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Abstract: As an essential component of a universal CNC machine tool, the spindle plays a critical
role in determining the accuracy of machining parts. The three cutting process parameters (cutting
speed, feed speed, and cutting depth) are the most important optimization input parameters for
studying process optimization. Better processing quality is often achieved through their optimization.
Therefore, it is necessary to study the three cutting process parameters of the CNC machine tool
spindle. In this paper, we proposed an improved algorithm incorporated with the beetle antennae
search algorithm for the most probable explanation in Bayesian networks to achieve optimization
calculation of process parameters. This work focuses on building adaptive dynamic step parameters
to improve detection behavior. The chaotic strategy is discretized and used to establish the dominant
initial population during the population initialization. This article uses four standard network data
sets to compare the time and fitness values based on the improved algorithm. The experimental
results show that the proposed algorithm is superior in time and accuracy compared to similar
algorithms. At the same time, an optimization example for the actual machining of a universal CNC
machine tool spindle was provided. Through the optimization of this algorithm, the true machining
quality was improved.

Keywords: CNC; optimize process parameters; most probable explanation; Bayesian networks; beetle
antennae search; adaptive dynamic step parameter

1. Introduction

With the arrival of a new industrial revolution, global industrial powers are deploying
industrial strategies to accelerate their industrial development, such as the United States’
Advanced Manufacturing Partnership Program, Germany’s Industry 4.0, Japan’s Manufac-
turing White Paper, and “Made in China 2025” [1,2]. With the continuous development
of artificial intelligence technology and industrial big data in the manufacturing industry,
especially in CNC machine tool processing, some scholars have used artificial intelligence
technology and big data to study the optimization of process parameters and processing
quality and have made this research continue [3].

The Computer Numerical Control (CNC) machine tool [4] is one of the most widely
used machine tools in machining. CNC machine tools process workpieces such as metal
or wood. This process involves manufacturing products by cutting or milling workpieces
according to pre-designed shapes. Manufacturing products using CNC machine tools
can affect the cutting tools of the CNC machine tool, as the machine tool processes the
workpiece while rotating the device fixed on the spindle motor of the CNC machine
tool [5,6].
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The universal machine tool is one of the most widely used and mass-produced machine
tools. Its layout is reasonable and compact, with a small footprint, an independent spindle
structure, good rigidity, and vibration resistance. It has a large processing capacity, stable
accuracy, and high efficiency. The machine tool control system has strict protective measures
to ensure personal and equipment safety. It is also suitable for large cutting capacity, high
efficiency, and large-scale processing of parts in mechanical industries such as automobiles,
ships, bearings, and military sectors [7].

At present, the process of establishing process parameter optimization models adopts
multi-objective optimization algorithms, most of which are based on mechanism models.
For example, the multi-objective parameter optimization model for multi-channel CNC and
production cost was established based on the energy efficiency mechanism of the milling
process [8]. The multi-objective optimization algorithm was studied based on teaching and
learning (ITLBO) to optimize cutting and feed speed process parameters [9]. The multi-
objective process parameter optimization model was established based on the transient-
steady-state energy consumption mechanism with high-quality, low-energy consumption
processing of CNC machine tools as the optimization goal [10]. The multi-objective cutting
parameter optimization model for multi-pass turning of CNC machine tools was studied
based on the cutting energy consumption mechanism to determine the optimal cutting
parameters [11]. However, the utilization rate of processing quality data and process
parameter data is low, and the relationship between data mining process parameters and
quality still needs to be fully utilized. Therefore, this proposed algorithm fully uses data
and the most probable explanation to establish an optimization algorithm for process
parameters, improving the efficiency of utilizing machine tool manufacturing data.

Bayesian networks (BNs) [12] concisely model probability distributions over a set
of random variables. They are self-explanatory, easy to understand, and well-suited for
representing causal relationships [13]. BNs have been well recognized as a rigorous method-
ology for the quantification of risks, uncertainty modeling, and decision-making in the
presence of structural dynamics [14]. A key computational problem in BNs is the com-
putation of the most probable explanation (MPE). When the values of observed variables
(evidence nodes) are given, MPE is obtained by calculating the values of all non-observed
variables (non-evidence nodes), which satisfies the greatest joint probability [15,16]. In
Bayesian networks, an explanation of evidence refers to a state combination of all variables
in the network consistent with evidence, which is often the explanation with the greatest
relationship probability.

The solution of BNs is used in some fields, and examples are as follows: the Bayesian
network and neural network were used to model the thermal error of the CNC machine tool
feed drive system and study the relationship between the temperature rise and positioning
error of the feed drive system [17]. The Bayesian network reliability assessment method
was proposed, which considers dynamics and fuzziness. It analyzes the dynamic fuzzy
reliability of the balance circuit of the hydraulic system of CNC machine tools and verifies
the application of this method in system reliability assessment, providing a basis for CNC
machine tool hydraulic system balance circuits. It provides support for fault diagnosis of
machine tools [18]. The machined surface quality detection system was developed using
CNN architecture and Bayesian optimization, achieving low cost and reliability [19]. The
Bayesian network was used to analyze the reliability of related failure modes of CNC
machine tools, achieving reliability modeling of complex systems and effective analysis of
related failures [20].

Searching MPEs from BNs is an NP-hard question [21,22]. Currently, there are two
main methods for solving the problem: the query-based method and the local search-based
method. The query-based method is more efficient in small networks, but finding effective
solutions in large, complex networks takes a lot of work. The local search-based method
can find approximate or optimal solutions in large networks. Still, many of these algorithms
easily fall into the local optimum, and the optimization efficiency needs to be improved [23].
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This paper proposes a most probable explanation algorithm based on the beetle
antennae search algorithm (BAS-MPE). The population algorithm is applied to BN inference,
which establishes the framework of MPE. The method of generating the dominant initial
population is proposed. At the same time, the adaptive dynamic parameters are used to
improve the beetles’ detection behavior. Through population iteration, MPE is obtained.
In this paper, the algorithm’s convergence is proved by the probability measure method.
Compared with several similar algorithms, the experimental results show that the proposed
algorithm has higher optimization efficiency and better results.

The objectives of this article are to study the most probable explanation algorithm in
Bayesian networks and apply it to the optimization of cutting process parameters (mainly
including cutting speed, feed speed, and cutting depth) for universal machine tool spindles
production to improve the optimization goal (machining quality). This paper provides a
reference for the optimization of process parameters in production.

The main contributions of this article are as follows: (1) this study attempts to propose
a most probable explanation algorithm in Bayesian networks based on the beetle antennae
search for optimizing the spindle process parameters of universal CNC machine tools. Ad-
ditionally, it was confirmed through experiments that using the spindle process parameters
of general CNC machine tools optimized by the proposed algorithm can improve the actual
machining quality. (2) The proposed algorithm combines the state information of nodes
and uses a chaotic strategy to generate a dominant initial population to increase population
diversity. (3) The proposed algorithm uses dynamic step size adjustment parameters in
search behavior and detection behavior to balance global search and local development,
enhancing the likelihood of the algorithm jumping out of the local optimum.

The organizational arrangement of the remaining parts is as follows: Section 2 in-
troduces the related works on optimization of process parameters for CNC and the most
probable explanation algorithm. Section 3 presents the implementation steps of the im-
proved algorithm. In Section 4, the convergence proof of the algorithm is provided. In
Section 5, we conducted experiments to verify the algorithm’s effectiveness and provide
an optimization example of process parameters for the spindle of universal CNC machine
tools. Finally, the conclusion is described in Section 6.

2. Related Works
2.1. Optimization of Process Parameters for CNC

The reasonable selection of process parameters will affect the machining quality dur-
ing CNC. However, as manufacturing methods continue to evolve and new technologies
are continuously introduced, it is crucial to consider the future of CNC machining oper-
ations [24]. Process parameters mainly include cutting speed, feed speed, cutting depth,
cutting fluid, cutting tools, etc. The three cutting process parameters (cutting speed, feed
speed, and cutting depth) are the most critical input parameters for studying process
optimization, and it is often possible to achieve better optimization goals by optimizing
them [25,26]. In the following, some researchers have used multi-objective optimization
and some other methods to study the process parameter optimization problem of CNC
machine tools.

The multi-objective particle swarm optimization algorithm was used to establish a
multi-objective parameter optimization model for the multi-channel CNC milling pro-
cess’s energy efficiency and production cost to determine the optimal cutting speed, feed
rate, and cutting depth and prove that the optimized values are within the acceptable
range of the machine [8]. The optimized multi-objective optimization algorithm based on
teaching and learning (ITLBO) was studied to optimize the process parameters of CNC
cutting, mainly cutting speed and feed speed [9]. The method was proposed based on
population optimization by combining the extreme learning machine and the particle
swarm optimization algorithm and applying it to the optimization of CNC turning pro-
cess parameters to achieve control of the cutting speed, feed speed, cutting depth, and
surface roughness [25]. The genetic regression neural network GA-GRNN was studied
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to design a milling performance prediction model. It optimized the process parameters
in the milling process based on this model: spindle speed, number of grinding grooves,
and grinding tooth feed [27]. The transient-steady-state energy consumption model was
established for CNC lathes, and based on this, a multi-objective model was established
with spindle speed, feed rate, and cutting depth as optimization variables, and high-quality,
low-energy consumption processing of CNC machine tools as optimization goals [10]. The
advanced Tabu search and scatter search were used to establish a multi-objective cutting
parameter optimization model for multi-pass turning of CNC machine tools to determine
the optimal cutting parameters, including spindle speed, feed speed, cutting depth, and
roughness [11]. The OFAT technology was used to conduct CNC milling experiments and
determined parameters such as optimal feed speed, cutting speed, cutting depth, and tool
tip radius through experiments to ensure the integrity of the cutting surface and good
cutting efficiency [26]. The Neural Network (NN) and Multi-objective Swarm Algorithm
(MSA) were used to establish a CNC milling processing optimization model. It optimizes
the helix angle, axial cutting depth, radial cutting depth, and cutting speed to achieve a
better surface finish and minimum tool wear rate [28].

Currently, most of the optimization research on the process parameters of these CNC
machine tools can better solve some process optimization problems. This provides a
research basis for optimizing and applying CNC machine tool process parameters and
better guides the production of enterprises. However, there are also some problems, such as
most multi-objective optimization algorithms having optimization weight imbalance and
easily falling into local optimum. Some model research focuses on mechanism modeling,
and the utilization rate of processing quality data and process parameter data is low. The
relationship between data mining process parameters and quality must still be fully utilized.

Therefore, this article fully uses quality data and process parameter data and combines
the most probable explanation algorithm to optimize the cutting speed, feed speed, and
cutting depth of CNC cutting process parameters to improve the processing quality of CNC.

2.2. The Most Probable Explanation of Bayesian Networks

Due to the limitations of the query-based method, experts have mainly used the local
search-based method to solve MPE in recent years. In [29], the Ant Colony Optimization
algorithm for the most probable explanation (ANT-MPE) is proposed. By constructing the
pheromone tables, the heuristic function tables, and the ant decision tables, the effective
optimization of the ant colony for MPE is realized. However, the accuracy of the solution
depends on the choice of the weight of pheromone trails and the weight of the local heuristic
function. Sriwachirawat et al. [30] proposed a niching genetic algorithm (NGA) for MPE,
which uses the multi-fractal and clustering characteristics of Bayesian networks to increase
the range of population solutions in the early stage of the algorithm. The algorithm makes
use of the observation that there are regions within the joint probability distribution of
the Bayesian networks that are highly self-similar. In [31], the Stochastic Local Search
Algorithm (SLS) to solve MPE is proposed. The algorithm can quickly reach the vicinity
of MPE through a random local search strategy, but it is easy for the algorithm to fall
into the local optimal value in the later stage. Pillai et al. [32] proposed the probabilistic
driving algorithm based on swarm intelligence (DMVPSO) to solve MPE. The algorithm can
solve MPE using the particle swarm optimization algorithm when there are few network
nodes. However, when the number of network nodes is large, the algorithm is not effective.
In [23], the algorithm performs a single iteration of the traditional PSO algorithm for
each group. Overlapping clusters compete on their individual state assignments and use
communication mechanisms to share information between the clusters. The algorithm can
obtain better results than the single population through population competition, but it
needs more group competition operation, and its efficiency needs to be improved.

The abovementioned methods are of significant reference value for searching for
MPE of BNs. However, these methods have their shortcomings, as mentioned above. For
the MPE of BNs, scholars widely use the existing optimization algorithms to solve the
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problem directly but rarely improve the applicability and adaptability of the strategy for
this problem. It is an excellent idea to transform the MPE problem into the optimal solution
problem. The beetle antennae search algorithm (BAS) is a perfect way to solve the optimal
situation. At present, BAS is rarely applied in the MPE of BNs. The population optimization
algorithm is one of the most effective methods to solve MPE based on the local search
method [23,29,31,32].

In this paper, the search strategy in the improved optimization algorithm is used
to avoid the algorithm falling into local optimization. The beetle antennae search algo-
rithm [33] is a mathematical model algorithm based on the behavior process of a beetle
searching for food. The beetle searches for food sources through search behavior and detec-
tion behavior which returns it to the current optimal food source location. Compared with
other population algorithms, such as particle swarm optimization algorithm, ant colony
optimization algorithm, and bee colony optimization algorithm, the beetle antennae search
algorithm inherits the excellent information from the previous generation of individuals
effectively, and it avoids the blind randomness of the search. The algorithm does not
need more parameters, gradient information, and specific function forms, making the opti-
mization strategy of the algorithm simpler and more suitable for single-objective function
optimization. However, the searching phase of the beetle antenna search algorithm only
provides two directions, and the optimization effect is poor. The step size of the algorithm
is a linear decreasing function, which makes the algorithm fall into the local optimum
in the later stage. Therefore, combining the characteristics of the beetle antenna search
algorithm, this paper designs a beetle antenna search algorithm, which is the most probable
explanation in Bayesian networks. The significant differences between our work and the
related works are summarized in Table 1.

Table 1. Comparison between the related works.

Ref. Nonrandom Initial
Population

Improved Optimization
Strategy

Population Competition
Mechanism

[23] No Yes Yes
[29] No No Yes
[30] No Yes No
[31] Yes No No
[32] No Yes Yes

This work Yes Yes Yes

Therefore, combining the problems of MPE algorithms and the characteristics of the
beetle antenna search algorithm, this paper designs a beetle antenna search algorithm for
the most probable explanation in Bayesian networks.

3. The Proposed Algorithm (BAS-MPE)

The proposed algorithm BAS-MPE establishes the dominant initial population by
introducing a chaotic strategy and maps the strategy to the discrete domain. BAS-MPE
improves the search behavior of the beetle and uses the adaptive dynamic parameters to
adjust the moving step of the beetle in the detection behavior. Through population iteration,
BAS-MPE finds the individual with the highest fitness.

3.1. Bayesian Networks and MPE Problem

A Bayesian network (Figure 1) is a Directed Acyclic Graph (DAG) where nodes
represent random variables and edges represent conditional dependencies between random
variables. Attached to each node is a Conditional Probability Table (CPT) that describes
the conditional probability distribution of that node given its parents’ states. Distributions
in a BN can be discrete or continuous. In this paper, we only consider discrete ones. BNs
represent joint probability distributions in a compact manner. Let B = {Q1, Q2, · · · , Qn} be
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the random variables in a network. Every entry in the joint distribution P(Q1, Q2, · · · , Qn)
can be calculated using the following chain rule:

P(Q1, Q2, · · · , Qn) =
n

∏
i=1

P(Qi|π(Qi) ), (1)

where π(Qi) denotes the parent nodes of Qi. Figure 1 shows a simple BN with four nodes,
the Sprinkler network [34].
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Figure 1. The Sprinkler Network.

Let (B, P) be a Bayesian network where B is a DAG and P is a set of CPTs, one
for each node in B. An evidence E is a set of instantiated nodes. An explanation is a
complete assignment of all node values consistent with E. Each explanation’s probability
can be computed in linear time using Equation (1). For example, in the Sprinkler network
(Figure 1), suppose we have observed that the grass is wet, i.e., the E = (W = T). One
possible explanation of this is: {C = T, R = T, S = F, W = T}. Its probability is:

P(C = T, R = T, S = F, W = T)
= P(C = T)× P(R = T|C = T )
× P(S = F|C = T )× P(W = T|R = T, S = F )
= 0.5× 0.8× 0.9× 0.9
= 0.324.

(2)

MPE is an explanation with the highest probability. Given the observed evidence, it
provides the most probable state of the world. The algorithm proposed in this paper is to
solve the Most Probable Explanation (MPE) problem in Bayesian networks. This network
example (the Sprinkler network) is used as a network example. MPE has many applications
in diagnosis, abduction, and explanation.

3.2. Variable Description and Initial Population

The correspondence between the variables of the population algorithm and Bayesian
networks is as follows: the beetle individual M: a combination state of all nodes in Bayesian
networks (a probable explanation of Bayesian networks), as shown in Equation (3); the bee-
tle population G: a cluster representing individual beetles (multiple probable explanations
of Bayesian networks), as shown in Equation (4).

M = {X1 = x1, X2 = x2, · · · , Xn = xn}, (3)

G = {M1, M2, · · · , Mm}, (4)
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where Xi, (i = 1, 2, · · · , n) is the i-th node of Bayesian networks, xi, (i = 1, 2, · · · , n) is the
state value of the node Xi.

BAS-MPE produces h different beetle individuals {Mk(0), (k = 1, 2, · · · , h)} consistent
with DAG. According to Equation (5), BAS-MPE screens to obtain the individuals that, with
the evidence nodes, state {e1, e2, · · · , ev} in E from {Mk(0), (k = 1, 2, · · · , h)}. We generate
non-repetitive individuals of longicorn beetles through the above operation, and combine
them into G(0).

G(0) =
{

Mj(0) = Mk(0), if (Xk
1(0) = e1) ∪ · · · ∪ (Xk

v(0) = ev)
}

, (5)

where Xk
w(0) is the w-th evidence node of the k-th individual, Mk(0) is the k-th individual,

w = 1, 2, · · · , v.
The chaotic number zi ∈ (0, 1) is generated at each node

{
X j

i (0), i = 1, 2, · · · , n
}

of Mj(0) ∈ G(0). All nodes’ chaotic numbers form an n-dimensional chaotic initial
vector Z1 =

(
z1

1, z1
2, · · · , z1

n
)

of Mj(0). We generate a discrete chaotic sequence Zm =(
zm

1 , zm
2 , · · · , zm

n
)

by m− 1 iterations according to

Zl+1 = 4Zl
(

1− Zl
)

, l = 1, · · · , m− 1. (6)

BAS-MPE loads the chaotic individuals Mj,ch(0) according to the state range [a1, a2] of
each node in Equation (7). The algorithm only operates on non-evidence nodes, and the
value state of evidence nodes remains unchanged. All the individuals complete the above
steps to generate the dominant initial population G(0), as shown in Equation (8). G(0) is
used as the first generation of the algorithm.{

X j
i (0) = a1 + randn(zm

i (a2 − a1)),
Mj,ch(0) =

{
X j

i (0)
}

,
(7)

G(1) =
{

Mj(0), j = 1, 2, · · · , m
}

, (8)

where randn(∗) means performing rounding on ∗.

3.3. Search Behavior

The search behavior of the beetle antennae search algorithm searches the left and right
directions. We select different node state values at each node and assign the node state to
the left and right antennae separately.

Assuming that there are mi states of the i-th node, each node state of the part (including
v1 and v2) between the v1-th node and the v2-th node of the individual Mj(t) is randomly
selected. The state of the individual evidence node and other nodes remains unchanged.
The left antennae coordinate Mj,lt(t) of the individual Mj(t) is obtained in Equation (9).

Mj,lt =

{
Xi =

{
xp, if p ∈ (v1, v2) ∩ xp /∈ {e1, e2, · · · , ev},
xi, else,

}
, (9)

where xi is the original state of Xi, xp is the state of node Xi that excludes the original state
in any other state.

Execute the above process again. Defining xp as the state node Xi that excludes the
original state xi and the left antennae coordinate xi,le in any other state. The right antennae
coordinate Mj,rt(t) for the individual Mj(t) is obtained.

The purpose of solving MPE is to find the node states when all nodes with the highest
joint probability are in evidence. So, we use the joint probability that the value is 0 to
1 [22] as the evaluation of fitness. In order to observe the difference in probability more
clearly, the logarithmic joint probability is used as the final evaluation of fitness. The fitness
function evaluates the joint probability of all nodes’ state distribution. We calculate the
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fitness of Mj,lt(t) and Mj,rt(t) by Equation (10) (the fitness of Mj,lt(t) is f j,lt(t) and the
Mj,rt(t) is f j,rt(t)).

f = lg

(
i=1

∏
n

P(Xi|Pa(Xi))

)
, (10)

where Pa(Xi) is the parent node of Xi.
Substitute f j,lt(t) and f j,rt(t) into Equation (9). It selects the larger fitness of the left

and right coordinates as the better coordinate Mj,better(t) in the t-th generation.

Mj,better(t) =
{

Mj,lt(t), if f j,lt(t) > f j,rt(t),
Mj,rt(t), else.

(11)

Two crossover nodes (X j
c1(t) and X j

c1(t), (1 ≤ c1 < c2 ≤ n)) are randomly selected

in Mj,better(t) =
{

X j
1(t), X j

2(t), · · · , X j
n(t)

}
. A portion (including the crossover nodes) be-

tween the two crossover nodes is used as a crossover region Cj(t) according to Equation (12).
Cj(t) is inserted into the corresponding position of Mj(t). For example, when Cj(t) = 231,
Mj(t) = 133524121, c1 = 4, and c2 = 6 are given, the cross result is Mj,c(t) = 133231121.

The method of crossover is shown in Equation (13). The individual Mj,c(t) after the op-
eration is obtained. Mj,c(t) is substituted into Equation (10) to obtain the fitness f j,c(t).

Cj(t) =
(

X j
c1(t), X j

c1+1(t), · · · , X j
c2(t)

)
, (12)

{
Mj(t) = 133524121,

Cj(t) = 231,
→ Mj,c(t) = 133231121. (13)

3.4. Detection Behavior

In the detection behavior of the original beetle antennae search algorithm, the set step
size is linearly decreasing with time. The reduction length is fixed, and the adjustment
cannot be made according to the actual situation. The iteration speed is slow, making
the algorithm easily fall into the local optimum. When the fitness of the right antennae is
equal to the left, the beetle does not move, and the algorithm is in an undeveloped state.
Therefore, we adjust the original linear decrement parameter of the step size of the beetle
to the adaptive dynamic parameter. It enhances the ability of the algorithm to jump out of
the local optimum.

Comparing the individual Mj,c(t) obtained by the search behavior with the optimal
individual Mbest(t) of the t-th generation population, we select the individual with high
fitness to update Mbest(t). The process Mbest(t) is updated, as shown in Equation (14). The
optimal fitness of the current population fmax(t) is calculated by Equation (10).

Mbest(t) =
{

M, if f
(

Mj,c(t)
)
> f (Mbest(t)),

Mbest(t), else,
(14)

where Mbest(t) = M1(1) when t = 1, j = 1.
We calculate the overall fitness of the current population, which is sum of all individual

fitness fall(t) by Equation (15) and the average fitness fav(t) by Equation (16).

fall(t) =
m

∑
j=1

f j(t), (15)

fav(t) =

m
∑

j=1
f j(t)

m
. (16)
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BAS-MPE adaptively adjusts the algorithm’s direction and the rate of optimization of
the algorithm according to the current fitness level fav

fmax
of the population. When the current

fitness of BAS-MPE is at a higher level ( fav
fmax

is higher), individuals need local development
in a small area, and the corresponding moving step size should be reduced. The operation
of assigning status to all nodes (its number is n) is to select the number of changed nodes.
The moving step length increases when it is at a lower level. It makes the position change
that a large number of beetles in the population move and jump out of the current local
optimum. We set an adaptive operator to adjust the step size to the current fitness fav

fmax
. We

construct an adaptive step size as shown in Equation (17).

δ = randn

(
n× (1− fav

fmax
)

λ
)

, (17)

where λ ∈ (0, 1) is the dynamic adaptive adjustment factor.
Individuals perform detection behavior based on adaptive moving steps. Select δ

mutation positions (1, 2, · · · , δ) and mutate at these positions. The variation range of each
node

(
X j

1(t), X j
2(t), · · · , X j

δ(t)
)

is within the node state range
(

U j
1(t), U j

2(t), · · · , U j
δ(t)

)
(excluding the original state). The mutation is not performed if the node at the mutation
position is the evidence node.

Assign any other node state uw,ra ∈ U j
w(t), (w = 1, 2, · · · , δ) at the mutation location

X j
w(t) to the mutation node. Combine all nodes’ recombination status schemes into one

individual Mj(t). The detection behavior produces a new individual process, as shown in
Equation (18).

X j
i (t) =

{
X j

w(t) = uw,ra, uw,ra ∈ U j
w(t), if i==w ∩ X j

i (t) /∈ {e1, e2, · · ·, ev},
X j

i (t), else,

Mj(t) =
{

X j
i (t)
}

.
(18)

We calculate the fitness of Mj(t) according to Equation (10) and compare it with f j,c(t),
selecting the individual with high fitness as the j-th next-generation individual Mj(t + 1)
generated by the algorithm.

The search behavior and detection behavior generate all individuals in the t-th gener-
ation of the population G(t), forming a new population, the next generation population
G(t + 1). When the maximum number of iterations is reached, the algorithm outputs the
current optimal individual, MPE.

3.5. The Steps and Flowchart of BAS-MPE
3.5.1. The Steps

• Step 1: Input the structure of Bayesian networks (DAG) and conditional probability
table (CPT), add evidence (E), and initialize t = 1, tmax.

• Step 2: Generate a discrete chaotic sequence Zm =
(
zm

1 , zm
2 , · · ·, zm

n
)
. Construct an

initial population G(1) by calculating the current chaotic individual.
• Step 3: Calculate the left and right antennae coordinates Mj,lt(t) and Mj,rt(t) by

Equation (9).
• Step 4: Calculate the fitness of Mj,lt(t) and Mj,rt(t) by Equation (10). Update the better

coordinate Mj,better(t) by Equation (11) and the fitness f j,c(t).
• Step 5: Calculate the crossover individual Mj,c(t) by Equations (12) and (13) and the

fitness f j,c(t).
• Step 6: Update the optimal individual Mbest(t) by Equation (16) and the fitness fmax(t).
• Step 7: Calculate the overall fitness level of the current population fall(t) and the

average fav(t).
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• Step 8: Construct an adaptive step size δ by Equation (17), update the individual Mj(t)
by Equation (18), and the fitness f j(t) of Mj(t).

• Step 9: Compare the fitness of Mj(t) and Mj,c(t), and select individuals with high
fitness as the next generation of individual Mj(t + 1). Generate new individuals from
all individuals G(t) in the t-th generation population and form new populations as
the next generation population G(t + 1).

• Step 10: If the algorithm satisfies t < tmax, it goes t = t + 1 and jumps to step 3;
otherwise, it outputs the global optimal individual, that is, MPE.

3.5.2. The Flowchart

We developed an approach for the most probable explanation in Bayesian networks
based on the beetle antennae search algorithm (BAS). In our approach, an individual is
associated with the state of all nodes in the network. The node corresponding to each
individual uses the search behavior of BAS and learns the left and right antennae in
separate directions. Our algorithm sets an adaptive dynamic parameter according to the
idea of adaptive factor to adjust the step size of the current individual movement in the
detection behavior. This representation provides an advantage since the search range and
optimization rate of the algorithm are adaptively adjusted according to the fitness level
of the current population. The corresponding selection changes the number of nodes, Ih
changes the position and makes many individuals in the population move and jump out of
the current local optimum. The flowchart for our approach is shown in Figure 2.
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Figure 2. The flowchart of BAS-MPE.

The main loop of this algorithm consists of three phasIs. In the first phase (processes
1–3), all individuals in the population are initialized, and the dominant initial population is



Processes 2023, 11, 3099 11 of 23

generated by the chaos strategy. In the second phase (processes 4–6), all individuals in the
population execute a search strategy to generate the left and right antennae coordinates and
generate optimal individuals. In the last phase (processes 7–8), our algorithm improves
the detection behavior by adjusting the step size based on dynamic parameters, generates
the individual, and forms a new population. Finally, our algorithm outputs the optimal
individual of the current population when the iterative conditions are finally satisfied
through iteration, which is the most probable explanation.

3.6. Application of BAS-MPE for the Spindle Process Parameter Optimization of CNC
Machine Tools

This section uses the proposed algorithm BAS-MPE based on the beetle antennae
search optimization strategy to establish an optimization model for the spindle process
parameters of CNC machine tools and conducts experiments in Section 5.3.

The research applied in this section is to maximize the final target machining quality
Quality by optimizing the three cutting process parameters of CNC: cutting speed Vc,
feed speed fz, and cutting depth ap. In the Bayesian network, we can use the maximiza-
tion of conditional probability to express this optimization goal. It can be expressed as
Equation (19).

(Vc, fz, ap) = argmax[P(Quality|Vc, fz, ap )] (19)

First, Quality is analyzed to clarify the optimization objective function. In the Bayesian
network, it is difficult to directly establish the functional expression relationship between
Vc, fz, ap, and Quality through equations. Instead, obtaining the probability model
diagram outputs the status of the corresponding process parameters under maximum
probability. In this study, the maximum probability refers to the maximum conditional
probability P(Quality|Vc, fz, ap ). P(Vc, fz, ap) can be obtained from the data, so it is a
fixed value. Therefore, maximizing P(Quality|Vc, fz, ap ) is equivalent to maximizing
P(Quality, Vc, fz, ap), and P(Quality, Vc, fz, ap) is the objective function of the most possi-
ble explanation of Bayesian networks. Therefore, we derive the quality-process parameter
optimization objective function in Equation (20).

(Vc, fz, ap) = argmax[P(Quality, Vc, fz, ap)] (20)

Then, we use the Bayesian network structure and its conditional parameter table
to obtain the most probable explanation for modeling. The quality-process parameter
Bayesian network structure DAG and its conditional probability table CPT are obtained
through the quality-process parameter data DATA and the Bayesian network structure
algorithm [23]. This part can be expressed by Equation (21).

〈DAG, CPT〉 = f (DATA) (21)

where f (∗) is to use the Bayesian network structure algorithm on ∗.
Finally, based on the quality-process parameter optimization objective function

(Equation (20)) and, DAG and CPT, the BAS-MPE is used to obtain the process param-
eter optimization values. The process parameter optimization model is expressed as
Equation (22).

(Vc, fz, ap) = BAS-MPEmax[P(Quality,Vc, fz ,ap)](DAG, CPT, tmax) (22)

where tmax is the maximum number of iterations.
The process of establishing the process parameter optimization model is as follows:

• Step 1: Establish the quality-process parameter optimization objective function with
Equation (20).

• Step 2: Set the maximum number of iterations.
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• Step 3: Obtain the Bayesian network structure and conditional probability table with
the Bayesian network structure algorithm and data from the machining spindle of
CNC machine tools.

• Step 4: Use the dominant initial population strategy to obtain the solution set of the
initial state of the process parameters.

• Step 5: Use the improved search behavior and detection behavior to update and iterate
the solution set of the state of the process parameters.

• Step 6: Find the optimal solution with the above steps, which is the obtained range of
process parameters.

4. Convergence Analysis of BAS-MPE

For the convergence analysis of the algorithm, we use the theories of the Lebesgue
measure method and the convergence criteria for random search algorithms to prove
that it converges in a region. Firstly, our fitness function is the joint probability. In the
iterative process, the algorithm always chooses the individual with a large fitness function
as the next-generation individual. Therefore, the fitness value is always monotonous and
gradually converges to the supremum of the solution space for the subset of the optimal
solution set that satisfies the Borel criterion. Finally, it shows that the probability of our
algorithm not finding the individual in the subset in infinite consecutive times is 0. That is,
the algorithm must be able to find the subset individual in the finite iterative search. So, it
meets the convergence criterion. It shows that there must be an individual in the optimal
region after finite iterations.

In this paper, the convergence of BAS-MPE is analyzed by the Lebesgue measure
method and the convergence criteria for random search algorithms [35]. When the algo-
rithm satisfies Hypotheses 1 and 2, it trends the optimal solution set in solution space.

Hypothesis 1. If f (H(z, ξ)) ≥ f (z) and ξ ∈ W are established, f (H(z, ξ)) ≥ f (ξ) is right in
the BAS-MPE.

where f is the fitness of BAS-MPE. W is the optimal solution set. ξ is a random individual
in W. z is the upper point of W that can generate the upper bound of the value of the
objective function.

Hypothesis 2. In the BAS-MPE, the solution sequence of the algorithm is {xk}+∞
k=0 . When the

Lebesgue measure {xk}+∞
k=0 is always greater than 0, {xk}+∞

k=0 converges to the optimal solution set
W with the probability 1.

where W1 is a subset of [35].

Lemma 1. BAS-MPE satisfies Hypothesis 1.

Proof of Lemma 1. It is proved that the iteration function H(∗) of the algorithm is de-
fined as:

H
(

Mbest(t), Mj(t)
)
=

{
Mbest(t), f (Mbest(t)) ≥ f

(
Mj(t)

)
,

g
(

Mj(t)
)
, f (Mbest(t)) < f

(
Mj(t)

)
,

(23)

where g(∗) is the search and detection behavior function of the individual. g
(

Mj(t)
)

is
the position of the beetle individual after the t-th updating. Mbest(t) is the current optimal
individual position. �

From Equation (23), the iteration function selects the individual with high fitness as
the updated individual and the corresponding fitness value in the algorithm is always
monotonous and does not decrease. It gradually converges to the upper solution space. So
f (H(z, ξ)) ≥ f (ξ) is right.

Lemma 2. BAS-MPE algorithm satisfies Hypothesis 2.
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Proof of Lemma 2. For a subset of Borel W1 that belongs to W, the probability measure is
v(W1) > 0, so Equation (24) holds [36]. �

∞

∏
n=1

[1− µn(W1)] = 0. (24)

It shows that the probability of not searching for an individual in an infinite number
of consecutive searches is 0. The algorithm must find the subset of individuals in the
finite iteration search. According to the F.SOLIS’s convergence criterion [37], there is
lim
k→∞

P[xk ∈W] = 1. This explains that the probability of the k-th step belonging to xk in

the algorithm is 1. It shows that after a finite number of iterations in the algorithm, an
individual must be in an individual in the optimal solution set W.

According to the proofs of Lemma 1, Lemma 2, and the iterative principle of BAS-MPE,
the individuals are close to each other, and the optimal individual converges in the optimal
solution set in all subsequent iterations, which satisfies the convergence criterion [35]. The
BAS-MPE algorithm converges to the optimal solution set.

Figure 3 shows the iteration curve of the fitness of the optimal individual under
the four networks. The algorithm can converge to the global optimal in the first three
networks. In the fourth network (the Asia network, Insurance network, Alarm network,
and Hailfinder network [23,31,38–40]), there is no convergence to the global optimum in
the first 100 generations because of the limitation of the number of iterations. However, the
number of increasing iterations can further increase the convergence value. This is because
the Hailfinder network is more complex than other networks, and the increase in nodes
and edges leads to an exponential increase in the amount of calculation. Therefore, the first
100 generations in our experiment did not reach the convergence state of the network.
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Figure 3. Iterative curve of fitness f . The dash line shows the best fitness and the black line shows
the optimal individual fitness in BAS-MPE.

5. Experiments

The algorithm is implemented in MATLAB. The processor is an Intel (R) Core (TM)
i5-3470 CPU, 3.2 GHz, running on a Windows 7 64-bit operating system with 12 GB RAM.



Processes 2023, 11, 3099 14 of 23

The parameters of this algorithm are set, the maximum number of iterations is 100, and the
individual size is 100.

The algorithms are compared in the Asia network, Insurance network, Alarm network,
and Hailfinder network. The four “standard networks” used in our experiment are classic
network examples commonly used in Bayesian network research. They are also used
by many scholars as experimental benchmarks. They can well reflect the results and
performance of comparative experiments, such as indicators in time, joint probability, and
BIC score. Therefore, they are good benchmarks. These four networks are selected as
experimental data set benchmarks in this paper. The experimental results of each algorithm
are run 100 times independently to obtain the average value as the final statistical result.
This experiment uses a common metric: logarithmic joint probability f [29,34], the formula
of which is shown in Equation (10). The larger the value of f, the better the result of the
algorithm. The relevant parameters of the classic network are shown in Table 2.

Table 2. Classic network related parameters.

Network Nodes Size Edges Size Nodes Status
Range

Maximum Size
Parent Nodes

Asia 8 8 1–2 2
Insurance 27 52 2–4 3

Alarm 37 46 2–5 4
Hailfinder 56 66 2–11 4

In Table 2, “Nodes size” represents the number of nodes owned by the network, which
is essentially the modeling of variables. “Edges size” represents the number of edges
owned by the network. Edges are the connection between two nodes and represent the
ownership relationship between two nodes. “Nodes status range” represents the discrete
state range of each node after discretization. For example, 1–2 means that there are two
states, 1 and 2, and 2–5 means that there are four states in total, 2, 3, 4, and 5. “Maximum
size parent node” refers to the maximum number of cases in which a node has an edge
over another node, and the other node points to the direction of the node among all nodes
in the network.

5.1. Experimental Comparison between Random and Dominant Initial Population

In this section, we analyze the influence of the dominant initial population on the
algorithm using the BAS-MPE algorithm of the dominant initial population and the random
initial population. In the case of (without) evidence, the experimental comparison is of the
logarithmic joint probability f for MPE in the Asia network, the Insurance network, the
Alarm network, and the Hailfinder network. The larger the value of f, the better the result
of the algorithm. The results are shown in Table 3.

Table 3. Comparison results of logarithmic joint probability under different initial population settings.

Network Rand Advantage Rand (E) Advantage (E)

Asia −0.5371 −0.5371 −0.2335 −0.2030
Insurance −5.7752 −3.3708 −6.2039 −3.9432

Alarm −4.8818 −1.3405 −6.3621 −1.3405
Hailfinder −17.2247 −15.3525 −18.3291 −14.5678

In Table 3, Rand indicates that the algorithm uses a random initial population without
evidence. Advantage demonstrates that the algorithm uses the dominant initial population
without evidence. Rand (E) indicates that the algorithm uses a random initial population
under two random pieces of evidence. Advantage (E) indicates that the algorithm uses the
dominant initial population under two random pieces of evidence.
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Table 3 shows that f from the BAS-MPE algorithm with Advantage or Advantage (E)
is larger than other algorithms with Rand or Rand (E), so it indicates that the results of the
BAS-MPE algorithm using the dominant initial population are better than those using the
random initial population. The BAS-MPE algorithm uses a chaotic strategy to increase the
population diversity of the previous algorithm and reduce the possibility of the algorithm
falling into the local optimum.

5.2. Experimental Comparison with Other Algorithms

This section uses the BAS-MPE algorithm, DOSI algorithm [23], ANT-MPE algo-
rithm [29], NGA algorithm [30], SLS algorithm [31], and DMVPSO algorithm [32] to com-
pare the average logarithmic joint probability f-av, maximum logarithmic joint probability
f-max, minimum logarithmic joint probability f-min, and running time t(s). Our test data
sets are derived from the Asia, Insurance, Alarm, and Hailfinder networks [23,31,38–40].
The results of the experiment are shown in Tables 4–7. We have made the contents of
Tables 4–7 into Figure 4 to more intuitively reflect the results of the algorithm comparison.

Table 4. Logarithmic joint probability and running time of each algorithm in the Asia network.

Algorithm f-Av f-Max f-Min t (s)

BAS-MPE −0.5371 −0.5371 −0.5371 0.86
ANT-MPE −0.5371 −0.5371 −0.5371 1.70

DOSI −0.5565 −0.5371 −0.5693 0.93
NGA −0.5371 −0.5371 −0.5371 1.57

DMVPSO −0.5829 −0.5371 −0.6127 1.25
SLS −0.5371 −0.5371 −0.5371 1.21

Table 5. Logarithmic joint probability and running time of each algorithm in the Insurance network.

Algorithm f-Av f-Max f-Min t (s)

BAS-MPE −3.9205 −3.3708 −4.0628 11.87
ANT-MPE −7.3592 −6.9830 −7.9629 21.26

DOSI −9.2839 −8.7931 −11.2709 16.76
NGA −4.2210 −4.1052 −4.4928 35.77

DMVPSO −8.5577 −6.9991 −12.2983 18.93
SLS −4.5824 −3.6979 −5.8406 37.98

Table 6. Logarithmic joint probability and running time of each algorithm in the Alarm network.

Algorithm f-Av f-Max f-Min t (s)

BAS-MPE −1.6908 −1.3405 −1.8846 19.01
ANT-MPE −2.9151 −1.9913 −3.5490 39.93

DOSI −1.7079 −1.5964 −2.0034 27.38
NGA −2.5826 −1.8929 −2.6637 42.47

DMVPSO −1.9500 −1.7317 −2.5379 35.57
SLS −1.9713 −1.8711 −2.8853 33.42

Table 7. Logarithmic joint probability and running time of each algorithm in the Hailfinder network.

Algorithm f-Av f-Max f-Min t (s)

BAS-MPE −20.7535 −15.3524 −22.7938 37.29
ANT-MPE −30.6043 −24.0157 −33.6972 66.11

DOSI −50.2858 −46.8836 −57.9420 40.50
NGA −90.2771 −64.2572 −110.9722 46.76

DMVPSO −136.7425 −110.2583 −155.8347 42.68
SLS −144.6733 −129.6434 −176.7300 55.27
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Figure 4. Experimental comparison results of the average logarithmic joint probability f-av, maximum
logarithmic joint probability f-max, minimum logarithmic joint probability f-min, and running time
t. (a) The average logarithmic joint probability f-av; (b) the maximum logarithmic joint probability
f-max; (c) the minimum logarithmic joint probability f-min; (d) the running time t.

For the DOSI algorithm [23], the number of particles in each swarm was set to 20, and
σ was set to 0.2, which is an adjusting parameter. Other settings are consistent with the
particle swarm optimization settings in the DMVPSO algorithm [32]. In the ANT-MPE
algorithm [29], we used the most appropriate parameter setting from its conclusion. The
parameter settings mainly include the weight of pheromone trails, which is 1, the weight of
the local heuristic function, which is 5, and the skewness degree, which is 0.1. For the NGA
algorithm [30], we still use the parameter settings of the original algorithm. The crossover
rate is 1.0 and the mutation rate is 0.06. The SLS algorithm [31] is a variant of a random
combination greedy search algorithm, which does not have the characteristics of selection
adaptation. So, there is no process of parameter setting. For the DMVPSO algorithm [32],
we use the parameter setting of the original algorithm with the learning factors of 2. A
discrete control parameter of 0.2 is proposed in this paper. Other parameters, including
inertia weight, are obtained adaptively and do not need to be set. The population size is
100, and the number of iterations is 100. In addition to some basic default settings, their
parameter settings are the best settings proved by experiments.

Table 4 and Figure 4a–c show that the BAS-MPE algorithm, the ANT-MPE algorithm,
the NGA algorithm, and the SLS algorithm can obtain the same maximum logarithmic
joint probability of MPE in the Asia network. Their maximum logarithmic joint probability
equals the minimum logarithmic joint probability, indicating that several algorithms are
more stable in small networks. The average logarithmic joint probability obtained by the
DOSI algorithm and the DMVPSO algorithm is poor, and the maximum logarithmic joint
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probability and the minimum logarithmic joint probability are not equal, indicating that
the stability of the two algorithms is poor.

Table 5 and Figure 4a–c show that in the Insurance network, the average logarithmic
joint probability, the maximum logarithmic joint probability, and the minimum logarithmic
joint probability of the BAS-MPE algorithm are better than the other five algorithms. This
is because the BAS-MPE algorithm improves the search behavior and uses the direction
combination sequence as the guidance for generating the required coordinates. The algo-
rithm has multi-directionality in the search process, which makes up for the problem that
the algorithm selects the direction individually and avoids the algorithm falling into the
local optimum early, so the algorithm finally gets the better results.

Figure 4d shows that the BAS-MPE algorithm runs with less time than the other five
algorithms, which indicates that the BAS-MPE algorithm is more efficient in small networks
(the Asia network and the Insurance network).

Table 6 and Figure 4a–c show that in the Alarm network, the average logarithmic
joint probability of the BAS-MPE algorithm and the DOSI algorithm is close, and both are
larger than the other four algorithms. The maximum logarithmic joint probability and
the minimum logarithmic joint probability of the DOSI algorithm are smaller than the
BAS-MPE algorithm, indicating that the DOSI algorithm has a relatively large range of
solution fluctuations. In contrast, the BAS-MPE algorithm obtains better results with a
smaller range of solution fluctuations.

Table 7 and Figure 4a–d show that in the Hailfinder network, the results of the BAS-
MPE algorithm are far superior to the NGA algorithm, the DMVPSO algorithm, and the
SLS algorithm. When the three algorithms are in a large number of network nodes, the
search scope of the improved strategy in the previous generation is smaller, and the running
time is longer, leading to the algorithm’s lower efficiency. The adaptive dynamic parameter
of the BAS-MPE algorithm makes the detection behavior of the algorithm more effective,
the relationship between the global and the local well balanced, the update speed of the
individual population improved, the running time reduced, and the optimization efficiency
increased.

Each algorithm calculates the most probable explanation of the top k logarithmic joint
probability k-MPE (k = 2, 4, 6, 8) in four standard networks without evidence. We calculate
its average logarithmic joint probability f*. Since f* is a negative value, f* takes the absolute
value |f*| for comparison (the smaller its value |f*|, the better the algorithm performance),
and the experimental results are shown in Figures 5 and 6.

Processes 2023, 11, x FOR PEER REVIEW 18 of 24 
 

 

  
(c) (d) 

Figure 4. Experimental comparison results of the average logarithmic joint probability f-av, maxi-
mum logarithmic joint probability f-max, minimum logarithmic joint probability f-min, and running 
time t. (a) The average logarithmic joint probability f-av; (b) the maximum logarithmic joint proba-
bility f-max; (c) the minimum logarithmic joint probability f-min; (d) the running time t. 

Each algorithm calculates the most probable explanation of the top k logarithmic joint 
probability k-MPE (k = 2, 4, 6, 8) in four standard networks without evidence. We calculate 
its average logarithmic joint probability f*. Since f* is a negative value, f* takes the absolute 
value |f*| for comparison (the smaller its value |f*|, the better the algorithm perfor-
mance), and the experimental results are shown in Figures 5 and 6. 

 
(a) (b) 

Figure 5. Experimental comparison results of |f*| in the Asia network and the Insurance network. 
(a) |f*| in the Asia network; (b) |f*| in the Insurance network. 

Figure 5a shows that in the Asia network, the absolute value of the logarithmic joint 
probability of 2-MPE, 6-MPE, and 8-MPE of the BAS-MPE algorithm is the smallest among 
the five algorithms. When the 4-MPE is solved, the absolute value of the logarithmic joint 
probability of the BAS-MPE algorithm is slightly larger than the ANT-MPE algorithm. The 
ANT-MPE algorithm establishes the ant colony pheromone feedback mechanism and the 
ant decision table well in the algorithm construction, but the random initial population of 
the algorithm makes the range of the previous search small, which constantly affects the 
optimization domain of the algorithm and results in poor overall performance of the al-
gorithm. The BAS-MPE algorithm has the best optimization effect compared to the other 
four algorithms. The algorithm uses the adaptive dynamic parameter to adjust the step 
size of the detection behavior. It increases the step size when detecting that the current 

2-MPE 4-MPE 6-MPE 8-MPE
0

2

4

6

8

10

12

|
f*
|

 

 
BAS-MPE
ANT-MPE
DOSI
NGA
DMVPSO

2-MPE 4-MPE 6-MPE 8-MPE
0

50

100

150

200

|
f*
|

 

 

Figure 5. Experimental comparison results of |f*| in the Asia network and the Insurance network.
(a) |f*| in the Asia network; (b) |f*| in the Insurance network.



Processes 2023, 11, 3099 18 of 23

Processes 2023, 11, x FOR PEER REVIEW 19 of 24 
 

 

overall horizontal fitness is at a poor level, which helps the algorithm to jump out of the 
current local optimum. In the case of ensuring the convergence speed of the algorithm, 
the ability of global optimization of the algorithm is enhanced. 

Figure 5b shows that in the Insurance network, the BAS-MPE algorithm has a lower 
absolute value of logarithmic joint probability when searching for MPE, which shows that 
when the overall fitness of the algorithm is the most searching after generation, the level 
is higher than the other four algorithms. When solving 2-MPE and 4-MPE, the results of 
the DOSI algorithm are close to the BAS-MPE algorithm. Because the population of the 
particle swarming optimization framework of the DOI algorithm increases the competi-
tion among populations, it has a good preference when selecting individuals, but the algo-
rithm needs more group competition, which affects the efficiency of the algorithm. The im-
proved search behavior and detection behavior of the BAS-MPE algorithm enable all indi-
viduals to balance the global search and local development of the algorithm without the 
need for group competition, which improves the optimization efficiency of the algorithm. 

 
(a) (b) 

Figure 6. Experimental comparison results of |f*| in the Alarm network and the Hailfinder network. 
(a) |f*| in the Alarm network; (b) |f*| in the the Hailfinder network. 

Figure 6a shows that the results of the five algorithms in the Alarm are similar at solving 
2-MPE and 4-MPE. As the number of probable explanations to be solved increases, the BAS-
MPE and DOSI algorithms show better results. The optimal individuals of the NGA algo-
rithm, the DMVPS algorithm, and the ANT-MPE algorithm are always in rapid evolution 
when looking for probable explanations. In contrast, other individuals are slow to evolve, and 
the algorithm cannot get lower. When looking for more probable explanations, the algorithm 
cannot obtain a lower absolute value of the logarithm joint probability, and the overall fitness 
of the probable explanations is lower. When looking for 8-MPE, the logarithmic joint proba-
bility of the BAS-MPE algorithm has the lowest absolute value, indicating that the algorithm 
can find the better domain value of a higher-level solution than similar algorithms. 

Figure 6b shows that the absolute value of the logarithmic joint probability of the 
BAS-MPE algorithm in the Hailfinder network is smaller than the other four algorithms. 
When solving 2-MPE and 4-MPE, the BAS-MPE algorithm, the ANT-MPE algorithm, and 
the DOSI algorithm can achieve the same logarithmic joint probability absolute value 
level. But with the number of probable explanations increasing, the BAS-MPE algorithm 
has a higher fitness level than the ANT-MPE and DOSI algorithms. When solving 6-MPE 
and 8-MPE, the fitness level of the NGA algorithm and DMVPSO algorithm is rapidly 
reduced, indicating that these two algorithms are unsuitable for finding more probable 
explanations of large networks, and the BAS-MPE algorithm can find lower pairs. The 
search efficiency of the BAS-MPE algorithm is higher than other similar algorithms. 

2-MPE 4-MPE 6-MPE 8-MPE 0 

5 

10 

15 

20 

25 

30 

|
f
*
| 

  

  

2-MPE 4-MPE 6-MPE 8-MPE 0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

|
f
*
| 

  

  BAS-MPE 
ANT-MPE 
DOSI 
NGA 
DMVPSO 

Figure 6. Experimental comparison results of |f*| in the Alarm network and the Hailfinder network.
(a) |f*| in the Alarm network; (b) |f*| in the the Hailfinder network.

Figure 5a shows that in the Asia network, the absolute value of the logarithmic joint
probability of 2-MPE, 6-MPE, and 8-MPE of the BAS-MPE algorithm is the smallest among
the five algorithms. When the 4-MPE is solved, the absolute value of the logarithmic joint
probability of the BAS-MPE algorithm is slightly larger than the ANT-MPE algorithm. The
ANT-MPE algorithm establishes the ant colony pheromone feedback mechanism and the
ant decision table well in the algorithm construction, but the random initial population
of the algorithm makes the range of the previous search small, which constantly affects
the optimization domain of the algorithm and results in poor overall performance of the
algorithm. The BAS-MPE algorithm has the best optimization effect compared to the other
four algorithms. The algorithm uses the adaptive dynamic parameter to adjust the step
size of the detection behavior. It increases the step size when detecting that the current
overall horizontal fitness is at a poor level, which helps the algorithm to jump out of the
current local optimum. In the case of ensuring the convergence speed of the algorithm, the
ability of global optimization of the algorithm is enhanced.

Figure 5b shows that in the Insurance network, the BAS-MPE algorithm has a lower
absolute value of logarithmic joint probability when searching for MPE, which shows that
when the overall fitness of the algorithm is the most searching after generation, the level
is higher than the other four algorithms. When solving 2-MPE and 4-MPE, the results of
the DOSI algorithm are close to the BAS-MPE algorithm. Because the population of the
particle swarming optimization framework of the DOI algorithm increases the competition
among populations, it has a good preference when selecting individuals, but the algorithm
needs more group competition, which affects the efficiency of the algorithm. The improved
search behavior and detection behavior of the BAS-MPE algorithm enable all individuals
to balance the global search and local development of the algorithm without the need for
group competition, which improves the optimization efficiency of the algorithm.

Figure 6a shows that the results of the five algorithms in the Alarm are similar at
solving 2-MPE and 4-MPE. As the number of probable explanations to be solved increases,
the BAS-MPE and DOSI algorithms show better results. The optimal individuals of the
NGA algorithm, the DMVPS algorithm, and the ANT-MPE algorithm are always in rapid
evolution when looking for probable explanations. In contrast, other individuals are slow to
evolve, and the algorithm cannot get lower. When looking for more probable explanations,
the algorithm cannot obtain a lower absolute value of the logarithm joint probability, and
the overall fitness of the probable explanations is lower. When looking for 8-MPE, the
logarithmic joint probability of the BAS-MPE algorithm has the lowest absolute value,
indicating that the algorithm can find the better domain value of a higher-level solution
than similar algorithms.
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Figure 6b shows that the absolute value of the logarithmic joint probability of the
BAS-MPE algorithm in the Hailfinder network is smaller than the other four algorithms.
When solving 2-MPE and 4-MPE, the BAS-MPE algorithm, the ANT-MPE algorithm, and
the DOSI algorithm can achieve the same logarithmic joint probability absolute value level.
But with the number of probable explanations increasing, the BAS-MPE algorithm has a
higher fitness level than the ANT-MPE and DOSI algorithms. When solving 6-MPE and
8-MPE, the fitness level of the NGA algorithm and DMVPSO algorithm is rapidly reduced,
indicating that these two algorithms are unsuitable for finding more probable explanations
of large networks, and the BAS-MPE algorithm can find lower pairs. The search efficiency
of the BAS-MPE algorithm is higher than other similar algorithms.

5.3. An Example of Optimizing Process Parameters of the Spindle Process of Universal CNC
Machine Tool CY-K510

In this section, we use the process parameter optimization model established in
Section 3.6 for actual experimental verification.

We collected data on the quality of the tested objects and their corresponding process
parameters for the spindle NPH02051 of the universal CNC machine tool CK-Y510. We
discretized each quality and process parameter data to them adapt to data modeling.
Figure 7 shows the universal CNC machine tool CY-K510 and its spindle NPH02051.
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Figure 7. The universal CNC machine tool CY-K510 and its spindle NPH02051. (a) The universal
CNC machine tool CY-K510; (b) the spindle NPH02051 of CY-K510.

Table 8 shows the process parameter optimization model, which includes the following
parameters. The cutting tool model, size, material, and structure for specific process steps
and tasks in the machining process are basically fixed configurations. Therefore, the
adjustment and optimization of cutting speed, feed amount, and cutting depth during
the cutting process will affect the final processing quality. The optimization of process
parameters in this study includes the calculation of the optimization range of cutting speed
Vc, feed rate fz, and depth of cutting ap. The cutting speed Vc =

πdn
1000 is determined by the

rotational speed n and the tool diameter d, while the feed rate fz =
Vf
nz is determined by the

feed speed Vf , the number of gears z, and the rotational speed n; depth of cutting ap can be
directly adjusted.
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Table 8. The description of process parameters.

Process Parameters Composition

Cutting tool

Model
Size

Material
Structure

Cutting speed Rotational speed
Tool diameter

Feed rate
Feed speed

The number of gears
Rotational speed

Cutting depth /

The study used data from the spindle NPH02051 of CY-K510 regarding process pa-
rameters (which include the three cutting process parameters: cutting speed, feed rate,
and depth of cutting), as well as corresponding machining quality data. The optimal
range of process parameters is based on the cutting speed, feed rate, and cutting depth
corresponding to the maximum joint probability P in the most probable explanation.

Table 9 records the process parameter values of the following seven processing steps
before and after optimization using the process parameter optimization model and the
corresponding joint probabilities of the most probable explanation. The process parameter
values after optimization using the process parameter model are the average values of
the output of running 100 experiments. In Table 9, the values (old, new) of the process
parameters before and after optimization are expressed as follows: old represents the
value of the process parameter before optimization and new represents the value of the
process parameter after optimization. It can be seen from Table 9 that the values of the
process parameters have changed before and after optimization. Next, we used the process
parameter values before and after optimization using the process parameter model in
Table 9 as the process input to evaluate the quality results in actual processing.

Table 9. Comparison of process parameter values before and after process optimization.

Work Step Operation P d
(mm)

n
(Old, New)

(r/min)
z

Vf
(Old, New)

(mm/f)

ap
(Old, New)

(mm)

Cutting cylindrical machining
according to size Φ105h6 by lathe. 0.4516 105

(Fixed value) 760, 770 1
(Fixed value) 0.1, 0.12 0.6, 0.4

Drill holes according to size Φ85. 0.2518 85
(Fixed value) 380, 360 1

(Fixed value) 0.09, 0.1 0.8, 0.7

Cutting cylindrical machining
according to size Φ110h6 by lathe and
add a margin of 20 mm for processing.

0.1921 110
(Fixed value) 270, 280 1

(Fixed value) 0.06, 0.08 0.9, 0.6

Cutting cylindrical machining
according to size Φ110h6 by lathe. 0.2934 110

(Fixed value) 300, 280 1
(Fixed value) 0.08, 0.07 0.3, 0.25

Deepen the hole according to
dimension Φ82 to half the

spindle length.
0.6425 82

(Fixed value) 610, 630 1
(Fixed value) 0.1, 0.11 0.4, 0.3

Expand the range of the hole from
Φ23.8h8 to Φ23. 0.2930 23.6

(Fixed value) 670, 680 1
(Fixed value) 0.14, 0.16 0.35, 0.2

The workbench mills 16N9 keyway at
a 90◦ working angle. 0.5546 14

(Fixed value) 2000, 1900 1
(Fixed value) 0.05, 0.04 0.4, 0.25
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We used the process parameters to conduct a machining experiment on the CY com-
pany’s spindle production line experimental platform. We conducted 100 experimental
machining tests, measured the machining quality of the following seven machining work
steps, and compared them with the original process parameters. The average quality results
were compared, and the comparison results are shown in Table 10.

Table 10. The percentage of improvement results for each work step before and after process optimization.

Work Step Operation Quality Improvement Results

Cutting cylindrical machining according to size Φ105h6
by lathe. 1.15%

Drill holes according to size Φ85. 0.95%

Cutting cylindrical machining according to size Φ110h6
by lathe and add a margin of 20 mm for processing. 0.23%

Cutting cylindrical machining according to size Φ110h6
by lathe. 2.18%

Deepen the hole according to dimension Φ82 to half the
spindle length. 1.6%

Expand the range of the hole from Φ23.8h8 to Φ23. 0.27%

The workbench mills 16N9 keyway at a 90◦

working angle. 0.59%

Table 10 shows the optimization results of the process parameters validated on the
machining test bench, with improved quality results compared to the measured results.
The percentage increase is between 0.23% and 2.18%.

6. Conclusions

This paper proposes a most probable explanation algorithm based on an improved
beetle antennae search algorithm (BAS-MPE algorithm), which is used to solve the problems
of algorithm optimization efficiency being poor and easily falling into local optimum. The
BAS-MPE algorithm establishes the dominant initial population by introducing a chaotic
strategy, which effectively increases the population diversity. At the same time, the direction
sequence is guided as the direction of the individual, avoiding the algorithm falling into
the local optimal optimum. The algorithm introduces the adaptive dynamic parameter to
adjust the moving step size of the beetle, effectively balances the global and local search
relationship, and finds the most probable global explanation by loop iteration. This paper
uses the convergence criterion to prove that the BAS-MPE algorithm has good convergence.
The results show that the BAS-MPE algorithm can find the most probable explanation
of Bayesian networks in the four standard networks by the improved beetle antennae
search algorithm. The efficiency and results are better than other similar algorithms
and the BAS-MPE algorithm can effectively avoid MPE falling into local optimum. The
proposed BAS-MPE algorithm was used to optimize the spindle processing parameters of
the universal CNC machine tool CY-K510, and the optimization results were obtained. The
optimization results were applied to actual processing experiments, and the quality results
were all improved. In the future, the optimization method of CNC machining process
parameters studied in this article (optimizing cutting speed, feed speed, and cutting depth
to improve machining quality) can be used to improve the ultimate accuracy of industrial
mother machines, which is very meaningful. The BAS-MPE used in this article can not
only optimize the quality of a single objective but can also be extended to multi-objective
optimization and to consider more restrictions. Therefore, the comprehensive consideration
of the optimization of process parameters will be further studied.
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