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Abstract: In this study, we conducted preliminary research with the objective of leveraging artificial
intelligence to optimize the efficiency and safety of the entire Ambient Air Vaporizer (AAV) system
for LNG (Liquid Natural Gas). By analyzing a year-long dataset of real operational data, we identified
key variables that significantly influence the outlet temperature of Natural Gas (NG). Based on these
insights, a Deep Neural Network (DNN) prediction model was developed to forecast the NG outlet
temperature. The endeavor to create an effective prediction model faced specific challenges, primarily
due to the narrow operational range of fan speeds and safety-focused guidelines. To surmount these
obstacles, various learning algorithms were evaluated under multiple conditions. Ultimately, a DNN
model exhibiting lower values of both absolute mean error (MAE) and mean square error (MSE) was
successfully established.

Keywords: LNG; ambient air vaporizer; DNN; prediction model; real factory data analysis

1. Introduction

In recent years, the 4th industrial revolution has gained momentum in the manu-
facturing industry, driven by the innovative use of big data. Within the manufacturing
sector, the main application of big data has traditionally been concentrated on image-based
detection of defects in semi-finished and finished products, as well as quality-control-
related activities. However, recent research has revealed an expanded array of big data
applications within this field. By incorporating big data technology into manufacturing
processes, significant advancements in accuracy and precision have been realized across
various aspects such as planning, production, and logistics. This integration is not only
leading to enhanced efficiency but also fueling a growing demand for the utilization of big
data to augment equipment safety and performance.

Building upon this emerging paradigm, this paper presents a novel model designed
to predict the NG (Natural Gas) discharge temperature of the pneumatic vaporizer in
a liquefied gas vaporization facility, employing field data. The proposed methodology
harnesses artificial intelligence models, positioning itself as an essential tool for maximizing
the operational efficiency of pneumatic vaporizers. Furthermore, the implications of this
model extend beyond mere efficiency enhancements. It also offers valuable support for
operation automation, meticulously considering vital safety parameters. This advancement
symbolizes a broader shift towards data-driven solutions in the manufacturing sector
that synergize efficiency, innovation, and safety. Ultimately, this research underscores
the transformative role of big data, heralding a new era of possibilities in manufacturing
technology and methodologies.
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When transporting natural gas from one continent to another, the volume of the gas
is reduced through liquefaction, converting it from a gaseous state to a liquid state for
more efficient shipping by sea. Once delivered, the liquefied natural gas (LNG) is stored in
tanks at a vaporization facility, where it is gasified in accordance with demand by using
vaporizers. It is then distributed through natural gas (NG) supply pipes to various demand
sites. NG is not only supplied to households via urban gas pipelines but also serves as fuel
for natural-gas-powered power plants and large industrial complexes (Figure 1).
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Figure 1. LNG to NG Production Process.

The vaporization of liquefied natural gas (LNG) to natural gas (NG) is the crucial
process within a liquefied gas vaporization facility, and the vaporizer plays a pivotal role in
the NG production process. Various types of vaporizers are utilized, including: (1) the open
rack vaporizer (ORV), which employs seawater as a heat source via heat exchange, and
(2) the ambient air vaporizer (AAV), which utilizes ambient air as a heat source. The ORV
(Figure 2) is generally more efficient in vaporizing NG than the AAV due to the higher heat
capacity of seawater compared to ambient air. However, the ORV can negatively impact
the marine ecosystem by reducing the seawater temperature near the plant. Conversely, the
AAV (Figure 3) minimizes its impact on the surrounding ecosystem by quickly discharging
and dispersing the warmed air during the vaporization of LNG. Within the AAV system,
LNG is injected into the heat exchanger’s inlet, and fans atop the vaporizer tower circulate
the ambient air. This air flows briskly from the top to the bottom of the heat exchanger and
then scatters into the surrounding atmosphere, reducing environmental impact.
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As described above, the Ambient Air Vaporizer (AAV) is a more environmentally
friendly option, with reduced impact on the surrounding environment. However, it does
have some limitations, particularly in terms of efficiency. The heat capacity of ambient air is
less than that of water, leading to lower heat exchange efficiency, especially when the “icing
phenomenon” occurs. This phenomenon happens when ice forms on the fins during the
heat exchange process, hindering the efficiency. To resolve this issue, a defrosting operation
must be carried out periodically. During this operation, the fan at the top of the vaporizer
works without LNG flow to remove the ice around the heat exchanger’s fins. In favorable
weather conditions with high temperatures and low humidity, the vaporization process can
be maintained for longer periods. Conversely, in conditions of low temperatures and high
humidity, the icing phenomenon is more likely, and the fans must circulate more quickly to
sustain the vaporization. Therefore, the efficient operation of the AAV depends on carefully
controlling the fan’s rotational speed (RPM) in line with atmospheric conditions to keep
the vaporization process running as long as possible.

In the present investigation, a Deep Neural Network (DNN)-based prediction model
has been meticulously devised to predict the outlet NG temperature of the Ambient Air
Vaporizer (AAV), contingent on input variables such as the fan’s Rotations Per Minute
(RPM) atop the heat exchanger within the AAV, in conjunction with the inlet temperature
and flow rate of LNG. The rest of this manuscript is organized as follows. Section 2 surveys
antecedent works pertinent to the utilization of artificial intelligence in both operation and
natural gas (NG) production plants. Section 3 describes the architecture of the AAV and
delineates its operational procedures, while concomitantly defining the problem under
investigation in detail. Section 4 provides a comprehensive account of the preprocessing
and analysis procedures of extant real operation data of AAV, and isolates significant input
data germane to the outlet temperature of NG from the scrutiny of this data. Also, Section 4
elucidates the predictive DNN modeland validates the model’s accuracy through empirical
analysis of field data. Finally, Section 5 succinctly encapsulates the contributions of the
present study and proffers directions for prospective research endeavors.

In the engineering plant industry, large and intricate machinery operate systematically
to produce products by consuming energy or vital resources. Like many other industrial
sectors, engineering plants have been making great efforts over the past several years
to achieve production optimization by applying machine learning to their operational
controls. In particular, research in the specialized field of predictive control has emerged as
one of the most promising approaches toward this end. The progress and realization of
this objective have been the subject of several scholarly investigations. Zhang et al. (2017)
suggested a generalized architecture that utilizes big data analytics to improve Product
Lifecycle Management (PLM) and to enhance decision-making processes for production [1].
Reddy et al. (2019) developed data-driven empirical models specific to LNG BOG (boil-off
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gas) compressors, demonstrating superior performance over traditional Artificial Neu-
ral Network (ANN) and Kriging models [2]. Walther et al. (2019) engaged traditional
machine learning algorithms such as Random Forest (RF), Extremely Randomized Trees,
and Gradient Boosting Regression Trees with the objective of forecasting the short-term
electric load within a factory setting [3]. Park et al. (2020) conducted an exploration to
identify critical factors influencing the quality of steel plate manufacturing, subsequently
utilizing machine learning to predict these variables [4]. Complementing these studies,
Mohamadi and Ehteram (2020) engineered a machine learning model capable of predicting
the monthly evaporation of water resources with marked accuracy [5].

Another significant domain of application for machine learning within plant engi-
neering pertains to decision-making processes and defect detection in products, aimed
at facilitating preventive maintenance of facilities. A comprehensive synthesis of cases
and research findings, wherein machine learning algorithms have been employed for pre-
ventive maintenance, has been meticulously catalogued in the survey paper by Carvalho
et al. (2019) [6]. The task of defect detection in products has been the subject of rigorous
investigation, traditionally employing methods geared toward classifying product images.
In more recent developments, Convolutional Neural Network (CNN)-based models have
emerged as the principal approach for determining product defects. Westphal and Seitz
(2021) advanced this field by proposing a sophisticated transfer learning (TL) method,
leveraging both the VGG16 and Xception CNN models explicitly for defect detection [7].
Their study utilized non-destructive test data, with the VGG16-model-based TL method
demonstrating a markedly high level of accuracy in comparison to alternative models.
Complementing this, Zhang et al. (2021) explored various classifiers, including Long
Short-Term Memory (LSTM) and Backpropagation Neural Network (BPNN), specifically
for acoustic test data, in order to discern defects in glass bottles, subsequently evaluating
the accuracy of these models [8].

This study delves into the application of machine learning algorithms specifically for
optimization within the domain of LNG or NG production operations. Related research
in this field includes the following contributions. Adib et al. (2015) constructed an SVM-
based predictive model to gauge hydrogen sulfide pressure during the removal process,
utilizing input data such as top stabilizer column pressure, temperature, seal pressure, and
volumetric flow rate of the condition [9]. Zhou et al. (2020) employed diverse machine
learning models, including ANN, Random Forest, AdaBoost, and XGBoost (Extreme
Gradient Boosting), to anticipate the heat transfer coefficient of a capacitor, a component
possessing a function contrary to that of a vaporizer [10]. The research findings revealed
that these algorithms could robustly predict condition heat transfer coefficients within
mini/microchannels. Complementing these efforts, Wood (2021) designed ANN and
transparent open-box learning network (TOB) models to refine tank pressure control,
subsequently demonstrating that the TOB model yielded more accurate predictions of
saturated vapor pressure within tanks than conventional ANN models [11].

Research focusing on the performance of LNG vaporizers can be classified into the
realm of traditional heat transfer studies, and our investigation primarily centers on this
area. A substantial body of work employing the conventional approach to heat transfer
within vaporizers has been conducted, both broadly and in-depth [12–16]. Such studies
have emphasized the analysis of vaporization characteristics, utilizing numerical models
founded on the underlying equations of heat transfer, and integrating these findings into
the optimal design of the vaporizer. In addition to this, there have been recent endeavors
to predict vaporizer performance through machine learning, leveraging extensive field
data. Notably, Shin et al. (2021) introduced a dynamic prediction model for determining
NG outlet temperature and discharge seawater temperature in response to variations in
an ORV’s seawater flow rate, seawater temperature, and LNG flow rate [17]. The ensuing
results indicated that the predictive accuracy as measured in MES followed the sequence of
LSTM, AutoML, and FNN. Recently, Chen et. al. (2023) proposed a new hybrid model for
predicting the remaining useful life (RUL) of lithium-ion batteries, combining a channel
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attention (CA) mechanism with long short-term memory networks (LSTM). The model
demonstrates strong predictive performance, improving the use of local features in limited
data scenarios and mitigating the effects of battery capacity rebound, and its effectiveness
is validated using NASA and University of Maryland datasets [18].

Despite substantial efforts to optimize the operation of vaporizers, the application
of machine learning technology in this domain remains underexplored. As industries
increasingly recognize the need to integrate artificial intelligence within their operational
frameworks, the drive to harness its capabilities extends to both the management of
production processes and the detection of defects. The primary objective of this paper is to
explore the application of artificial intelligence, specifically in enhancing the efficiency of
the production process, as well as in the vital task of identifying defects.

2. Problem Description

Liquefied Natural Gas (LNG) flows within the tubes of the heat exchanger, absorbing
heat from the warm ambient air outside the tubes, and subsequently being converted
into Natural Gas (NG). To facilitate this heat exchange process between the ambient air
and LNG, a fan situated above the tubes is activated, thereby increasing the circulation
of ambient air. This air is drawn into the upper side of the Ambient Air Vaporizer (AAV)
by the fan, channeled through the tubes, and finally discharged at the bottom of the AAV.
Since the cooled, discharged air has minimal impact on the surrounding environment, this
method is often considered more eco-friendly. However, its efficiency is generally lower
than that of combustion or seawater-based systems.

The effective operation of an AAV is more complex than that of other vaporizer types,
as the vaporization performance can fluctuate significantly depending on unpredictable
atmospheric conditions, such as temperature and humidity. A notable challenge arises
when icing forms on the fins of the heat exchanger during the vaporization process, severely
hindering heat exchange and causing a drastic drop in efficiency. In some instances, this
icing can lead to NG temperatures falling below 0 ◦C, necessitating a halt in the vaporization
process to perform defrosting.

The operational conditions further dictate that when the atmospheric temperature is
high and humidity is low, vaporization can persist for an extended period without requiring
an increase in fan rotational speed. Conversely, when the temperature and humidity levels
are insufficient to maintain the planned vaporization period, the fan’s rotational speed
must be increased to enhance heat exchange, thus preserving the desired vaporization
duration. However, this increased speed leads to greater energy consumption. Therefore,
for an energy-efficient operation of the AAV, dynamic control of the fan’s rotational speed
is imperative, requiring careful adjustment in response to atmospheric conditions during
the vaporization period.

Figure 4 illustrates the configuration of Ambient Air Vaporizer (AAV) groups em-
ployed in the Natural Gas (NG) production process studied in this research. This particular
plant is currently under the management of an NG supply company in South Korea. The
vaporization infrastructure encompasses 16 AAV cells, systematically organized into hierar-
chical groupings. Specifically, two cells are combined to constitute one unit, and two such
units are further assembled to create four distinct groups. Within this structure, the two
cells that comprise the same unit are synchronized to undertake either the vaporization or
defrosting operation simultaneously. Furthermore, within the same group, the two units
are coordinated so that they do not operate concurrently; in other words, if one unit is
engaged in vaporizing or defrosting, the other remains inactive. This operational design
is predicated on the understanding that the simultaneous activation of two adjacent units
within the same group can result in a diminished heat exchange performance.
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However, the system is designed to allow for flexibility, and the two units within a
group may operate in tandem if the situation warrants. In such cases, while one unit under-
takes the defrosting operation, the other can continue with the vaporization process. This
careful orchestration ensures both efficiency and responsiveness to the variable demands
of the NG production process.

The production volume of Natural Gas (NG) must align with the demands of gas
consumers, thereby dictating the quantity of Liquefied Natural Gas (LNG) dispensed into
Ambient Air Vaporizer (AAV) facilities according to NG requirements. In order to manage
the flow of LNG through the AAV system, a seasoned operator assesses the number of units
required for activation and carefully calibrates the fan speed within these units to match
the processing needs. As depicted in Figure 4, an array of data is systematically gathered
during the vaporization process to inform operational decisions. Several key parameters
are monitored across different stages:

(1) Valve Opening Angle: at the entrance of each AAV unit, the angle of the valve is
tracked in degrees to regulate the flow rate of LNG entering the unit;

(2) Temperature Monitoring: the temperatures of both the LNG and NG are observed
through thermometers positioned at the inlet and outlet of the tubes within each unit;

(3) Production Quantity: the volume of NG produced by each group is documented
using a specialized vaporization flow meter;

(4) Operating States: within individual units, the duration of three distinct operating
states—vaporizing, defrosting, and readiness for operation—is recorded;

(5) Vaporizing Period Data: for units in the vaporizing phase, pertinent data such as
the rotational fan speed and the time elapsed since the initiation of vaporization
are collected;

(6) Ambient Conditions: the surrounding air temperature and humidity levels are moni-
tored, as they can significantly impact the efficiency of the vaporization process.

These multifaceted data points are integral to the precise and efficient control of the AAV
system, ensuring that the production of NG is responsive to fluctuating consumer demands.

The aforementioned data collected during the vaporization process constitute time-
series information, where the temperature of the produced Natural Gas (NG) at a given
moment is closely correlated with these measurements. Throughout the vaporization
period, ambient air is drawn from the top of the heat exchanger and expelled at a reduced
temperature from the bottom. As this bypassing of ambient air facilitates heat exchange,
icing occurs on the surface of the tubes’ fins, causing a gradual decrease in the temperature
of the produced NG. If the temperature of the produced NG falls below 0 ◦C, it must
be reheated, incurring additional costs. Increasing the rotational fan speed can postpone
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the point at which the temperature of the produced NG drops below 0 ◦C. However,
the operational cost of the fan, driven by electrical energy, rises in direct proportion to
the rotational speed. Therefore, the challenge lies in developing an efficient operational
methodology that minimizes energy expenses while maintaining vaporization performance
for the targeted duration. Striking this balance requires a nuanced understanding of the
interplay between temperature control, fan speed regulation, and energy consumption,
highlighting the importance of sophisticated monitoring and control mechanisms within
the LNG vaporization process.

At present, the control of the AAV’s fan speed and the decision to halt the vaporization
operation rely heavily on human expertise, informed by various data collected during
the vaporization process. Determining the optimal operation policy based on real-time
data fluctuations presents a significant challenge. Predicting the precise moment when the
temperature of the produced NG will fall below 0 ◦C under specific operational policies in
a variable environment further complicates this task. To address this complex issue, we
introduce a predictive model utilizing a deep neural network. The model aims to forecast
the temperatures of produced NG at the outlet of the heat exchanger’s tubes—a critical
factor in devising an optimal operation policy for the vaporization system. This approach
seeks to integrate advanced machine learning techniques with traditional control methods,
enhancing accuracy, and efficiency in a continually evolving industrial landscape.

3. Data Preprocessing and Analysis

A fundamental step in developing an artificial intelligence model for predicting NG
temperature at the outlet of the heat exchanger involves collecting and preprocessing
sensor data, and then transforming these data into suitable features for AI modeling.
In this study, raw sensor data were obtained directly from the NG production plant.
Since this raw data comes in a format and structure that is not immediately suitable for
model development, preprocessing is an essential stage. This section delves into the data
preprocessing procedures applied to the sensor data and subsequently presents the results
of data analysis on the preprocessed information. The analysis provides valuable insights
that guide the design of the AI model’s input and output features.

3.1. Data Preprocessing and Refinement

Figure 5 outlines the comprehensive procedure for data preprocessing. Eleven months
of raw AAV data, supplied by the NG production plant, encompass various types of
information such as cell ID, fan speed, vaporization flow rate, LNG inlet temperature,
air temperature, and humidity. Because the time intervals for these collected pieces of
information differ, an initial step of time synchronization is performed to address this issue.
After this synchronization, all information is converted into a unified time-series format
with 10 min intervals to optimize the dataset size. Utilizing the synchronized data, specific
information is then prepared for AI training, simulation, and data analysis.
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In this phase, R—a widely recognized statistical programming language—serves as
the software tool for data preprocessing. Given the presence of various time-series data
with different collection time points, an initial task involves determining an appropriate
time interval to both condense the raw data and synchronize it over a longer duration.
For the purpose of this study, a 10 min time interval has been selected. This interval is
sufficiently brief to capture the raw data’s intricate features, yet wide enough to make
the size of the synchronized dataset manageable. If multiple values exist within a 10 min
window, the mean of these values is taken as the representative value for that interval. In
cases where no values are recorded in a given 10 min period, the value from the preced-
ing interval is carried forward. Employing this methodology, synchronized data with a
10 min time interval is generated, reducing the total dataset size to approximately
138 MB—roughly 1/100th of the original 11 months of raw data, which amounts to 15 GB.
Despite this substantial reduction in data volume, the synchronized dataset retains the
majority of the plant’s operational history.

3.2. Generating Train Data for AI Algorithms

Upon the completion of data synchronization, the next critical step is to generate
a training dataset specifically designed for the AI predictive model. The aim of this AI
model is to forecast the outlet temperature of natural gas (NG) in the tubes of the heat
exchanger after a defined time period. Therefore, the raw data collected from the AAV
must be transformed into a format that is suitable for training the predictive model. The
training dataset consists of both independent and dependent variables or target variables,
the specific details of which are outlined in Table 1. A wide array of values for the in-
dependent variables can be collected or extracted from the synchronized data. In the
proposed AI model, the outlet temperature after a specific time period—designated as
∆t—is the dependent variable. Importantly, observed values of certain variables, such as
the vaporization flow rate or the outlet temperature after a ∆t time span, may vary even
when measurements are taken at the same time point, depending on changes in ∆t.

Table 1. Structure of Training Data for AI Algorithms.

Classification Variable Name Data Type

Independent Variables

Month Categorical
Hour Categorical

Day of Week Categorical
Cell ID Categorical

Consecutive operating time period before the time of
measurement (Unit: Minute) Integer

∆t (Unit: Minute) Integer
Rotational fan speed (Unit: RPM, Constant speed during ∆t) Integer

The vaporization flow rate during ∆t Float
Air temperature (Unit: ◦C) Float

Air temperature one hour before the measurement (Unit: ◦C) Float
Air temperature two hours before the measurement (Unit: ◦C) Float

Humidity Float
Humidity one hour before the measurement Float

Humidity two hours before the measurement Float
LNG inlet temperature (Unit: ◦C) Float

Valve angle Float
Outlet temperature (Unit: ◦C) Float

Dependent Variable Outlet temperature after a time period of ∆t (Unit: ◦C) Float

Given the variable nature of ∆t, multiple values of the dependent variable may exist at
a single measurement time point. Consequently, the size of the training dataset surpasses
that of the synchronized data. This procedure essentially serves to augment the data,
enabling a more thorough exploration of the initial dataset to extract nuanced insights.
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The total size of the training data expands from the 138 MB of the synchronized data to
approximately 400 MB. If needed, cell-specific or monthly training datasets are generated
and utilized for training the predictive AI model. Additionally, only those independent
variables deemed relevant through preliminary analysis are selected for inclusion in the
training process.

3.3. Analysis of the Generated Data

A comprehensive data analysis is conducted to elucidate the operational characteristics
of the AAV, utilizing both the synchronized data and the training dataset intended for the
AI model. In the course of this analysis, the synchronized data serves as the primary source,
while in certain instances, supplementary information like power consumption per fan
speed is also integrated.

3.3.1. Monthly Fan Speed Analysis

First, an analysis of the monthly fan speeds across all 16 cells over an 11-month
operational period was conducted. The results revealed that fan speeds ranged from 400 to
900 RPM. However, 550 RPM was predominantly utilized from May to September, while
600 RPM was the primary choice for the remaining months. Consequently, the available
operational data for fan speeds below 500 RPM or above 650 RPM was insufficient for
robust AI model training. Such an imbalance in fan speed data could compromise the
predictive performance of the AI model.

3.3.2. NG Outlet Temperature Analysis

Second, upon examining the outlet temperatures of natural gas (NG), it was observed
that instances of temperatures at or below 5 ◦C were primarily confined to the winter
season. Most of the readings registered temperatures above 5 ◦C. Notably, when the
outlet temperature did fall below this threshold during vaporization operations, it did not
gradually decline but rather exhibited a precipitous drop to below 5 ◦C within a matter
of minutes. This abrupt temperature change poses challenges for predictive modeling.
Therefore, this characteristic should be carefully integrated into the development of the AI
model to enhance its ability to accurately forecast temperature drops below 5 ◦C after a
specified time period (∆t) during vaporization.

3.3.3. Factors Affecting Outlet Temperature

Third, the analysis revealed that even when cells within the same unit operated at
identical fan speeds, there could be significant variances in the outlet temperatures among
different AAVs at the end of the vaporization process. Additionally, the fluctuation in the
NG outlet temperature during vaporization was found to be considerable, which appears to
be influenced by the cells’ locations. These observations underscore the necessity for a stable
vaporization operation strategy aimed at maintaining as consistent an outlet temperature
as possible.

3.3.4. Regression Analysis

Lastly, a regression analysis was conducted, employing future discharge temperature
as the dependent variable and various other features as independent variables. As indicated
in Table 2, the most influential factors on future outlet temperature were found to be the
current air temperature, fan speed, and existing NG outlet temperature.
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Table 2. Impact Analysis on Future Outlet Temperature (ANOVA Table).

df Sum of Square Mean Square F-Value

Previously consecutive
operating time 1 84,975.4 84,975.4 4388.1

Prediction period 1 17,603.2 17,603.2 909.0
Fan speed 1 297,224.8 297,224.8 15,348.5

Vapo. Flow Rate 1 46,871.2 46,871.2 2420.4
Temp. (Current time) 1 792,558.5 792,558.5 40,927.3

Temp. (One hour before) 1 1657.1 1657.1 85.6
Temp. (Two hours before) 1 199.3 199.3 10.3
Humidity (Current time) 1 4090.9 4090.9 211.3

Humidity (One hour before) 1 1577.0 1577.0 81.4
Humidity (Two hours before) 1 2492.4 2492.4 128.7

LNG inlet temp. 1 7020.7 7020.7 362.5
Current outlet temp. 1 213,413.4 213,413.4 11,020.5

Residual 13,987 270,859.0 19.4

4. Prediction Model with DNN and Test Results

To predict the temperature of NG at the outlet of the tubes in the heat exchanger after
a specific time period (∆t), a deep learning model is designed and applied. Independent
variables described in Section 3 are given as input data of the deep neural network (DNN)
model and the NG temperature at the outlet of the tubes after a specific time period (∆t) is
defined as the output to be predicted. The input/output model structure used in the DNN
is shown in Figure 6.
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We conducted training and testing on various DNN model architectures and selected
two models with superior performance, naming them DNN1 and DNN2. The details of
the DNN models, such as the number of hidden layers, number of nodes, and activation
functions, are summarized in Table 3. The training options set in the Keras software package
(version 2.14.0) are listed in Table 4. The raw data of AAV operation is pre-processed and
synchronized in 10 min intervals and prepared for use as input/output data. About 70% of
the data are used as training data and the remaining 30% are used as test data. Since the
fan speed is adjusted every 4 h, the specific time period (∆t) for the next prediction is set to
30 min without loss of generality in the field. The performance indexes used for evaluating



Processes 2023, 11, 3143 11 of 14

the prediction accuracy of the DNN models are Mean Absolute Error (MAE), Mean Square
Error (MSE), and R2 Score.

Table 3. Layer structure of DNN1 and DNN2.

Model Layer # of Node Activation

DNN1

input 11 relu
hidden 1 256 relu
hidden 2 256 relu
hidden 3 256 relu
hidden 4 256 relu
output 1 linear

DNN2

input 11 relu
hidden 1 32 relu
hidden 2 64 relu
hidden 3 128 relu
hidden 4 64 relu
hidden 5 32 relu
output 1 linear

Table 4. Keras option set of DNN in training.

Epochs Batch Size Loss Optimizer Metrics

200 10 MSE ADAM MSE, MAE

Figure 7 shows the learning curve of the training loss of a DNN1 model over epochs.
As can be observed, the Mean Squared Error (MSE) starts at a high value, indicating a
significant discrepancy between the model’s predictions and the actual values during the
initial stages of training. However, as the training progresses through subsequent epochs,
there is a rapid decline in the MSE. This suggests that the model is effectively learning and
adjusting its weights to minimize the error. Around the 50th epoch, the decrease in MSE
begins to stabilize, indicating that the model has reached a point where further training
offers diminishing returns in error reduction.
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The resulting prediction performance of the proposed DNN models is shown in
Table 5. The DNN1 model has an MSE of 3.013 ◦C and an MAE of 0.935, with an R2 Score
(calculated as 1–SSE/SST, where SSE represents the Sum of Squared Error and SST is the
Sum of Squared Total) of 0.961. This indicates the robust performance of the proposed
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model. The performance of DNN2 is nearly identical to that of DNN1. Despite having
different layers, both DNN1 and DNN2 models yielded similar results. From this, it is
inferred that the performance of Deep Neural Networks may not be highly sensitive to
their architectural variations. Additionally, we trained the following machine learning
models and compared their performance to that of the DNN models: Random Forest (RF),
Gradient Boosting Regression (GBR), K-Neighbors Regression (K-NR), and Support Vector
Regression (SVR). Overall, the performance of RF is comparable to that of DNN1 and
DNN2, while the other models did not match the satisfactory results of the DNNs. Notably,
while the SVR model exhibited excellent performance on the training data, its performance
on the test data was markedly poor, rendering it unsuitable for practical use. This suggests
a severe overfitting issue during the training of the SVR model.

Table 5. Prediction performance of DNN and other types of machine learning models.

Model
Train Data Performance Test Data Performance

MSE MAE R2 Score MSE MAE R2 Score

DNN1 2.662 0.916 0.965 3.013 0.935 0.961
DNN2 3.047 0.953 0.960 3.304 0.970 0.957

Random Forest 4.163 1.098 0.945 4.601 1.123 0.940
Gradient Boosting Regression 14.634 2.911 0.807 14.898 2.929 0.807

K-Neighbors Regression 5.240 1.392 0.931 8.558 1.767 0.889
Supported Vector Regression 0.010 0.100 1.000 77.005 7.474 0.000

In Table 6, the results of prediction are re-grouped into two categories: (1) NG outlet
temperature is below 0 ◦C and (2) overall temperature range of NG outlet. As the prediction
accuracy of the NG outlet temperature becomes lower according to Table 6, the prediction
error tends to increase for both low-speed RPM and high-speed RPM. It seems that there are
unique characteristics in the dataset that result in a prediction inaccuracy for low outlet NG
temperatures. Considering the real operation of AAVs in the field, if the outlet temperature
of the NG falls below 0 ◦C, the operator urgently tries to adjust the outlet temperature
higher by increasing the fan speed. Therefore, cases of both the outlet temperature of
the NG and the fan speed being low are very rare. This imbalanced data characteristic
decreases prediction performance at low outlet temperatures and low fan speeds. A more
diverse test case should be done in the field and more related data should be collected in
order to increase the accuracy across the whole range of temperatures and fan speeds.

Table 6. Variation in prediction performance with RPM and outlet temperature of NG.

Outlet Temperature of NG Performance Index
Fan Rotation Rate (RPM)

400~500 500~600 600~700 700~

Below 0 ◦C

Training data MAE 1.405 1.541 2.110 1.481
Training data MSE 5.731 5.843 7.864 6.517

Training data R2 Score 0.920 0.919 0.891 0.909
Test data MAE 25.259 11.202 6.454 10.165
Test data MSE 777.498 205.662 67.792 210.499

Test data R2 Score −13.803 −7.716 −0.245 −1.094

Overall Temperature Range

Training data MAE 1.452 1.601 1.542 1.470
Training data MSE 6.136 6.331 6.225 6.405

Training data R2 Score 0.915 0.912 0.913 0.911
Test data MAE 1.031 1.727 1.399 2.486
Test data MSE 3.636 7.694 4.929 25.345

Test data R2 Score 0.641 0.780 0.919 0.736
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5. Conclusions

In this study, we embarked on preliminary research with the goal of developing
artificial intelligence technology to enhance the efficiency and safety of the entire Ambient
Air Vaporizer (AAV) system. Leveraging real operational data collected over approximately
one whole year, we gained critical insights. We identified seasonality in both production
and energy costs and through regression and variance analyses, found that future natural
gas (NG) outlet temperatures are significantly influenced by current atmospheric conditions,
fan speeds, and existing NG outlet temperatures.

Building on these findings, a Deep Neural Network (DNN) prediction model was
subsequently developed. This model is capable of predicting the outlet temperature of
vaporized NG after a given time interval. Given the operational constraints—namely, a
limited range of fan speeds and safety-oriented guidelines—the task of developing an
effective prediction model presented unique challenges. To overcome these, we evaluated
various learning models under diverse conditions, ultimately arriving at a DNN model
with minimized absolute mean error (MAE) and mean square error (MSE).

With its multiple potential applications, the artificial intelligence model serves as
a valuable tool, primarily for facility operators. It can provide customized, efficient
AAV operational policies based on specific environmental conditions and LNG inlet flow
rates. Looking ahead, we aim to expand this work by integrating the proposed DNN
prediction model into a production simulation framework. This integration will pave the
way for the development of optimal production strategies, leading to more intelligent
facility operations.
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