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Abstract: Enhancing the sustainability of wastewater treatment plants (WWTPs) is crucial due to
their manifold benefits, which encompass environmental preservation, cost reduction, and resource
and energy conservation. The achievement of these advantages relies on the careful choice and
implementation of retrofit technologies to upgrade WWTPs. However, this decision-making process
is intricate, given the trade-offs between the objectives and the inherent decision uncertainties. To
address these complexities, this work presents an innovative weighted multi-objective optimization
(MOO) framework tailored for WWTP enhancement amid uncertain conditions. This framework
comprises two phases. The first phase involves basic definition and information collection through a
case-specific assessment, while the second phase includes model formulation and solver optimization,
which serves as a generic tool for the weighted MOO problem. In the model formulation, a combined
weighting approach that integrates expert opinions and statistical insights is introduced to assign
significance to each objective. The solver optimization employs a projection-based algorithm to
identify the optimal technology configuration that achieves a satisfactory and balanced improvement
across multiple sustainable objectives. By applying this framework to a case plant for retrofit
technology selection, the comprehensive sustainability performance, the targeting of discharged
pollution, the operational cost, and the GHG emissions improved by 46.7% to 68.3%.

Keywords: sustainability decision making; WWTP; retrofit technology selection; weights combination;
multi-objective optimization

1. Introduction

Throughout the last century, the rapid growth of the human population, urbaniza-
tion, and industrialization have imperiled the abundance and quality of natural water
bodies. Municipal wastewater treatment plants (WWTPs) have served as a critical measure
in the interception of aquatic pollutants and the reduction in the risks to human health
and local ecology [1]. However, these WWTPs encounter significant challenges, such as
inadequate design, low pollutant removal efficiency, high energy consumption, and green-
house gas (GHG) emissions [2,3]. In the past decade, the wastewater sector has shifted
its focus towards sustainable practices, placing emphasis on high-efficiency, low-carbon,
and environmentally friendly development to evaluate the overall impact of WWTPs. As a
result, the retrofitting of WWTPs has become a pivotal area of interest [3]. As pretreatment,
secondary treatment, and advanced treatment units are typically involved in a standard
wastewater treatment plant (WWTP), the following examples of retrofitting alternatives
could be provided [4]. For the pretreatment unit, potential alternatives include the addition
of fine screens and membrane screens, as well as the optimization of the operation of the sed-
imentation tank. In the secondary treatment unit, the considerations may include multiple
influents, which incorporate suspended fillers, feeding carbon or nutrient sources, and the
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enhancement of the biological process configuration through the addition of a membrane
bioreactor or the rearrangement of anaerobic/anoxic tanks. In the advanced treatment unit,
options for improvement may encompass upgrading post-filtration processes and disinfec-
tion methods. From an overarching perspective, enhancing the operational efficiency of a
WWTP can involve implementing superior control and automation systems and replacing
outdated and inefficient pumps and aeration equipment. Additionally, taking steps to
recover energy, as well as valuable nutrients like nitrogen and phosphorus (typically from
the sludge line), is a promising avenue. Regarding energy recovery, retrofitting WWTPs
with the combined heat and power system allows for the generation of electricity and
heat from biogas. Other considerations may include the implementation of a heat pump
system, the reuse of treated water, and the recycling of hydraulic potential energy [5]. For
nutrient recovery, technologies such as struvite crystallization, ion exchange, or membrane
concentration processes could be evaluated [6].

However, selecting retrofit technologies to meet the stringent objectives of the new re-
quirements is increasingly challenging due to the numerous options available. Additionally,
new roles have been assigned to WWTPs to recover resources such as energy and nutrients
while still complying with strict discharge limits and reducing potential side effects like
GHG emissions [7]. Therefore, ensuring the sustainability of WWTPs requires a careful
consideration of multiple objectives, including technical performance, economic feasibil-
ity, and environmental impact [8], making the selection of suitable retrofit technologies a
complex and time-consuming task. For instance, the process modeling software Biowin
has frequently been utilized to assess the performance of hypothetical WWPTs that incor-
porate promising retrofit technologies [9,10]. Cost–benefit analysis and lifecycle costing
(LCC) analysis have been suggested to address the economic considerations associated
with the enhancement of WWPTs [11,12]. As for the environmental concerns, the lifecycle
assessment (LCA) has always been applied and has included the evaluation of the energy
and resource recovery technologies [12–14].

In dealing with the multiple concerns in the sustainability enhancement of the WWTPs,
decision support systems (DSS) have been usually created by resorting to multi-attribute
decision-making approaches or multi-objective optimization techniques [15,16]. For in-
stance, a smart plant DSS has been developed specifically for the selection of WWTP
configurations that incorporate resource recovery. In this system, a widely used multi-
criteria decision-making (MCDM) method called the technique for order of preference
by similarity to ideal solution (TOPSIS) is employed to compare various objective values,
including GHG emissions, accumulation of effluent violations, effluent quality index, net
present value, system readiness level, and plant land area [7]. Ullah et al. [17] introduced a
multi-attribute-based DSS for suitable wastewater treatment technologies; it considered
technical, social, economic, regulatory, governmental, and environmental factors and was
based on four levels of treatment (preliminary, primary, secondary, and tertiary treatment)
to customize treatment assembly, prevent mistakes, and facilitate decision making. By
resorting to analytical hierarchical process (AHP, another popular MCDM method), Arroyo
and Molinos-Senante [18] proposed a model to identify the most sustainable wastewater
treatment technology among several alternatives by considering economic, environmental,
and social criteria. Other MCDM techniques, such as stepwise weighted assessment ratio
analysis (SWARA), multi-objective optimization by ratio analysis (MOORA), interactive
multi-criteria decision making (TODIM), complex proportional assessment (COPRAS), and
their variations, can also be found in recent works [19–21], demonstrating the advantages
of addressing conflicting multiple criteria [22,23].

When retrofitting existing WWTPs for improved sustainability, the multi-objective
optimization (MOO) technique is preferable over the MCDM methods. This preference
stems from the MOO technique’s capability to evaluate trade-offs and determine an op-
timal solution within design constraints, as opposed to the MCDM methods that assess
the sustainability performance of each alternative separately. For instance, Fernandez-
Arevalo et al. [24] use the plant-wide modeling methodology to compare existing WWTP
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configurations and those which are under development by focusing on the influent char-
acteristics, thus demonstrating that this methodology would be suitable for assessing the
incorporation of emerging retrofit technologies in conventional plant layouts. The work of
Sucu et al. [25] introduces a conceptual framework that employs weighted multi-objective
mixed-integer nonlinear programming to determine the optimal unit process combina-
tion for recovering resources from wastewater while minimizing environmental, social,
technical, and economic impacts.

Due to the inherent complexity of enhancing the sustainability of WWTPs, the com-
putational challenges and human limitations when simultaneously managing multiple
objectives can restrict the effectiveness of the MOO technique. In essence, MOO generates
a set of Pareto frontiers that can be time-consuming, particularly when dealing with an
infinite number of Pareto solutions in multi-objective mixed integer linear or nonlinear
programming problems. Metaheuristic algorithms, including genetic algorithms, particle
swarm optimization, and ant colony optimization, have been extensively employed to
explore the solution space and improve the solutions in MOO problems, including those
related to WWTP planning [26].

Despite the metaheuristic algorithms that provide a variety of Pareto optimal solutions,
decision makers may struggle to select a final solution due to inadequate consideration of
trade-offs among multiple objectives. To address this challenge, stakeholders often prefer a
single-objective approach (SOA) when working to improve the sustainability of a WWTP.
This approach aligns with their preferences and streamlines the optimization process by
consolidating multiple objectives into a single goal. In the context of the SOA, several
methods have been investigated to alleviate computational burdens, such as integrating
the decision makers’ preferences, implementing normalized constraints, introducing the
concept of dominance, employing Pareto filters, and minimizing the distance from the
Pareto frontier [27]. However, the SOA can result in information loss and can overlook
important trade-offs between conflicting objectives, especially when the stakeholders seek
a broader range of options. To address these limitations, some works integrated MCDM
methods into MOO techniques, enabling decision makers to not only understand the trade-
offs between objectives but also to streamline the search towards a specific region of the
Pareto front and reduce computational burdens [28]; this offered an easy yet promising
way to enhance the effectiveness of the SOA-based MOO technique. Here are a few
typical examples: the AHP method has been integrated into MOO techniques to design
the resource networks in eco-industry parks [29], as well as the biomass supply chains [28].
The TOPSIS is combined with MOO to optimize the chemical pulp supply mix within the
paper industry [30] and the ethylbenzene production process [31].

The published papers underscore the advantages of combining MOO with MCDM.
Nonetheless, two concerns remain unaddressed. Firstly, there is a lack of a rational method
for identifying the trade-offs among objectives. The previous works always rely on subjec-
tive weighting tools like AHP to gauge the relative significance of each objective; this is
prone to bias stemming from human manipulation and could be hindered by challenges in
the questionnaire design and information collection. Secondly, there is a lack of a reliable
technique for defining the final Pareto point. The current research often prioritizes the
aggregation of multiple objectives while neglecting their balanced performance. As a result,
the obtained decision output is inadequate within the context of sustainability as it may
lead to imbalanced development. Moreover, selecting retrofit technologies for WWTPs
involves a substantial reliance on the judgments of experts and on numerical data, which
are characterized by the presence of fuzziness and fluctuations, respectively. Considering
the uncertain information involved, the MCDM–MOO models become more complex, par-
ticularly when attempting to identify trade-offs among multiple objectives and generating
the final Pareto point.

This study introduces a hybrid MCDM–MOO framework to enhance the decision-
making process in selecting retrofit technologies for improving the sustainability of WWTPs.
Firstly, a combined weighting approach is proposed to enable a rational identification of the
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trade-offs among the objectives. This approach can simultaneously consider the decision
makers’ preferences and the data characteristics. Secondly, a projection-based technique
is used to reliably define the final Pareto point by representing both the improvement
degrees and the balance between the objectives associated with the alternative technologies.
Furthermore, by incorporating interval numbers, both the combined weighting method
and the projection-based technique can be utilized in uncertain conditions, rendering the
entire framework adaptable to real-world decision-making environments.

2. Materials and Methods
2.1. Overview of the Framework

This study aims to propose a systematic decision support framework for effectively
identifying the optimal solution, with a focus on the retrofit technology-based sustain-
ability enhancement of WWTPs. As illustrated in Figure 1, the framework consists of
two phases: (1) basic definition and information collection and (2) model formulation
and solver optimization. During the first phase, the problem scope is defined, followed
by the collection and processing of relevant data. This phase should be conducted on
a case-by-case basis, taking into account the specific characteristics of the WWTP under
investigation. The second phase, model formulation and solver optimization, involves
three important components: (i) the determination of the weights, (ii) the aggregation of the
multi-objective, and (iii) the generation of an optimal configuration for the retrofit technolo-
gies. In contrast to the customized operations in phase 1, these three actions within phase 2
are applicable to the study of sustainability enhancement problems of various sizes and
scopes. Therefore, the following sections will primarily explain the mathematical methods
employed in phase 2, with a brief introduction to the operations conducted in phase 1.
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2.2. Basic Definition and Information Collection

The stage of basic definition and information collection is tailored to the WWTP under
investigation. The basic definition involves identifying retrofit technologies and deter-
mining the enhancement objectives. Subsequently, the demand data associated with each
retrofit technology for a specific objective can be generated using suitable analytical tools.
Additionally, data processing is necessary to mitigate the impact of objective dimensionality.

2.2.1. Alternative Technologies Identification

To enhance the sustainability of an existing WWTP, it is necessary to select sets of
technologies (decision variables) from N options for implementation. Accordingly, a
binary variable Tj is defined as either 1 or 0 (j = 1, 2, . . ., n), representing whether the
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corresponding technology is selected or not. Notably, alternative technologies are typically
provided by professional experts based on their knowledge and expertise, using methods
like experience-based approaches, experiments, and simulations.

2.2.2. Sustainability Objectives Determination

Adequate sustainability objectives can be determined according to the specific situation
of the existing WWTP and the preferences of the stakeholders. Typical objectives may
include environmental performance, such as by maximizing treatment efficiency; economic
considerations, such as by minimizing operational costs; and social responsibility [32,33],
such as by reducing GHG emissions, among others. Consequently, the number of objectives
should be determined on a case-by-case basis, denoted as Oi, where i = 1, 2, . . ., m.

2.2.3. Information Collection and Treatment

According to the sustainability objectives, relevant information on each retrofit alter-
native would be collected using the appropriate tools. Using the aeration process in the
biological treatment unit as an example, the operational data (effluent pollutants, operating
costs, and carbon emissions) from the original plant can be collected or calculated before the
aeration technology retrofit. After considering the advanced aeration technology, the equiv-
alent modeling of the WWTP can be conducted using simulation software like Biowin [9].
It can also be compared with similar plants (those that have undergone the aeration retrofit)
to obtain data on the influent/effluent and aeration equipment operation post-retrofit.
Based on this, a thorough analysis of the WWTP’s energy consumption, material utiliza-
tion, and labor expenses before and after aeration technology enhancements allows users
to obtain insights into cost reduction [34]. Likewise, by considering the indirect GHG
emissions related to electricity and chemical consumption, the information regarding the
GHG emission reduction related to aeration technology improvement can be obtained [35].
The data collection process for various retrofit technologies can follow the same logic as
that shown in Figure 2. In addition, it is crucial to maintain uniformity in the scope of
the data collection. For instance, when addressing the cost reduction resulting from the
adoption of retrofitting technologies, data pertaining to energy expenses, material costs,
sludge disposal outlays, labor expenditures, and similar factors should be confined to the
case plant premises. This ensures the integrity and comparability of the evaluation data.

Processes 2023, 11, x FOR PEER REVIEW  6  of  26 
 

 

Input Data
Processes

modeling, survey, 
comparison…

Output Data
Collected 

Information

Influent,
materials,

energy……

Original plant
(P)

Retrofitted plant 
with technology

(T1)

Effluent (P)
COD, BOD, TP, TN…

Cost (P)
energy, material, labor, others…

GHG emission (P)
electricity-, chemicals-related…

Effluent (T1)
COD, BOD, TP, TN…

Cost (T1)
energy, material, labor, others…

GHG emission (T1)
electricity-, chemicals-related…

Discharged 
pollution reduction

Operational
Cost reduction

GHG emission
reduction

comparison

 

Figure  2. Diagram  for  collecting  information  on  retrofit  technologies’  impact  on  sustainability 

objectives. 

In  this  way,  the  collected  information  can  be  used  to  estimate  the  categorized 

sustainability objective for the investigated WWTP. Let us consider a set of m objectives. 

The performance data of the WWTP for the i‐th objective can be determined before and 

after the implementation of the j‐th technology, denoted as Oi(P) and Oi(Tj), respectively. 

The  resulting difference  between  the  two  is  then used  to  generate  the  corresponding 

demand data, represented as     ( )j ii i jO T O PO T   . Notably,  in order  to address  the 

varying  units  and  scales  present  in  the  collected  data  ( ( )i jO T )  for  multi‐objective 

analysis, it is necessary to eliminate the effects of the objectives’ dimensionality, depicted 

as  [ , ]L U
ij ij ijz z z . 

2.3. Model Formulation and Solver Optimization 

This work introduces a generic model for selecting the optimal configuration of the 

retrofit technologies by employing a single‐goal function to identify a unique Pareto point, 

instead  of  exploring multiple  Pareto  frontiers.  To  achieve  this,  a  weighted MOO  is 

suggested,  where  the  two  critical  issues,  i.e.,  the  assignment  of  the  weights  to  the 

objectives  and  the  aggregation  of  the  objectives  into  a  single  goal,  can  be  properly 

considered, as given in Equation (1) [36]. 

 Optimize 

s.t. ( ) 0  

     ( ) 0  

i j

j

j

ijF w T

h T

T

z

g

  




  (1)

In Equation  (1),  the  function   ji jiF zw T     is used  to provide  a unique Pareto 

point among the weighted multiple objectives. Here, wi represents the significance of the 

i‐th objective,  and   jijz T   represents  the objective vector. Additionally,  ( ) 0jh T    and 

( ) 0jg T    symbolize the equality and inequality constraints, respectively. 

2.3.1. Weights Assignment 

An  important  aspect  of  this  study  is  the  incorporation  of  a  combined weighting 

approach, which enables a rational assessment of the trade‐offs among the objectives. This 

approach allows decision makers  to consider  their preferences and  to account  for data 

characteristics  simultaneously during  the decision‐making process. To  be  specific,  the 

weighting approach employed in this study combines the subjective method of SWARA 

II (stepwise weight assessment ratio analysis II) with the objective method of CRITIC (criteria 

importance through intercriteria correlation). Both methods are then modified to account for 

Figure 2. Diagram for collecting information on retrofit technologies’ impact on sustainability objectives.

In this way, the collected information can be used to estimate the categorized sus-
tainability objective for the investigated WWTP. Let us consider a set of m objectives. The



Processes 2023, 11, 3156 6 of 24

performance data of the WWTP for the i-th objective can be determined before and after the
implementation of the j-th technology, denoted as Oi(P) and Oi(Tj), respectively. The result-
ing difference between the two is then used to generate the corresponding demand data,
represented as ∆Oi(Tj) = Oi

(
Tj
)
−Oi(P). Notably, in order to address the varying units

and scales present in the collected data (∆Oi(Tj)) for multi-objective analysis, it is necessary
to eliminate the effects of the objectives’ dimensionality, depicted as zij = [zL

ij, zU
ij ].

2.3. Model Formulation and Solver Optimization

This work introduces a generic model for selecting the optimal configuration of
the retrofit technologies by employing a single-goal function to identify a unique Pareto
point, instead of exploring multiple Pareto frontiers. To achieve this, a weighted MOO is
suggested, where the two critical issues, i.e., the assignment of the weights to the objectives
and the aggregation of the objectives into a single goal, can be properly considered, as
given in Equation (1) [36].

Optimize F
[
wi × zij

(
Tj
)]

s.t. h(Tj) = 0
g(Tj) ≤ 0

(1)

In Equation (1), the function F
[
wi × zij

(
Tj
)]

is used to provide a unique Pareto point
among the weighted multiple objectives. Here, wi represents the significance of the i-th
objective, and zij

(
Tj
)

represents the objective vector. Additionally, h(Tj) = 0 and g(Tj) ≤ 0
symbolize the equality and inequality constraints, respectively.

2.3.1. Weights Assignment

An important aspect of this study is the incorporation of a combined weighting
approach, which enables a rational assessment of the trade-offs among the objectives. This
approach allows decision makers to consider their preferences and to account for data
characteristics simultaneously during the decision-making process. To be specific, the
weighting approach employed in this study combines the subjective method of SWARA II
(stepwise weight assessment ratio analysis II) with the objective method of CRITIC (criteria
importance through intercriteria correlation). Both methods are then modified to account
for uncertain conditions by utilizing interval numbers, which offers an easy yet generic
way to account for uncertain decision making [37].

Subjective Weights–Interval SWARA II

In the context of the weighted MOO, pair-wise comparison methods (such as AHP) are
commonly used to assign weights to multiple objectives [38]. These methods are favored
by experts as they effectively capture their preferences and facilitate the conversion of
preferences into numerical weights. In this study, an extended version of the pair-wise
comparison method, SWARA II [39], is utilized to assign subjective weights under uncertain
conditions. This modified approach provides several advantages, including simplified
model solving, decreased computation time, and improved ease of comprehension [40].
The steps (1–3) involved in the application of the interval SWARA II are outlined below:

Step 1. Ranking and comparing the multiple objectives in descending order of sig-
nificance. The committee of experts prioritizes the objectives from the most to the least
important according to the actual situation of the investigated WWTP. Subsequently, the
relative importance of each objective over the next one in the ranks should be given by
the experts using Saaty’s scale system (Table 1). Such a scale system is characterized by
its nine-point scale of preferences and is highly esteemed in the MCDM process for its
precision in scale division and flexibility in the comparative evaluation.

To account for the uncertainty in subjective preference, the utilization of the interval
numbers ri =

[
rL

i , rU
i
]

is suggested. For instance, if ri is an interval number of [2, 4], it
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indicates that the relative importance of the i-th objective over the next one (i + 1-th) ranges
from very low (2) to medium low (4).

Table 1. Linguistic terms and corresponding preference values [40].

Linguistic Variables Preference Values

Extreme low (EL) 1
Very low (VL) 2

Low (L) 3
Medium low (ML) 4

Medium (M) 5
Medium high (MH) 6

High (H) 7
Very high (VH) 8

Extreme high (EH) 9

Step 2. Determining the relative weighting coefficient. Let kt denote the value of the
relative weighting coefficient. Starting from the last ranked objective, the relative coefficient
between two adjacent objectives is given in Equation (2) [39].

kt =
[
1 + (ri/10)2

]
× kt+1 (2)

Step 3. Generating the interval SWARA II weights. Equation (3) is established to
calculate the subjective weight of each objective.

min/maxswi

s.t.


r1 ∈ [rL

1 , rU
1 ], r2 ∈ [rL

2 , rU
2 ], · · · , rm−1 ∈ [rL

m−1, rU
m−1];

k1 =
[
1 +

( r1
10
)2
]
× k2, k2 =

[
1 +

( r2
10
)2
]
× k3, · · · , km−1 =

[
1 +

( rm−1
10
)2
]
× km, km = 1;

swi = ki/(k1 + k2 + · · ·+ km);
sw1 ≥ sw2 ≥ · · · ≥ swm ≥ 0

(3)

In Equation (3), a minimize or maximize function should be implemented for the i-th
objective, resulting in a solution presented as an interval number, which is denoted as
swi = [minswi, maxswi] =

[
swL

i , swU
i
]
.

Objective Weights–Interval CRITIC

Objective weighting methods, such as entropy and standard deviation, can be em-
ployed in the weighted MOO problem [41]. These methods assign higher weights to
objectives with higher levels of disorder, reflecting their relative importance in the decision-
making process. Incorporating these weighting techniques eliminates subjective human
manipulation in the determination of the weights, enabling a more objective and systematic
approach to MOO. In this study, the CRITIC method is used as the weighting approach.
Compared to other objective weighting approaches, the CRITIC method provides valuable
insights into the challenges that arise from conflicting multi-objectives and enables the
incorporation of interdependent objectives. Additionally, this study expands the applica-
tion of the CRITIC method to handle uncertain evaluations by using interval numbers. An
outline of the steps (4–6) involved in applying the interval CRITIC method is given below:

Step 4. Transforming data. This step involves transforming the original collected data
of zij using Equation (4).

[
zij

L, zij
U
]
=

 zij
L −min

i
zij

L

max
i

zij
U −min

i
zij

L ,
zij

U −min
i

zij
L

max
i

zij
U −min

i
zij

L

 (4)

Step 5. Computing standard derivation and correlation. According to the litera-
ture [42], Equation (5) is employed to calculate the standard deviation of each objec-
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tive (e.g., the i-th objective, σi =
[
σL

i , σU
i
]
) and measures the intensity of the contrast.

Equation (6) is used to determine the correlation coefficient between the two objectives
(e.g., the i-th and g-th objectives, qig =

[
qL

ig, qU
ig

]
).

[
σL

i , σU
i

]
=


√√√√∑m

i=1

(
zl

ij − azj

)2

m
,

√√√√∑m
i=1

(
zU

ij − azj

)2

m

 (5)

[
qL

ig, qU
ig

]
=

 ∑n
j=1
(
zij

L − azj
)(

zgj
L − azj

)√
∑n

j=1
(
zij

L − azj
)2
√

∑n
j=1
(
zgj

L − azj
)2

,
∑n

j=1
(
zij

U − azj
)(

zgj
U − azj

)√
∑n

j=1
(
zij

U − azj
)2
√

∑n
j=1
(
zgj

U − azj
)2

 (6)

where azj =

m
∑

i=1
[zij

L+zij
U ]

2m represents the average performance of m alternative technologies
with respect to the i-th objective.

Step 6. Generating the interval CRITIC weights. The amount of information linked
to the i-th objective ( fi =

[
f L
i , f U

i
]
) is determined using Equation (7). A higher value of fi

indicates the greater importance of this objective [42]. Additionally, the normalized amount
of information for the i-th objective is subsequently utilized to generate the corresponding
weight, i.e., owi =

[
owL

i , owU
i
]
, as given in Equation (8).

[
f L
i , f U

i

]
=

{
min

[
σL

i

(
m−

m

∑
g=1

qL
ig

)
, σU

i

(
m−

m

∑
g=1

qU
ig

)]
, max

[
σL

i

(
m−

m

∑
g=1

qL
ig

)
, σU

i

(
m−

m

∑
g=1

qU
ig

)]}
(7)

[
owL

i , owU
i

]
=

 f L
i

m
∑

j=1

(
f L
i + f U

i
)
/2

,
f U
i

m
∑

j=1

(
f L
i + f U

i
)
/2

 (8)

Combined Weights–Minimize Deviation

The interval numbers related to subjective and objective weights need to be appropri-
ately managed and integrated into the combined weights, as given in step 7.

Step 7. Generating the combined weight. Adhering to the work in [43], Equation (9)
is employed in combining the weights, indicating that the final weight exhibits minimal
deviation from both the subjective and objective weights.

Minimize D = ∑
i

√
(wi−swL

i )
2
+(wi−swU

i )
2

2 + ∑
i

√
(wi−owL

i )
2
+(wi−owU

i )
2

2

s.t. ∑
i

wi = 1;

min
(
swL

i , owL
i
)
≤ wi ≤ max

(
swL

i , owL
i
) (9)

2.3.2. Multi-Objective Aggregation

In the literature, the weighted sum technique (WST) is commonly used for aggregating
multiple objectives. This method utilizes mathematical aggregation to formulate a single-
goal function using weighted objectives, which are denoted as single-goal = ∑

i
wi ×Oi.

In this equation, wi represents the weight assigned to the i-th objective, and ∑
i

wi = 1.

However, traditional aggregation methods rely solely on the maximum weighted sum of
multiple objectives to identify the optimal solution, which overlooks the need for relative
balance in the developmental levels of different objectives. Consequently, these methods
might result in solutions that do not fulfill the requirements of sustainable development,
including the imperative for balanced progress across dimensions such as the environment,
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economy, and society. In the work of Moradi-Aliabadi and Huang [44], a sustainable cube
is presented to depict the status of a system before and after implementing retrofitting
technologies. As shown in Figure 3, arrows with magnitudes and directions can play a
role in the aggregation of multiple objectives. By utilizing vector functions to represent the
arrow-based solutions in the MOO problem, this approach effectively addresses balance
issues and ensures a comprehensive evaluation of objectives. Inspired by the studies [44,45],
the multi-objective aggregation involves the following steps (8–10).
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Figure 3. An illustrative diagram depicting vector-based sustainability improvement.

Step 8. Using vector functions to represent the objective improvement. The degrees of
improvement in the multiple objectives of the investigated WWTP using the j-th technology
can be expressed in Equation (10). In the case involving the selection of several retrofit
technologies, the vector function that describes the multi-objective improvement for this
technology configuration can be defined by Equation (11).

→
OTj =

(
w1 × z1j, w2 × z2j, · · · , wm × zmj

)
(10)

→
CP = ∑

j∈p

(→
OTj

)
=

(
∑
j∈p

w1z1j
(
Tj
)
, ∑

j∈p
w2z2j

(
Tj
)
, · · · , ∑

j∈p
wmzmj

(
Tj
))

(11)

In Equation (11), j ∈ P indicates that the j-th technology belongs to a specific configu-
ration. As demonstrated in Figure 3, the sustainability of the WWTP is defined by three
objectives, with the initial status represented as (0, 0, 0) in a 3D space. By assigning varying
weights to these objectives, the lengths of the corresponding pillars differ. Through different
technology configurations, a sequence of state transitions is illustrated using vectors. For
instance, the configurations P1 = (T1 + T2 + T3) and P2 = (T1 + T4 + T5) are examples of
such transitions. The configuration P1 performs admirably when it comes to economic
and social objectives, but it requires improvement with regard to the environmental objec-
tive. Conversely, the latter configuration, P2, although lacking a standout area in all three
objectives, exhibits a more harmonized performance.

Step 9: Utilizing a projection-based algorithm to aggregate the multi-objective. In this
step, a novel single-goal approach is provided using the vector projection (VP) method.
VP involves projecting a vector onto a reference vector (the ideal solution is given by the
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blue arrow in Figure 3) to determine the component of the first vector that aligns with the
direction of the reference vector. Therefore, the ideal technology configuration for each
objective is required to generate the reference vector, as specified in Equation (12). Notably,
the ideal configurations regarding different objectives can vary, implying that P1, P2, and
P3 (in Equation (12)) are not required to be consistent.

→
C Ideal = (G∗1 , G∗2 , · · · , G∗m) =

∑
j∈P1

w1 × z1j
(
Tj
)

Ideal

, ∑
j∈P2

w2 × z2j
(
Tj
)

Ideal

, · · · , ∑
j∈P3

wm × zmj
(
Tj
)

Ideal

 (12)

Once the reference vector (
→
C Ideal) is obtained, the projection-based algorithm for

a potential technology configuration (
→
CP) with respect to

→
C Ideal can be expressed and

is denoted as VP = V
(→

CP,
→
C Ideal

)
. In one step forward, by maximizing the function

(Max VP) under relevant constraints, the general mathematical model for enhancing the
sustainability of the original WWTP can be determined, as described in Equation (13).

Max VP =
→
C P ·

→
C Ideal∥∥∥∥→C Ideal

∥∥∥∥ =
∑

j∈p
w1z1j(Tj)· ∑

j∈P1
w1z1j(Tj)

Ideal

+ ∑
j∈p

w2z2j(Tj)· ∑
j∈P2

w2z2j(Tj)
Ideal

+ ··· + ∑
j∈p

wmzmj(Tj)· ∑
j∈Pm

wmzmj(Tj)
Ideal√√√√( ∑

j∈P1
w1z1j(Tj)

Ideal

)2

+

(
∑

j∈P2
w2z2j(Tj)

Ideal

)2

+ ··· +
(

∑
j∈Pm

wmzmj(Tj)
Ideal

)2

s.t. Tj ×
(
1− Tj

)
= 0, j = 1, 2, · · · , n

∑
i

wi = 1

ha(Tj) = 0, a = 1, 2, · · · , e
gb(Tj) ≤ 0, b = 1, 2, · · · , r

(13)

2.3.3. Optimal Configuration Generation

As stated in the introduction, the presence of uncertain data makes the decision-
making process quite complex. In Equation (13), the data of

[
wizL

ij
(
Tj
)
, wizU

ij
(
Tj
)]

have
both a lower and an upper bound, resulting in the optimization algorithm having a specific
searching strategy with the consideration of the interval numbers in VP. Assume there are
two promising technology configurations, P1 and P2 (with interval values of

[
VL

P1, VU
P1
]

and
[
VL

P2, VU
P2
]
, respectively); these would be the optimal solutions for enhancing the

WWTP’s sustainability; three scenarios can be given to analyze the relative priority, as
shown in Figure 4.
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As noted in Figure 4, there is no argument within scenarios a and b that
[
VL

P1, VU
P1
]

is larger than
[
VL

P2, VU
P2
]
, which generates a conclusion that VP1 ≥ VP2 with the condition

of VU
P1 ≥ VU

P2 and VL
P1 ≥ VL

P2. However, scenario c offers a dilemma in the comparison of
two interval numbers. By resorting to the ideal of Xu and Da [46], the priority between
two interval numbers can be mathematically calculated as shown in Equation (14), where
Q(P1>P2)

≥ 0.5, implying that
[
VL

P1, VU
P1
]
≥
[
VL

P2, VU
P2
]
. Therefore, this study proposes
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a boundary search and comparison strategy as an effective solution for identifying the
optimal configuration, as outlined in step 10.

Q(P1>P2)
= max

{
1−max

(
VU

P2 −VL
P1

VU
P2 −VL

P2 + VU
P1 −VL

P1
, 0

)
, 0

}
(14)

Step 10. Boundary searching and comparison strategy.
A strategy that focuses on identifying and comparing the largest values concerning the

lower/upper bounds of VP can be employed to determine the optimal configuration that
offers the highest improvement for WWTPs. Figure 5 provides an illustrative diagram for
the boundary searching and comparison strategy, which first uses Equations (15) and (16)
to identify the possible configurations (Px and Py) that have the largest values in Max VP

L
x

(lower bound) and Max VP
U
y (upper bound), respectively. If these two values are generated

by the same configuration (Px = Py), then the final configuration is determined. Otherwise,
Equation (14) should be implemented to determine the preferable configuration between
Px and Py. Subsequently, taking the right side in Figure 5 as a reference, suppose Px is
better (having the largest value in the upper bound, i.e., VP

L
x ). In this case, the configuration

of Py would no longer be considered. Consequently, Equation (16) needs to be reused
to identify the configuration that has the second largest value in VP

U
y′ , y′ 6=y. Similarly, if

Px = Py′ , the final answer is obtained; otherwise, the comparison between
[
VP

L
x , VP

U
x
]

and
[
VP

L
y′ , VP

U
y′

]
is required. This strategy should continue until the same configuration is

associated with both the lower and upper bounds, resulting in the decision output of the
retrofit technology configuration.

Max VP
L
i =

→
C

L

Pi
·
→
C Id∥∥∥∥→C Id

∥∥∥∥ =
∑

j∈p
w1zL

1j(Tj)· ∑
j∈P1

w1zU
1j(Tj)

Ideal

+ ∑
j∈p

w2zL
2j(Tj)· ∑

j∈P2
w2zU

2j(Tj)
Ideal

+ ··· + ∑
j∈p

wmzL
mj(Tj)· ∑

j∈Pm
wmzU

mj(Tj)
Ideal√√√√( ∑

j∈P1
w1zU

1j(Tj)
Ideal

)2

+

(
∑

j∈P2
w2zU

2j(Tj)
Ideal

)2

+ ··· +
(

∑
j∈Pm

wmzU
mj(Tj)

Ideal

)2

s.t. Tj ×
(
1− Tj

)
= 0, j = 1, 2, · · · , n

∑
i

wi = 1

ha(Tj) = 0, a = 1, 2, · · · , e
gb(Tj) ≤ 0, b = 1, 2, · · · , r

(15)

Max VP
U
j =

→
C

U

Pj
·
→
C Id∥∥∥∥→C Id

∥∥∥∥ =
∑

j∈p
w1zU

1j(Tj)· ∑
j∈P1

w1zU
1j(Tj)

Ideal

+ ∑
j∈p

w2zU
2j(Tj)· ∑

j∈P2
w2zU

2j(Tj)
Ideal

+ ··· + ∑
j∈p

wmzU
mj(Tj)· ∑

j∈Pm
wmzU

mj(Tj)
Ideal√√√√( ∑

j∈P1
w1zU

1j(Tj)
Ideal

)2

+

(
∑

j∈P2
w2zU

2j(Tj)
Ideal

)2

+ ··· +
(

∑
j∈Pm

wmzU
mj(Tj)

Ideal

)2

s.t. Tj ×
(
1− Tj

)
= 0, j = 1, 2, · · · , n

∑
i

wi = 1

ha(Tj) = 0, a = 1, 2, · · · , e
gb(Tj) ≤ 0, b = 1, 2, · · · , r

(16)

3. Case Study and Results

As an illustrative example, a WWTP located in the city of Chongqing, China, serving
a population of 236,200 with a treated flow of 50,000 m3/day, is presented. As shown
in Figure 6, this plant includes primary clarification, a second activated sludge process
(anaerobic/anoxic/aerobic-AAO), and secondary clarification. After undergoing a thicken-
ing and dewatering processes, approximately 17.2 DT (dry tons) of sewage sludge with
80% water content is generated. Additionally, Table 2 provides a summary of the influent
and effluent water quality for the plant design.
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Table 2. Design for influent and effluent water quality in wastewater treatment (major pollutants).

Pollutant
Influent

Concentration
(mg/L)

Effluent
Concentration

(mg/L)
Removal Rate (%)

BOD5 220 ≤10 ≥95.45
COD 400 ≤50 ≥87.50

SS 280 ≤10 ≥96.43
NH3-N 34 ≤8 ≥76.47

TN 50 ≤15 ≥70
TP 5 ≤1 ≥80
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3.1. Basic Definition and Information Collection in the Case Study
3.1.1. Ten Alternative Technologies

Ten retrofit technologies were recommended in the case study to enhance the sustain-
ability of the WWTP, as summarized in Table 3. It is important to note that while some of
these alternative technologies focus on improving water quality, others prioritize resources
and/or energy saving.

Table 3. Optional retrofit technologies in the case study.

Technology Brief Introduction

T1: Advanced
aeration system (AAS) [47]

This is an effective wastewater aeration system with small air bubbles that improve biological
degradation. The fine bubbles from APAS, having a larger surface area, enhance oxygen transfer. It
allows accurate air flow control according to tank needs, ensuring optimal oxygen levels. This results
in higher TN removal rates and lower energy usage.

T2: Precision dosing
system (PDS) [48]

This refers to the precise delivery of treatment chemicals to the wastewater treatment process by
controlling the design and operational parameters of the dosing system. By utilizing feed-forward
control systems, PDS employs online analyzers in the inlet stream to provide real-time data to a
dosing control system. This enables automatic adjustments of the dosing amount and timing to
achieve optimal wastewater treatment results.

T3: Advanced automatic
sludge control system
(ASC) [49]

This utilizes advanced automation control systems to effectively monitor and regulate the sludge
removal system in real-time. By incorporating parameters such as sludge flow, quality, and moisture
content, the sludge removal equipment can be automatically adjusted, ensuring precise sludge
discharge and treatment. Moreover, through sludge analysis and data management, the design and
operation of the sludge removal system can be optimized, leading to enhanced sludge treatment
efficiency and sustainability.

T4: External carbon source
(ECS) [50]

ECS can enhance the treatment efficiency of the wastewater treatment process, especially in situations
where the incoming wastewater has low organic matter concentrations or when nitrogen and
phosphorus removal is necessary. This retrofitting technique involves careful control of the type and
quantity of external carbon source added to prevent the overgrowth of microorganisms and the
consequent production of excess sludge.

T5: Fluidized carriers
supplementary (FCS) [51]

This system with fluidized carriers supplemented into the aerobic tank in the existing AAO system
could improve nitrogen removal ability, primarily because of the higher relative abundance of
nitrifying bacteria and denitrifying bacterial genera attached onto the biofilm formed on the carrier.

T6: Moving bed biofilm
reactor (MBBR) [52]

Integrating an MBBR reactor into the existing wastewater treatment system can enhance treatment
efficiency and improve water quality. MBBR offers several advantages, including high biomass
concentrations, the ability to achieve high SRTs with relatively low HRTs, good resilience to shocks
from organic loading, minimal sludge bulking issues, and low risks of carrier media clogging.

T7: Anaerobic digestion of
sludge (AD) [53]

AD stabilizes sludge by converting volatile solids into biogas in the absence of air, requiring
additional processing to recover and utilize the methane content of the biogas. AD offers advantages
such as energy production, reduced sludge volume and disposal costs, and environmental benefits
through reduced greenhouse gas emissions. It is a cost-effective and sustainable method for sludge
management with resource utilization and minimal environmental impact.

T8: Solar convective
drying (SCD) [54]

Sludge dewatering and drying are crucial processes in WWTPs for effective sludge management.
While sludge treatment can be expensive, drying the sludge reduces its mass and volume, benefiting
the environment, economy, and society. This innovative retrofit technology utilizes solar convective
drying to replace conventional dewatering machines, resulting in significant energy savings and
reduced volume of treated sludge.

T9: Heat pump drying
(HPD) [55]

This is another energy-saving technology for drying sludge. This process involves a heat pump
absorbing sensible and latent heat from the medium-temperature, high-humidity air leaving the
drying chamber. As the air releases moisture, it is reheated and transferred to the sludge, causing
internal moisture to migrate to the surface, evaporate into the drying medium, and effectively
separate from the sludge, accomplishing the drying objective.

T10: Hydropower
utilization (HPU) [56]

The case study presents an excellent opportunity for installing a mini hydropower system due to the
significant 35 m drop in water discharge. Consequently, harnessing the energy generated by flowing
water can power the investigated WWTP, reducing the dependence on external sources of electricity.
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3.1.2. Three Sustainability Objectives

The sustainability of the investigated WWTP is defined by three objectives, as outlined
in the literature [57–59]. These objectives include discharged pollution reduction (O1, envi-
ronmental impact), operational cost reduction (O2, economic concern), and GHG emissions
reduction (O3, social responsibility).

Notably, this study focuses on developing a generic decision support framework for
selecting retrofit technologies. The case study provides only general information about the
selected technologies and objectives. Thus, when applying the framework in real cases,
users have the freedom to choose technology candidates and define objectives based on
their preferences and the actual conditions of the WWTP being investigated.

3.1.3. Information Collection and Treatment in the Case Study

O1 focuses on representing water quality by considering three critical pollutants:
BOD5, total nitrogen (TN), and total phosphorus (TP). With reference to Dong et al. [57], the
pollution reduction benefit is depicted using Equation (17), where a1 = a2 = a3 = 1/3. In the
case study, BODbase, TNbase, and TPbase represent the corresponding effluent concentrations
of the existing WWTP, as indicated in Table 2 (the 3rd column). ∆BODTj, ∆TNTj, and ∆TPTj,
on the other hand, denote the reduced effluent concentrations achieved after implementing
the j-th technology. The corresponding data are summarized in Supplementary Materials.

O1j = a1RTj−BOD + a2RTj−TN + a3RTj−TP =
a1 × ∆BODTj

BODbase
+

a2 × ∆TNTj

TNbase
+

a3 × ∆TPTj

TPbase
(17)

According to Rodriguez-Garcia et al. [58], O2 focuses on reducing operational costs
as an economic goal. This objective can be further subdivided into various items such as
energy, materials, staff, and others, as illustrated in Equation (18). For the investigated
WWTP, the original operational cost is 1.35 CNY/m3. As for the other parameters in
Equation (18), taking ORTj−energy as an example, it represents the cost savings in energy
achieved by implementing the retrofit technology, Tj. The collected data for ORTj-energy,
ORTj-material, ORTj-staff, and ORTj-other are also provided in Supplementary Materials.

O2 =
ORTj−energy + ORTj−material + ORTj−sta f f + ORTj−other

Original operational cost
(18)

According to the literature [59], the GHG emissions in wastewater treatment in-
clude direct biological emissions from the process itself and indirect emissions from
electricity and chemical consumption within the defined system boundary. As retrofit
technologies have limited impact on direct emissions, only the indirect emissions are
taken into account. Therefore, O3, which represents indirect GHG emissions, can be
calculated using Equation (19). For more detailed information on this objective, please
refer to Pang et al. [59]. In the case study, the original GHG emissions for the WWTP is
0.502 kg CO2-eq/m3, while the collected data regarding CRTj−electricity and CRTj−chemicals
can be found in Supplementary Materials.

O3 =
CRTj−electricity + CRTj−chemicals

Original GHG emissions
(19)

After eliminating the effect of the dimensionality in the original information (see
Supplementary Materials), the normalized data zij = [zL

ij, zU
ij ] are summarized in Table 4.
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Table 4. The normalized data regarding each objective after implementing each technology.

[
zij

L,zij
U
]

O1 O2 O3
Budget Limit
(BL, 106 CNY)

Construction
Duration (CD, Day)

T1 [1.7%, 3.3%] [2.2%, 4.3%] [6.8%, 13.7%] 1.2 20
T2 [6.7%, 13.3%] [0.5%, 0.6%] [3.6%, 3.6%] 0.5 10
T3 [5.0%, 13.3%] [2.0%, 3.4%] [3.6%, 3.8%] 1.0 15
T4 [10.0%, 20.0%] [−6.1%, −5.6%] [−1.8%, −1.8%] 0.3 15
T5 [10.0%, 20.0%] [−1.7%, −0.4%] [−12.3%, −8.2%] 4.4 30
T6 [13.3%, 16.7%] [−0.4%, 0.2%] [−4.1%, −2.1%] 2.8 30
T7 [0.0%, 0.0%] [13.2%, 14.3%] [10.4%, 13.9%] 5.2 20
T8 [0.0%, 0.0%] [21.1%, 28.5%] [0.0%, 0.0%] 3.6 15
T9 [0.0%, 0.0%] [15.1%, 15.1%] [−9.7%, −9.7%] 2.4 20
T10 [0.0%, 0.0%] [2.6%, 2.6%] [10.4%, 10.4%] 2.0 10

3.2. Model Formulation and Solver Optimization in the Case Study

In order to construct the mathematical model, constraints need to be provided. This
case study examines four common constraints that are involved in improving WWTPs:
the sustainability improvement requirement, budget limit, configuration restrictions,
and construction time. (1) The sustainability improvement requirement is determined by
the decision makers, who establish a minimum level of development for each categorized
objective based on factors such as the current status and enhancement expectations of the
WWTP. (2) The budget limit imposes an inequality constraint, ensuring that the total cost
of implementing a specific technology configuration remains below a specified threshold.
(3) Configuration restrictions arise from conflicting and restrictive relationships among
candidate technologies, necessitating the adoption of certain technologies together while
precluding the simultaneous implementation of others. (4) Construction time serves as
another inequality constraint during WWTP retrofitting, with the aim of minimizing
process downtime and limiting the duration of the construction period. It is worth
noting that while increasing labor or allocating more resources could potentially reduce
construction time, this study ignores such situations as they would lead to increased
overall costs.

As a demonstration, Equations (20)–(23) represent the constraints involved in the
case study. Equation (20) sets the minimum required improvement level for each objec-
tive, i.e., it cannot be negative. Equation (21) states that the budget limit must not exceed
CNY 10 million (M¥). Equation (22) restricts the construction duration for implementing
the retrofit technologies to a maximum of 100 days. As summarized in Table 4 (the
last two columns), the budget and construction costs associated with each alternative
technology are provided. Finally, Equation (23) addresses the configuration restrictions.
Specifically, it prohibits the simultaneous use of T5 and T6 due to their focus on improv-
ing the AAO process. Additionally, conflicts arise between the sludge drying options,
namely T8 and T9.

∑
j∈p

wizL
ij
(
Tj
)
≥ 0, i = 1, 2, 3; j = 1, 2, · · · , 10 (20)

∑
j∈p

BLjTj ≤ 10, j = 1, 2, · · · , 10 (21)

∑
j∈p

CDjTj ≤ 100, j = 1, 2, · · · , 10 (22)

T5 × T6 = 0, T8 × T9 = 0 (23)
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3.2.1. Weight Assignment in the Case Study

The interval versions of the SWARA II and CRTIC methods are applied to assign
the subjective and objective weights to three objectives, respectively. Specifically, in the
interval SWARA II, step 1 determines the significance order as O2 > O3 > O1, based on
the stakeholders’ preferences and the actual conditions of the investigated WWTP. Based
on the ranks, the relative importance of each objective over the next one is defined as
r1 = [6, 7] and r2 = [8, 9]. This implies that the relative importance of O2 over O3 ranges
from medium high (6) to high (7), while the importance of O3 over O1 is an interval
number of [8, 9]. In step 2, equations k1 =

[
1 +

( r1
10
)2
]
× k2, and k2 =

[
1 +

( r2
10
)2
]
× k3 are

established. Using the minimize or maximize functions in step 3, the interval weight of
each objective can be calculated. Taking the weight of sw1 as an example (Equation (24)),
the value of swL

1 is obtained by running the minimize function, while the value of swU
1 is

determined by implementing the maximize function. In this study, Lingo 11 is used to
solve the equations for minimizing or maximizing each objective’s weight, and the results
are presented in Table 5.

<minswL
1

s.t.



r1 ∈ [6, 7], r2 ∈ [8, 9];

k1 =

[
1 +

( r1

10

)2
]
× k2, k2 =

[
1 +

( r2

10

)2
]
× k3, k3 = 1;

swL
1 =

k1

k1 + k2 + k3
, sw2 =

k2

k1 + k2 + k3
, sw3 =

k3

k1 + k2 + k3
;

swL
1 ≥ sw2 ≥ sw3 ≥ 0

maxswU
1

s.t.



r1 ∈ [6, 7], r2 ∈ [8, 9];

k1 =

[
1 +

( r1

10

)2
]
× k2, k2 =

[
1 +

( r2

10

)2
]
× k3, k3 = 1;

swL
1 =

k1

k1 + k2 + k3
, sw2 =

k2

k1 + k2 + k3
, sw3 =

k3

k1 + k2 + k3
;

swU
1 ≥ sw2 ≥ sw3 ≥ 0 > (24)

Table 5. Information and weighting result of the interval SWARA II in the case study.

Objective Order Preference Subjective Weight

O2 1 [6, 7] [0.458, 0.490]
O3 2 [8, 9] [0.323, 0.343]
O1 3 - [0.182, 0.205]

The interval CRITIC method is employed to determine the objective weights.
Firstly, the original collected data are normalized using Equation (4) in step 4 (refer to
Supplementary Materials for the normalized data). Next, the standard deviation
(Equation (5)) and correlation (Equation (6)) of each objective are calculated, as stated in
step 5. Then, by running step 6, the amount of information associated with each objec-
tive is computed using Equation (7). These values are subsequently normalized to derive
the weighting results based on Equation (8). The information obtained from the interval
CRITIC method is summarized in Table 6.

Table 6. Parameters and weighting result of the interval CRITIC in the case study.[
σL

i , σU
i
] [

fL
i ,fU

i

] [
owL

i ,owU
i
]

O1 [0.241, 0.416] [0.768, 1.347] [0.311, 0.546]
O2 [0.236, 0.277] [0.623, 0.755] [0.257, 0.307]
O3 [0.283, 0.303] [0.674, 0.747] [0.274, 0.303]

The optimal programming in step 7 is used to aggregate the information generated
by the interval SWARA II and the interval CRITIC, as demonstrated in Equation (25). By
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resorting to the software Lingo 11.0, the combined weight can be determined as w1 = 0.235,
w2 = 0.445, and w3 = 0.320.

Minimize D =

√
(w1−0.182)2+(w1−0.205)2

2 +

√
(w1−0.311)2+(w1−0.546)2

2

+

√
(w2−0.458)2+(w2−0.490)2

2 +

√
(w2−0.257)2+(w2−0.307)2

2

+

√
(w3−0.323)2+(w3−0.343)2

2 +

√
(w3−0.274)2+(w3−0.303)2

2
s.t. w1 + w2 + w3 = 1;

0.182 ≤ w1 ≤ 0.546;
0.257 ≤ w2 ≤ 0.490;
0.274 ≤ w2 ≤ 0.343

(25)

3.2.2. Multi-Objective Aggregation in the Case Study

Based on the determined weights (wi) and the transformed data (zij = [zL
ij, zU

ij ]),
step 8 is employed to take the objective improvement by implementing different retrofit
technologies as vector functions. According to the processed data and the identified
constraints, the ideal technology configuration for each objective should be generated, as
stated in step 9. Taking maximize G∗1 as an example, the model is coded in Equation (26).

maxG∗1 = ∑
j∈P1

w1zU
1j
(
Tj
)

Ideal
s.t. G∗1 = 0.235× (3.30%T1 + 13.30%T2 + 13.30%T3 + 20.00%T4
+20.00%T5 +16.70%T6 + 0.00%T7 + 0.00%T8 + 0.00%T9 + 0.00%T10);

Tj(1− Tj) = 0, j = 1, 2, · · · , 10;
T5 × T6 = 0, T8 × T9 = 0;
∑
j

BLjTj ≤ 10, j = 1, 2, · · · , 10;

∑
j

CDjTj ≤ 100, j = 1, 2, · · · , 10

(26)

In Equation (26), Tj(1 − Tj) = 0, j = 1, 2, · · · , 10 implies that one or zero can be
assigned to the j-th technology for judging whether it is adopted. By running Equation (26),
the obtained result of maxG∗1 = 0.235 × 69.90% was contributed by the technologies
combination of (T1 + T2 + T3 + T4 + T5) with the total cost of CNY 7.4 million and the
construction time of 90 days. Similarly, the maximum potential improvements regarding the
other two objectives and their corresponding configurations can be obtained as summarized
in Table 7. From Table 7, it is observed that achieving optimization for individual objectives
relies on different combinations of technologies. When the target weights are not taken
into account, the combination of technologies (T1~T5) maximizes the objective of reducing
discharged pollution by 69.9%. Likewise, the combination of technologies T1, T7, and
T8 optimizes the goal of reducing operational costs, while the configuration involving
technologies T1, T2, T3, T7, and T10 maximizes the aim of reducing GHG emissions. These
findings indirectly underscore that enhancing the sustainability of WWTPs necessitates
seeking compromises between different objectives, as there is no universal solution that
can simultaneously achieve optimal performance across various dimensions.

Table 7. Weight improvements and the corresponding technologies configurations.

Objective Improvement
Degree Configuration Cost Construction Time

G∗1 0.235× 69.90% T1 + T2 + T3 + T4 + T5 7.4 90
G∗2 0.445× 47.1% T1 + T7 + T8 10.0 55
G∗3 0.320× 45.4% T1 + T2 + T3 + T7 + T10 9.9 75
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3.2.3. Optimal Configuration Generation in the Case Study

The values of G∗1 , G∗2 , and G∗3 are subsequently used in the projection-based algorithm,
which is categorized into both lower and upper bounds for the optimal configurations (see
step 10), as given in Equations (27) and (28), respectively.

Max VP
L =

→
C

L

P ·
→
C Ideal∥∥∥∥→C Ideal

∥∥∥∥ =
G∗1

[
∑

j∈p
w1zL

1j(Tj)

]
+G∗2

[
∑

j∈p
w2zL

2j(Tj)

]
+G∗3

[
∑

j∈p
w3zL

3j(Tj)

]
(G∗1)

2
+(G∗2)

2
+(G∗3)

2

s.t. Tj(1− Tj) = 0, j = 1, 2, · · · , 10;
∑

j∈p
w1zL

1j
(
Tj
)
≥ 0, ∑

j∈p
w2zL

2j
(
Tj
)
≥ 0, ∑

j∈p
w3zL

3j
(
Tj
)
≥ 0;

T5 × T6 = 0, T8 × T9 = 0;
∑

j∈p
BLjTj ≤ 10;

∑
j∈p

CDjTj ≤ 100

(27)

Max VP
U =

→
C

U

P ·
→
C Ideal∥∥∥∥→C Ideal

∥∥∥∥ =
G∗1

[
∑

j∈p
w1zU

1j(Tj)

]
+G∗2

[
∑

j∈p
w2zU

2j(Tj)

]
+G∗3

[
∑

j∈p
w3zU

3j(Tj)

]
(G∗1)

2
+(G∗2)

2
+(G∗3)

2

s.t. Tj(1− Tj) = 0, j = 1, 2, · · · , 10;
∑

j∈p
w1zL

1j
(
Tj
)
≥ 0, ∑

j∈p
w2zL

2j
(
Tj
)
≥ 0, ∑

j∈p
w3zL

3j
(
Tj
)
≥ 0;

T5 × T6 = 0, T8 × T9 = 0;
∑

j∈p
BLjTj ≤ 10;

∑
j∈p

CDjTj ≤ 100

(28)

Lingo 11.0 is used for generating the solution, i.e., the lower bound of VPL1
L = 0.4667

is contributed by the portfolio of (PL
L
1 = T1 + T2 + T3 + T8 + T10), with the cost of

CNY 8.3 million and the construction time of 70 days, while the upper bound of
VPU1

U = 0.7020 is yielded by the combination of (PU
U
1 = T1 + T2 + T3 + T4 + T8 + T10),

with the cost of CNY 8.6 million and the construction time of 85 days. Consider-
ing the contradiction between the possible solutions in the lower and upper values,
the corresponding interval numbers should be generated for both of them, that is[
PL

L
1 , PL

U
1
]

= [0.4667, 0.6833], and
[
PU

L
1 , PU

U
1
]

= [0.4381, 0.7020]. The two interval num-

bers are compared as: max
{

1−max
[

0.7020 − 0.4667
0.6833 − 0.4667 + 0.7020 − 0.4381 , 0

]
, 0
}
= 51.02%, imply-

ing they are quite similar to each other, while the configuration (T1 + T2 + T3 + T8 + T10)
performs slightly better. Hence, this configuration is used for further investigation,
where the maximizing function in Equation (27) should be reused to find the second
highest value in the upper bound, and the result of 0.6833 comes with the configura-
tion of (T1 + T2 + T3 + T8 + T10). As the same configuration in both the lower and the
upper bounds has been identified, the final result is generated; that is, the technologies
(T1 + T2 + T3 + T8 + T10) are chosen to improve the sustainability of the WWTP.

4. Discussion

In this section, discussions regarding the weighting result and the configuration
identification are provided to test the feasibility of the proposed methodologies.

4.1. Effect of the Weighting Result

The comparison of different weights highlights the importance of considering the
combined weights for the objectives. Specifically, by employing constrained optimization
programming (refer to Equation (29)), the results obtained from the interval SWARA II
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method are converted into precise subjective weights. Similarly, the values calculated by
the interval CRITIC method are transformed into deterministic objective weights.

Minimize D = ∑
i

√
(w′ i−hwL

i )
2
+(wi−hwU

i )
2

2

s.t. ∑
i

w′ = 1;

hwL
i ≤ wi ≤ hwU

i

(29)

In Equation (28),
[
hwi

L, hwi
U] could be either the interval SWARA II weight or the

interval CRITIC weight, and w′i is the corresponding weighting result. The summary of the
three sets of weighting results is presented in Figure 7, which demonstrates the noticeable
discrepancies between the weightings obtained from the interval SWARA II and the interval
CRITIC methods. Specifically, the interval SWARA II method assigns the least significance
to the first objective, whereas the interval CRITIC method assigns the highest weight to O1.
However, by combining these results, the weight of O1 is adjusted to a rational value of
w1 = 0.235. This adjustment suggests that reducing discharged pollution might not be the
primary objective, as the existing wastewater treatment plant already meets the required
standards for pollutant removal to an acceptable extent.
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Moving forward, the decision output for the optimal technology configuration is
generated by utilizing the SWARA II weight and the CRITIC weight. The results, as
illustrated in Figure 8, demonstrate that different configurations are recommended based
on the assigned significance of the three objectives (represented by different 3D cubes with
varying side lengths). This highlights the crucial role of incorporating a rational weighting
method in the decision process for the weighted MOO problem.
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4.2. Weighted MOO Techniques Comparison

The comparison of the different weighted MOO methods highlights the importance of
incorporating relative balance among the multiple objectives in decision making for optimal
configuration. In this study, the widely used and straightforward weighted sum technique
(WST) is employed to aggregate the multiple objectives into a single goal using the function
max∑ wizij

(
Tj
)

[42]. After implementing the boundary searching and comparison strategy
for the WST, the optimal configuration is determined as (T1 + T2 + T3 + T4 + T8 + T10). The
WST-derived optimal configuration is also discussed as the second-best alternative solution
in the case study, indirectly confirming the feasibility of the projection-based weighted MOO
technique. However, the WST-derived configuration only considers the maximum sum of
weighted objectives from an absolute standpoint, disregarding the relative balance of each
objective’s development. This misalignment with the concept of sustainable development
in WWTPs, which emphasizes balanced progress between environmental performance,
economic benefits, and social responsibility, is noteworthy. Therefore, it is reasonable
to consider the configuration recommended by the projection-based weighted MOO as
superior, particularly in the context of sustainability.

5. Conclusions

Strategically planning for sustainable development in a wastewater treatment plant is
an immensely intricate undertaking. It involves continuous efforts across various aspects,
necessitating the application of sustainability principles based on the triple bottom line
at the enhancement stage. The challenge becomes even more daunting when aiming to
achieve a harmonious balance between economic viability, environmental preservation,
and social well-being within the context of wastewater treatment.

This paper employs a weighted multi-objective optimization framework to determine
the optimal technology configuration for enhancing the sustainability of WWTPs. The
framework comprises two main phases: (1) the basic definition and information collection
and (2) the model formulation and solver optimization. The former phase should be
customized to the specific conditions of the investigated WWTP, while the latter phase,
as described below, serves as a versatile and effective tool for addressing the weighted
MOO problem in enhancing WWTP sustainability. To formulate the model, a combined
weighting method that integrates the interval SWARA II and interval CRITIC methods is
introduced. This method allows the assigned weights to aggregate the multiple objectives
into a singular goal, employing sustainability improvement as a vector-based sustainability
state transition process. Subsequently, the sustainability status of the WWTP (before and
after implementing retrofit technologies) is represented as vector functions. A projection-
based optimal algorithm is then utilized to identify the best technology configuration by
considering the degrees of improvement and the development balance.

In conclusion, this study serves as a pioneering work that addresses sustainability
enhancement issues for WWTP through technology selection. It offers two mathematical
contributions to the existing weighted MOO studies. Firstly, by integrating the interval
versions of SWARA II and CRITIC, this approach provides a well-rounded assessment of
the multi-objective weights. It helps mitigate the biases and limitations in the subjective and
objective weighting methods by combining expert opinions and numerical features of the
investigated WWTP. This enables a rational determination of the significance of each objec-
tive, resulting in a more accurate evaluation. Secondly, by leveraging the projection-based
optimization algorithm, this approach allows a comprehensive exploration of sustainabil-
ity enhancement issues through space partitioning and characterization. It facilitates the
identification of a technology configuration that achieves a satisfactory performance in
absolute development and relative balance among the multiple objectives. As a result,
the decision output within the sustainability context becomes more reliable. Moreover,
the entire weighted MOO framework can be effectively applied in uncertain conditions
by incorporating interval numbers, which effectively address cognitive uncertainty in
subjective opinions and data fluctuations in objective statistics. The above analysis also
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provides theoretical implications for stakeholders in WWTPs, as follows: To provide a
clearer understanding of the trade-offs among multiple objectives, it is advisable to con-
sider both the subjective preferences of decision makers and the objective properties of
the WWTP when generating a comprehensive weighting result. To better aggregate the
multiple objectives into a final Pareto point, the use of a projection-based technique is
recommended. This technique takes into account both the degrees of improvement and
the balance among the objectives. To more effectively address uncertain information and
fluctuating data within the decision-making process, incorporating interval numbers into
the framework is suggested. This approach offers a straightforward and generic method
for preserving and managing uncertainties.

The decision support framework presented in this study is both systematic and easy
to apply. The case study conducted on enhancing the sustainability of a WWTP, along with
the subsequent discussions of the results, has demonstrated its effectiveness. However,
further research is required for the application of this framework in complex and high-
dimensional optimization problems, as specified below: (1) The case study overlooks
the interaction between technologies, despite its widespread use in research focused on
sustainable improvement based on technological selection. In reality, there may exist
more intricate internal relationships among the retrofit alternatives involved in the WWTP
upgrades. (2) The case study could benefit from improved data quality by integrating
modeling software like Biowin and sustainability analysis tools to enhance decision-making
information. Furthermore, in-depth and detailed simulation studies of the case plant can
be specifically conducted to explore its post-retrofitting performance, which would serve
as a valuable reference for other WWTPs with similar AAO processes. (3) In this case study,
several representative sustainability objectives and constraints were considered; these can
be expanded as needed in future research. Similarly, the number of retrofit alternatives
can also be increased. (4) Group decision making could be integrated into this framework
by, for example, employing a group-based interval SWARA II method to obtain a more
comprehensive set of subjective weights, using techniques like consensus building and non-
negotiable aggregation. Overall, this study lays a solid foundation for future advancements
in the field of sustainability enhancement for WWTPs through technology selection.
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