-side mass transfer coefficient, Cs is the equilibrium concentra-
tion at the gas/water interface, and C is the bulk aqueous-phase concentration. The gas-side
mass transfer resistance was assumed to be negligible. The equilibrium concentration was
determined using Henry’s law, Equation (1). Substituting the expressions from Equation (1)
into Equation (2) yields

Ji = KL(HiPi − Ci)
(

molm−2s−1
)

. (3)

The rate of mass transfer for a single bubble is obtained by multiplying the surface
area of a bubble of radius r by

dmi
dt

= −KL(HiPi − Ci)4πr2
(

mols−1
)

(4)

The vertical location of a bubble is determined by the bubble-rise velocity vb, and any
induced vertical water velocity v, as follows:

dz
dt

= v + vb

(
ms−1

)
(5)

where z denotes the vertically upward direction. The induced velocity v, may be lower
than the bubble-rise velocity. A unique feature of this discrete bubble model is that instead
of performing time integration on the mass diffusion and vertical location separately, the
model combines Equations (4) and (5) to obtain the mass of the gaseous species transferred
per bubble per unit height of the tank as follows:

dmi
dz

= −KL(HiPi − Ci)
4πr2

vb

(
molm−1

)
(6)

through which the time t is no longer involved as a variable. The initial number flux of
bubbles, N, was estimated based on the initial bubble volume, V0, and the actual volumetric
gas flow rate at the diffuser, Q0:

N =
Q0

Vo

(
s−1
)

(7)

The molar flow rate of the gas, M, was obtained by multiplying Equation (6) by N:

dMi
dz

= −KL(HiPi − Ci)
4πr2N

vb

(
molm−1s−1

)
(8)
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When a bubble rises, the concentration of the bulk aqueous phase is assumed to remain
constant. Equation (8) is integrated numerically for each O2 and N2 species to obtain the
change in the molar flow rate when the bubble is in contact with water during its rise.
Table 4 summarizes the correlations used in the discrete bubble model.

Table 4. Correlations used in the discrete bubble model (Henry’s constants, bubble-rise velocity, and
the liquid-side mass transfer coefficient) [33].

Property or
Variable Name Correlation Equation Range

H
(molm3bar−1)

HO2 = 2.125− 5.021× 10−2T2 + 5.77× 10−4T2

(T in ◦C)
Not available

HN2 = 1.042− 2.450× 10−2T2 + 3.171× 10−4T2

(T in ◦C)
KL

(ms−1)
KL = 0.6r r < 6.67× 10−4 m

KL = 4× 10−4 r ≥ 6.67× 10−4 m

vb
(ms−1)

vb = 4474r1.357 r < 7× 10−4 m
vb = 0.23 7× 10−4 ≤ r < 5.1× 10−3 m

vb = 4.202r0.547 r ≥ 5.1× 10−3 m

Using these relationships and the change in the bubble radius, both the bubble-rise
velocity and mass transfer coefficient were recalculated as the bubble traveled upwards.
Once the bubbles reached the surface, the overall changes in the molar flow rate of the gas
(both O2 and N2) were used to calculate the evolving concentration of the bulk aqueous
phase as a function of time. The initial molar flow rates of the gaseous O2 and N2 were

m0 =
Y0PstdQstd

RTstd

(
mols−1

)
(9)

where Y0 is the initial mole fraction of the gas, Pstd is the standard pressure, Qstd is the gas
flow rate at standard temperature and pressure (0 ◦C and 1 bar), R is the ideal gas constant,
and Tstd is the standard temperature.

2.2. Experimental Setup and Test Methods

Figure 5 presents an illustration of the test apparatus used in this study, which was
composed of a sealed water vessel with a depressurization system, a Venturi-type mi-
crobubble generator [26], a gas collector hood, and a data acquisition system (Yokogawa
DA-100, 30 Ch.; Japan). The water vessel, 0.65 m (L) × 0.65 m (W) × 1.0 m (H) in size, was
equipped with two large viewing windows, as shown in Figure 6, through which the actual
phenomena occurring during the test could be visually monitored. A gas-collector hood
was installed inside the tank to capture the extracted dissolved gas. For the vessel pressure
and water temperature measurements, a digital pressure transducer (Ulfa Technology, SDT
series B760H, ±760 mmHg, res. 1 mmHg, Republic of Korea) and K-type thermocouples
were used.

In the present study, cavitation bubbling was achieved by lowering the local pressure
at the nozzle throat, through which flow was induced by a 12 V DC water pump (Daehwa
Electric, DPW69-12, 12 V DC, 69 lpm; Busan, Republic of Korea), along with depressur-
ization of the ullage space using a vacuum pump (Kodivac Ltd., oil-sealed rotary pump,
GHP-340K, 0.75 kW; Gyeongsan, Republic of Korea). A Venturi-type bubble-generator
nozzle [26] was installed at a certain height above the bottom of the vessel. The gas ex-
tracted via bubbling was collected under a gas-collector hood inside the tank, as shown
in Figures 5 and 6. Once a sufficient volume of gas was captured, degassing was stopped
and the tank pressure was recovered to atmospheric pressure for measurement of the DO
(Mettler-Toledo InPro 6950(i) Oxygen Measurement Sensor with M300 Multi-parameter
Transmitter, 6–50,000 ppm, ±5 ppm; Switzerland); this sequence comprised one degassing
session. The collected gas level was measured using a scale attached to the slanted surface
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of the gas collector and was converted to the corresponding volume using a pre-constructed
calibration curve [25]. The test procedure is illustrated in Figure 7.
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2.3. Vacuum Bubbling Model and Analysis of Test Condition
2.3.1. Vacuum Bubbling Model

To better understand the vapor bubble generation conditions, a theoretical operation
model for vacuum vapor bubble generation (Figure 8) is presented herein, based on the
present experimental model.
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Figure 8. A theoretical operation model for vacuum vapor bubble generation.

The vessel was filled with tap water, and a vent for depressurization and gas discharge
was connected to a vacuum device at the top of the container. A bubbler nozzle connected
to a submersible pump that was installed horizontally at a depth ∆h in the water. For the
sake of discussion, room condition is denoted by the subscript 0; the ullage space by the
subscript 1; and the nozzle inlet, throat, and downstream conditions by subscripts 2, 3, and
4, respectively. The room temperature (T0) and water temperature (Tw) were assumed to be
the same.

Vacuum bubbling consists of two steps. In the first step, the entire ullage space is
depressurized to a pressure close to the saturated vapor pressure, followed by additional
local depressurization (through the bubbler nozzle) to below the saturated vapor pressure,
at which vapor bubbles are generated. A more detailed view of the thermodynamic state
using the abovementioned model (Figure 8) reveals how the conditions vary depending
on the operating conditions. For the purpose of this discussion, the baseline operation
conditions are defined as follows:

- water temperature Tw = 25 ◦C;
- nozzle depth ∆h = 0.8 m;
- ullage pressure p1 = 5 kPa;
- fixed flow rate through the nozzle (driven by a pump using DC power of 20 W).

One of the two steps in vacuum bubbling is to reduce the pressure inside the vessel
p1 using a vacuum pump, and the other is to reduce the local pressure using the flow
induced by the pump. When the flow is induced by the pump, the pressure at each part of
the nozzle is represented by p2, p3, and p4 which correspond to the nozzle inlet, throat, and
downstream, respectively, as shown in Figure 9. Note that p3, the minimum local pressure,
occurs at the nozzle throat and is related to the condition for vapor bubble generation
psat − p3, whereas p4, the nozzle downstream pressure, is related to the vapor bubble
retention condition p4 − psat. Note also that p4 depends on the depth of the nozzle (∆h),
such that p4 = p1 + ρg∆h due to the effect of the hydrostatic pressure contribution at
that depth. Out of the figure, one can identify four important performance variables that
directly affect the conditions for the generation and retention of vapor bubbles. These four
performance variables are the decompression level p1, nozzle depth ∆h, water temperature
Tw, and nozzle performance p4 − p3 as illustrated in Figure 9. Vapor bubble generation
appears to be governed by the extent of tension, psat − p3, whereas vapor bubble retention
is governed by the downstream condition p4 − psat and these two values are determined
by the combinations of those four physical variables.
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2.3.2. Analysis of Test Conditions

The tests were designed and conducted to confirm the effects of the variables, starting
with the baseline operation conditions; the test conditions are summarized in Table 5. The
nozzle performance (p4 − p3) was estimated for a pump input power of 23.4 W for all test
cases. According to the test conditions’ analyses, the vapor generation condition (psat − p3)
was marginal (near zero) with the baseline conditions (case 0) and increased to a maximum
potential in case 3. The values in parentheses reflect non-physical values (negative pressure
and related values) because once vaporization occurs, the pressure may no longer decrease.
Therefore, these values should be considered, instead, to be driving potential and not to
be real pressure values. The nozzle downstream condition (p4 − psat), which represents
the deviation of the nozzle downstream pressure from the saturated vapor pressure, is
related to the vapor retention. Among the test cases, case 3 afforded the best retention, with
the lowest deviation of 0.29 kPa (Table 5). When the vessel pressure, p1 was maintained
at 5 kPa, as in cases 0 and 1, the nozzle downstream pressure p4 reached 12.82 kPa due
to the hydrostatic contribution of nozzle depth, resulting in significant deviation from
the phase change pressure of 3.17 kPa at the specified temperature of 25 ◦C, whereas in
cases 2 and 3, the vessel pressure was maintained at 1 kPa, which provided favorable
bubble generation conditions, but with different nozzle downstream conditions depending
on the nozzle depths. Here, p1 = 1 kPa was lower than the saturated vapor pressure of
water at the corresponding temperatures of 18.6 ◦C and 22 ◦C. The test conditions of case 2
and 3 differ only in the nozzle depth, resulting in different nozzle downstream conditions
(p4 − psat). The pressure difference p4 − p3, was estimated to be 9.65 kPa with a flow rate
of 13.42 lpm based on an assumed pump efficiency of 50% and the minor losses due to the
inlet, contraction, and diffusion through the Venturi-nozzle [26].

Table 5. Test conditions and analysis.

Case p1
(kPa)

∆h
(m)

p4
(kPa)

p4−p3
(kPa)

p3
(kPa)

Tw
(◦C)

psat
(kPa)

psat−p3
(kPa)

p4−psat
(kPa)

0
(Baseline) 5 0.8 12.82 9.65 1 3.17 25 3.17 0 9.65

1 5 0.8 12.82 9.65 1 3.17 35 5.63 2.46 7.19
2 1 0.3 3.93 9.65 1 (−5.72) 18.6 2.16 (7.88) 1.77
3 1 0.2 2.96 9.65 1 (−6.69) 22 2.67 (9.36) 0.29

1 Estimated for the nozzle used with a fixed nominal pump power input of 23.4 W.
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3. Results

The time variations of the DO concentration were measured for the four test cases,
including the baseline condition (case 0), and the degassing rates were also measured
for cases 2 and 3, in which significant evidence of vapor bubbling was expected based
on the test condition analysis, as shown in Table 5. The total electricity usage is also
provided for further discussion of energy-saving issues. The presented results are a subset
of the experimental data at different conditions and double checked for repeatability by
the author.

3.1. Variation of DO Concentration (Minimum DO and Time)

Figure 10 shows the measured DO concentration (mg/L) with respect to the bub-
bling time. When the vacuum levels were not low enough to generate enough vapor
bubbles, p1 = 5 kPa (cases 0 and 1), the conditions for vapor generation (psat − p3)
were marginal, that is, at 0 and 2.46 kPa, respectively (Table 5). The resulting mini-
mum DO levels were found to be ~1.1 mg/L for case 0 and 0.47 mg/L for case 1 with
a higher water temperature of 35 ◦C. The difference between the two cases arises from
the temperature difference being elevated by 10 ◦C. However, no further decrease in
DO concentration was detected. However, when the vessel pressure was lowered to
1 kPa (cases 2 and 3), with lower values of ∆h, the tension for vapor bubble generation
(psat − p3) significantly increased, with different levels of vapor bubble retention condi-
tions of p4 − p3 = 1.77 kPa (case 2) and 0.29 kPa (case 3), respectively. In both cases, the
DO concentration reached 0 mg/L, but at different rates. Note that the resolution of the
measurement unit (Mettler-Toledo M300 instrument with polarographic DO sensor) was
limited to 0.1%-atm, which corresponds to 0.04 mg/L. Based on these results, the aim of
achieving a sufficiently low DO concentration with vacuum-bubbling deaeration seems to
have been met.
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A lower DO concentration was achieved in test case 1, where the temperature was
higher (35 ◦C) than in case 0, because the saturated vapor pressure increased by 2.46 kPa
(from 3.17 kPa to 5.63 kPa) in the former (Table 5), resulting in more favorable conditions
for vapor bubble generation as the tension increased from 0 to 2.46 kPa, which also led
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to more favorable conditions for bubble retention. However, these two cases appear to
provide poor conditions for the generation and retention of vapor bubbles. As shown in
Figure 10, a minimum DO concentration of 0 mg/L was achieved for both cases 2 and 3 after
2551 and 998 min of bubbling time, respectively. The zero (0) data values are not shown
in the figure because of the use of a logarithmic scale for representing the concentration.
The rate of decrease in the DO concentration differs under these two conditions (cases 2
and 3) mainly because of the nozzle downstream condition, where the generated vapor
bubbles are eventually exposed. Note that in case 3, the pressure deviates less from the
phase-change condition, p4 − psat = 0.29 kPa, compared to case 2, p4 − psat = 1.77 kPa.
The chances of remaining in a metastable state should be higher when the deviation of the
pressure from the saturated vapor pressure is smaller.

3.2. Degassing Rate and the Rate Model

Figure 11 shows the measured degassing rates for cases 2 and 3 at a vessel pressure
p1 of 1 kPa. The degassing rates were determined by reading the scale attached to the
slanted side of the gas collector hood, as shown in Figures 6 and 7, and converting the
value through a pre-established calibration curve. Degassing started with a high flow rate,
with a maximum of 3.4 lpm in case 3, followed by a rapid exponential decrease, but did
not converge to zero in either case. The degassing rate eventually approached an almost
constant value depending on the conditions of each case. This is a unique finding, as the
pressure is below the saturated vapor pressure compared to the findings in the cases of
p1 > psat, in which no bubbles were generated after a certain period. From this observation,
it is deduced that once most of the supersaturated solutes are removed via degassing,
water vapor and the remaining portion of the dissolved gas may vaporize. Referring to
the data for p4 − psat in Table 5, it appears that a higher tension at the throat and lower
deviation from the phase-change condition are more favorable for vapor bubble generation
and retention, resulting in higher degassing rates, as shown in Figure 11. Average vapor
bubble degassing rates of 0.034 and 0.061 lpm were obtained for cases 2 and 3, respectively,
based on the observed gas volumes from each session. Note that the pressure acting on the
captured gas is higher than p1, as indicated by the lower water surface level in the collector
hood, and is estimated to be 2.3 kPa. Under more favorable conditions, the vapor bubble
degassing rate in case 3 was 80% higher than that in case 2.
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Figure 12 shows typical images of the vacuum bubbling process during the initial
(Figure 12a) and final (Figure 12b) stages. In the initial stage, massive bubbles exited
the bubbler nozzle, with a rapid decrease in the amount of degassing, whereas a limited
amount of bubbles were steadily generated after a certain period. The natural deduction
from this observation is that the constant degassing rates in the latter part of the degassing
process are only due to vapor bubbles, whereas the initial transient values include the
portion of supersaturated solutes in the water and the constant rates from vapor bubbles.
The analysis is conducted based on this observation.
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3.3. Energy Consumption for Degassing

The electricity consumption was monitored during the deaeration experiments. The
DC water pump with a maximum output of 100 W for the bubbler was run during the
entire bubbling time, with a constant nominal rate of 20 W (2.73 Amp × 7.3 VDC). The
electricity usage could be estimated by multiplying the nominal rate by the total bubbling
time. The vacuum pump (a 0.75 kW oil-sealed rotary pump) was operated intermittently
and the energy consumption from the start of the vacuum application to the end of the
deaeration experiments was measured using a power meter. The total bubbling time and
the electricity consumption required to arrive at a reading of 0 DO %-atm are summarized
in Table 6 and Figure 13 for cases 2 and 3. The data in Table 6 reveal that the right choice of
operating conditions is critical for securing the desired deaeration performance in terms
of not only the minimum DO concentration, but also of total bubbling time (Figure 13a),
and the electrical energy consumption (Figure 13b). A simple comparison of cases 2 and 3,
for which the vessel pressure was the same, demonstrates that the time required to reach
0 DO %-atm in case 3 was less than half the time required in case 2, resulting in 60% less
bubbling time (Figure 13a) and 52% less energy use (Figure 13b) than the former case,
which is significant. Considering the water volumes used for each case, the normalized
energy use is 4.17 kWh/m3 and 2.22 kWh/m3 for cases 2 and 3, respectively. Further efforts
are required to determine the optimum operating conditions. Care should be paid when
these data are used for comparison to ensure a fair judgement.

Table 6. Energy consumption for vacuum bubbling deaeration experiments.

Test Case Water Vol.
(m3)

Total
Bubbling

Time (min.)

Epump
(kWh)

Evac·p
(kWh)

Etotal
(kWh)

Case 2 0.40 2551 0.847 0.822 1.669
Case 3 0.36 998 0.331 0.467 0.798
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4. Discussion

Figure 11 shows that bubble generation during the degassing process may be con-
sidered to be divided into two apparent modes: in the first mode, the bubble generation
declines exponentially, whereas in the second mode, the bubbling rate is almost constant.
This is an interesting phenomenon that needs to be studied further, because knowing
the gas composition and supply rates is a prerequisite for degassing simulations. It is
hypothesized, regarding the composition of the bubbles, that the initially formed bubbles
are characterized by supersaturated solutes that were dissolved in the solvent, whereas the
bubbles generated in the latter part are characterized by vapor bubbles. Based on this, an
approximate model for the composition of the bubbles is presented as follows:

(1) The two gas sources, supersaturated solutes and water vapor, contributed simultane-
ously, with different contribution fractions.

(2) The degassing rate of the vapor is assumed to be constant and determinable
(from experiments).

(3) The extracted gas is composed of vapor bubbles, as determined in (2), and supersatu-
rated solutes, which are responsible for the remaining degassing rate.

Based on the above assumptions, the initial conditions for the discrete bubble model
described in Section 2.1.4 can be determined. Based on the mass balance calculation, the
assumed bubble composition at the time of generation was obtained as follows:

Determination of the mass balance equation:

(1) The total rate of the volume change for the extracted gas was determined from the
experiment: QN(t) (N lpm).

(2) The total rate of the volume change for the extracted gas was interpreted as the sum
of the vapor bubbles and dissolved gases (O2 and N2): QN(t) = QN,vap(t) + QN,s(t)
Note that QN,vap (N lpm) was obtained from the experiments and the rate of the

volume change of the supersaturated solutes: QN,s = QN(t)−QN,vap(t)

(3) The initial composition of the supersaturated solutes was estimated based on the
measured DO concentration or the assumed equilibrium conditions.

QN,O2 = QN,s × 0.332

QN,N2 = QN,s × 0.636

(4) As time advances, QN(t) was updated by measurements or using correlation equa-
tions, as shown in Figure 14.

QN(t) = 0.2738× t−0.88 (N− lpm) for 0 < t < tphase
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QN(t) = 0.00073 (N− lpm) for t > tphase
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In case 2, tphase = 900 min. The degassing rates are expressed in terms of N lpm for
convenience of calculation under normal conditions (0 ◦C and 1 atm), and the pressure
at which the gas volume is measured during the degassing experiment is assumed to be
2.3 kPa, considering the lowered water level in the collector hood. The Henry’s solubility
law constants for O2 and N2 in water used in this model are as follows:

HO2 = 2.125− 5.021× 10−2 × T + 5.77× 10−4 × T2
(

mol/m3·bar
)

and
HN2 = 1.042− 2.450× 10−2 × T + 3.17× 10−4 × T2

(
mol/m3·bar

)
Based on the above assumptions, the volume rate of change for the bubbled gas is

shown in Figure 15, where the contributions of the total and individual components of the
gases are given.
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Before the overall deaeration analysis was conducted, the region of vapor bubble
degassing was of particular interest because, in that region, after approximately 500 min of
bubbling time, a clear contribution of vapor bubbles was demonstrated through the change
in the DO concentration (case 2 in Figure 10). The initial bubble size could be estimated
by analyzing this region. Figure 16 shows the estimated variation in the DO concentration
with respect to time at a measured average degassing rate of 0.0344 L/min; the pressure
is assumed to be 2.3 kPa considering the lowered water surface level inside the collector
when the gas is captured.
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The overall deaeration process was attempted using the most probable SMD for the
vapor bubbles, which was determined to be 0.32 mm from the case 2 experiment. Figure 17
shows the analysis results for the overall deaeration process based on the discrete bubble
model, with the assumption that the gas comprises a mixture of vapor and air, as shown
in Figure 16, and the bubble SMD at the location of bubble generation remained the same
from the beginning to the end of the deaeration process. The simulated results agree fairly
well with the measured data, with only a slight overestimation of the extent of deaeration,
which seems justifiable considering the stringent assumptions of a constant (mean) bubble
size without any merging or coalition of bubbles. In Figure 17, the overall concentration
change was characterized by three zones. In the first zone, most of the gases constituting
the bubbles were dissolved gases, because of the decrease in solubility due to the pressure
change. In the test results for case 2, this zone extended for up to approximately 1 h after
the initiation of bubbling. During this period, the DO concentration decreased sharply to
approximately 1 mg/L. In the second zone, the rate of decrease in the DO concentration
was slightly more gradual. In this zone, the proportions of dissolved gas and vapor were
comparable, and the DO concentration in the water decreased relatively slowly. Over
time, the amount of dissolved O2 remaining in the water was limited due to continued
degassing. In the third zone, mass transfer between the vapor bubbles and the dissolved
O2 remaining in the water drives deaeration at a lower level until the end of the experiment.
Note that the concentration difference between the liquid and vapor states is the result
of volume expansion during the phase change, and the concentration difference or ratio
remains constant throughout the process until the value approaches zero. This zone shows
a lower rate of change in concentration than the previous zones, but the lowest dissolved
O2 concentration could be realized through continuous operation. The present test results
and the analysis suggest that the present deaeration approach, vacuum bubbling, can
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realize the lowest DO level expected in industry, with identified control variables and with
a methodology that can analyze and estimate the performance of the system in question.
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5. Conclusions

A simple, high-performance, yet energy-efficient approach for deaeration is introduced
for possible practical applications, with the expectation that this method may contribute
to improving the energy efficiency of the process, which is known to be a task for the
industry in attempting to pursue a sustainable future. Of the two working mechanisms of
vacuum bubbling, solubility and mass diffusion through vapor bubbles, the latter, which
has received less research interest to date, is discussed in detail. The major findings of this
study are as follows:

1. Vapor bubbles with a DO volume fraction of less than 10−6, due to the effect of volume
expansion during the phase change process, are responsible for mass diffusion at the
lowest DO concentration levels, close to zero.

2. The conditions for the generation and retention of vapor bubbles under vacuum
are explicitly delineated in this study, along with other influential variables. The
tension (psat − p3) at the bubbler nozzle throat defines the vapor generation condition,
while the deviation from the phase-change pressure (p4 − psat) downstream of the
bubbler nozzle defines the condition for vapor bubble retention in the present exper-
imental system. The effect of these factors was demonstrated through experiments
(cases 2 and 3), showing that even under the same vessel pressure p1 = 1 kPa, the
time required for a zero mg/L reading of DO concentration could be reduced by
60% depending on the nozzle depth change in the present study, which is one of the
influential parameters herein.

3. The total energy consumption required to complete the degassing of the water body
to 0 mg/L at room temperature was measured and reported in the present study. The
energy used during the experiments includes the electric power for a water pump and
a vacuum pump. The minimum deaeration time for 0.36 m3 of water was found to be
998 min (case 3), with a total electricity consumption of 0.829 kWh (2.31 kWh/m3).

4. Although case-specific, attempts were made to analyze the test results and to develop
a predictive model for the present approach. Based on the estimated SMD of the initial
vapor bubbles, the entire bubbling behavior could be reproduced using the discrete-
bubble model with the measured degassing rate. Further efforts are encouraged for
model refinement and validation.
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Through the present study, it was demonstrated that deaeration down to zero mg/L
DO concentration could be achieved, largely due to the contribution of vapor bubbles.
Understanding the vapor bubble generation and retention conditions seems critical in
achieving vapor bubbling, which provides a theoretical tool to secure the optimum op-
erating conditions for individual applications. The energy required, though not directly
compared with data from other approaches in the present study, is also compared theoret-
ically against the heating process, but more extensive comparisons are desired for fairer
estimations. The model, although case-specific, provides a concrete view of the behavior of
the deaeration process. The present approach fundamentally differs from other vacuum
devices that rely on solubility, including the surface controls, and can provide the minimum
level of, or better than, thermal deaerators without resorting to heating and without the
need for any third-party materials as membranes or gases. It is to be noted, however, the
resolution for DO measurements was found to be not optimal for use in the current extreme
pressures and at a low level.
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