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Abstract: Organic geochemistry experiments, X-ray diffraction (XRD), field emission scanning elec-
tron microscopy (FE-SEM), N2 adsorption, CO2 adsorption, and two-dimensional nuclear magnetic
resonance (2D NMR) were performed on ten Chang 7 shale samples (Longdong area, Ordos Basin)
to elucidate their pore structure and the characteristics of oil occurrence. Moreover, the factors
influencing free oil were discussed, and an occurrence model was established. FE-SEM analysis
reveals that the pore types include interparticle pores, intraplatelet pores within clay aggregates,
rare fracture pores, and organic matter (OM) pores. The pores are predominantly slit-shaped. The
development of micropores was mainly contributed to by OM. Quartz and clay minerals influence
the development of macropores and mesopores, feldspar mainly controls macropore development,
and pyrite most strongly affects micropore development. Micropores and mesopores constitute the
main total pore specific surface area, while mesopores and macropores are the main contributors to
the total pore volume. Pores > 2 nm are the main storage spaces for shale oil, and free oil mainly
occurs in pores > 20 nm. Adsorbed oil and free oil were assessed by NMR T1–T2 mapping. The
adsorbed oil signal intensities range from 7.5–23.4 a.u. per g of rock, and the free oil signal intensities
range from 4.4–23.2 a.u. per g of rock. The free oil proportions are 15.9–70.6% (average of 44.2%). The
free oil proportion is negatively correlated with the clay mineral content and total organic carbon
(TOC) content but positively correlated with the saturated hydrocarbon content and volume of pores
> 20 nm. The results of this study could help optimize favorable shale oil target areas.

Keywords: shale oil; Chang 7 member; oil-bearing properties; mobility; Ordos Basin

1. Introduction

Due to its enormous resources, shale oil has attracted worldwide attention and has
gradually changed the strategic pattern of world energy resources [1–6]. Shale oil primarily
exists in the micro/nanopores of shale in the form of adsorbed and free states. Adsorbed
oil is absorbed by OM or adsorbed on the surface of OM and mineral particles, while free
oil mostly appears in pores and fractures. Generally, free oil flows easily, while adsorbed
oil has more difficulty in flowing. The mobility of shale oil is directly influenced by the
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occurrence mechanism [7,8]. Therefore, investigating the pore structure and its internal
oil occurrence characteristics is significant for shale oil sweet spot prediction and resource
evaluation. Furthermore, the characteristics of shale oil occurrence are controlled by the
rock composition (i.e., minerals and kerogen), crude oil composition, and pore structure.

Several advanced techniques are used to characterize the pore structure of shale reser-
voirs, mainly including imaging methods and fluid injection methods. Imaging methods
are mostly used for the qualitative identification of organic and inorganic pore types, in-
cluding various high-resolution techniques such as computed tomography (CT), Ar ion
milling scanning electron microscopy (Ar-SEM), and field emission−/focused ion beam
SEM (FE-/FIB-SEM) [9–13]. Although the combination of FIB-SEM and CT with 3D recon-
struction technology can help analyze the size distribution and topological characteristics
of pores and microfractures, there is a contradiction between representativeness and resolu-
tion [14]. Fluid injection methods can quantitatively characterize the pore size distribution
of porous media, such as gas adsorption (CO2 and N2 adsorption), nuclear magnetic reso-
nance (NMR), and mercury intrusion porosimetry (MIP) [15–18]. N2 adsorption is used to
characterize pores ranging in size from 2 to 200 nm, while CO2 adsorption can characterize
only pores < 2 nm. MIP can obtain the throat size and NMR can effectively characterize
almost all pore information. However, other experiments are needed to convert T2 into a
pore size distribution (PSD). Hence, it is essential to employ multiple techniques to fully
reveal the pore structure.

Methods for studying the characteristics of occurrence can be divided into direct
methods and indirect methods. Direct methods include cryo-SEM, environmental SEM
(ESEM), FE-SEM (which is based on the electron beam charging effect), laser confocal
scanning, CT scanning, and energy dispersive spectroscopy [19–24]. Indirect methods
include Rock–Eval pyrolysis, solvent extraction, pore size analysis before and after extrac-
tion, and 2D NMR. The direct method can directly observe the state of the residual oil and
identify its occurrence form and location. However, the direct method is only a qualitative
observation. The indirect method can quantitatively characterize the pore size and content
of shale oil in various occurrence states. Bai et al. [8] reported that solvent extraction and
Rock–Eval pyrolysis can measure traditional geochemical parameters to characterize the
mobility of shale oil. However, dissolved organic matter (DOM) characterized by solvent
extraction excludes low carbon-number hydrocarbons. Different solvents were used to
study mobile hydrocarbons by Qian et al. [25]. Zhang et al. [26] conducted cold extraction
of shale with multiple particle sizes to determine the shale oil. Li et al. [27] used multi-
particle and multipolar extraction methods to investigate the free oil content in different
fine-grained sedimentary rocks. Rock–Eval pyrolysis was used to assess the contents of
the free hydrocarbon content (S1) and the cracking hydrocarbons (S2). On the basis of
gas chromatography results, a pyrolysis product before 350 ◦C was considered free oil.
Jarvie [2,3] proposed using the oil saturation index (OSI, 100 × S1/TOC) to indicate shale
oil mobility. Jarvie believed that OSI values > 100 mg/g indicate that shale oil has good
mobility. However, this conclusion is practical for mature marine shale in the USA but may
not be applicable to continental shale in other regions. Xue et al. [28] defined the lower
limit of shale oil mobility in the Qingshankou Formation as 75 mg/g (OSI), and Huang
et al. [29] defined the lower limit of shale oil mobility of Chang 7 as 70 mg/g (OSI). The
pore sizes in the extracted and unextracted samples can be compared, and the presence
of shale oil in pores of various sizes can be characterized [30]. However, the clay minerals
in some samples may expand due to solvent extraction, resulting in changes in the pore
structure [31]. Different hydrogen-containing components can be distinguished by the
T1–T2 map, and kerogen, adsorbed and free oil can be identified [8,32,33].

In this work, Chang 7 shale samples were collected from the Longdong area in the
Ordos Basin. The petrology and organic geochemistry characteristics were analyzed by
thin section, X-ray diffraction (XRD), and geochemistry experiments. Furthermore, the pore
structure and oil content were investigated by FE-SEM, CO2 adsorption, N2 adsorption,
and 2D NMR. Finally, relationships among OM abundance, petrological components, pore
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structure, crude oil composition, and free oil content were discussed, and the modes of
occurrence were preliminarily established.

2. Geological Setting

The Ordos Basin, belonging to the western part of the North China Craton, is a crucial
petroleum basin in China composed of the Jinxi Fault and Fold Belt, Western Margin Thrust
Belt, Weibei Uplift, Yimeng Uplift, Tianhuan Depression, and Yishan Slope (Figure 1a,b).
During the deposition period of the Triassic Yanchang Formation, a set of terrigenous clastic
rocks was developed and divided into 10 sections from bottom to top, named Chang 10 to
Chang 1 [34,35] (Figure 1c). In the Chang 7 period, strong tectonic movement led to the
rapid expansion of the lake basin. The gray and black mud shale was deposited in a large
area during the Chang 7 member [36,37].
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Figure 1. (a) Location of the study area; (b) structure units of the study area; (c) comprehensive strati-
graphic column of the Triassic Yanchang Formation in the Ordos Basin (modified from Yang et al. [34]
and Sun et al. [35]).

3. Materials and Methods
3.1. Samples

In total, 159 TOC and Rock–Eval pyrolysis data of the Chang 7 core samples were
assembled from the PetroChina Changqing Oilfield Company. In the study area, ten Chang
7 shale samples (Figure 1b) were collected from boreholes. A variety of experiments were
performed on the selected samples, including thin section, XRD, FE-SEM, TOC, Rock–
Eval, solvent extraction, Vitrinite reflectance (Ro), maceral composition analysis, and gas
chromatography–mass spectrometry (GC–MS), and six of the samples were analyzed by
CO2 adsorption, N2 adsorption, and 2D NMR.
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3.2. XRD and FE-SEM

XRD analysis was performed using a Bruker AXS D8 Discover X-ray diffractometer to
analyze the mineral composition based on the SY/T 5163-2010 standard formulated by the
Chinese Ministry of Education. FE-SEM samples were observed by an FEI Quantum model
450. The argon ion grinding surfaces were prepared with an Ilion+II 697C argon ion mill.
The sample was made into a block with a width of 1 cm and a thickness of 0.5 cm along the
direction perpendicular to the bedding.

3.3. Gas Adsorption and NMR Measurements

Various gas adsorption experiments were employed to characterize pores of varying
sizes. The CO2 and N2 adsorption analyses were conducted using an ASAP 2460 and
Micro Active for ASAP2020, respectively. The samples were pulverized to approximately
100 mesh in an agate mortar. The relative pressure (P/P0) values for CO2 adsorption
were in the range of 0.0001–0.032, and those for N2 adsorption were 0.009–0.995. NMR
experiments were conducted using a Niumag MesoMR23-060H-I. The parameter settings
were as follows: echo time (TE), 0.06 ms; number of echoes, 5000; number of scans (NS), 8;
and waiting time, 1000 ms.

3.4. TOC Analysis, Rock–Eval, Ro, and GC–MS

TOC analysis was carried out on the powdered samples (about 100 mesh) using a
LECO CS230 analyzer. Dilute hydrochloric acid was added to remove inorganic carbon. A
Rock–Eval OGE-VI instrument was used to pyrolyze the crushed powder. The measured
parameters include free hydrocarbons (S1), residual hydrocarbons (S2), and temperature
of maximum pyrolysis yield (Tmax). The identification of rock slices was performed on a
Leica Leitz DMR XP polarizing microscope with an objective lens multiple of 10×–100×.
Ro determination and organic petrological observations were performed on a Zeiss Axio
Scope A1/J&M Msp200 digital maceral analysis system, the shale was cut into cubic
blocks to a width of about 2 cm, and epoxy resin was used to solidify the sample into a
lightweight sheet, which was polished to obtain a smooth surface for testing. The light
source wavelength was 546 ± 5 nm. Powder samples were extracted using a Soxhlet
extractor > 72 h. The extract was separated into saturated hydrocarbons (n-alkanes+ i-
alkanes+ cycloalkanes), aromatic hydrocarbons (BTEX + naphtalenes), non-hydrocarbon
(sulfur, nitrogen, oxygen compounds) and asphaltenes [38]. The asphalt was separated with
cold hexane precipitation and weighed. Deasphalted fractions were eluted with hexane
to remove saturated hydrocarbon fractions, petroleum ether: DCM (9:1, v/v) to remove
aromatic fractions, and chloroform to remove non-hydrocarbon fractions, respectively, on
a silica gel/alumina column. An Agilent 6890 gas chromatograph was connected to the
Agilent 5975 MSD system.

4. Results
4.1. Petrology and Organic Geochemistry Characteristics
4.1.1. Mineralogy

The samples had abundant quartz, clay minerals, feldspar, and pyrite, with contents of
17.4–66.5 wt% (mean of 36.5 wt%), 17.0–43.5 wt% (mean of 31.2 wt%), 3.8–34.8 wt% (average
of 15.3 wt%), and 1.6–37.6 wt% (average of 13.3%), respectively (Figure 2a), according to the
XRD analysis. Clay minerals were mainly illite/smectite (I/S) mixed layers, with contents
of 25.0–82.0% (mean of 54.8%), followed by illite (16.0–45.0%). The average contents of
chlorite and kaolinite were 5.7% and 9.5%, respectively (Figure 2b). The content of highly
brittle minerals was an important indicator for effective fracturing. In this study, quartz,
feldspar, carbonate minerals, and pyrite are considered brittle minerals [39]. The contents
of brittle minerals was in the range of 56.7–83.1% (mean of 9.4%), similar to the shale from
the Qingshankou Formation [39].
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Figure 2. Mineral composition (a,b) and ternary diagram (c) of Chang 7 shale.

4.1.2. Shale Lithofacies Identification

Referring to the classification of shale lithofacies by Wang et al. [40] and Xi et al. [41],
the samples were mainly OM-rich laminated felsic shale and OM-rich massive felsic mud-
stone (Figure 2c).

The OM-rich laminated felsic shales developed OM-rich lamina and felsic lamina
with local enrichment of pyrite, accompanied by some plastic deformation structures. The
OM-rich lamina is dark, with high OM amounts and a continuous horizontal layered
distribution. The thickness of a single lamina is approximately ten to hundreds of microns.
The felsic laminae are light in color and are also horizontally layered, with a single-layer
thickness of more than 100 microns. The vertical plastic deformation structures reach
200 microns (Figure 3a–d).
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Figure 3. Thin section photographs: (a) N3 (Sample id), dark layer of organic matter, bright particles
of pyrite (white arrow); (b) N8 (Sample id), light area are silty laminae; (c) N9 (Sample id), dark layer
of organic matter, bright particles of pyrite, plastic deformation structures (white arrow); (d) N15
(Sample id), dark layer of organic matter, light area of silty laminae; (e,f) N31 and N44 (Sample id),
dark layer containing mud stripe (red zone); (a–d) laminar; (e,f) massive. Cross-polarized light.

OM-rich massive felsic mudstones mainly contain clay minerals and a small quantity
of fine silt, which are argillaceous debris structures. OM is scattered in the mudstone. The
argillaceous bands can be observed, with thicknesses of >100 microns (Figure 3e,f).

4.1.3. Organic Petrology

Organic petrologic characteristics objectively reflect the biogenic input characteristics
of OM in source rocks. The macerals in the study area are dominated by sapropelic groups,
indicating that the biological sources are mainly lower aquatic organisms such as algae.
Strawberry-like pyrite in the sample is scattered or aggregated (Figure 4), reflecting a
relatively quiet and reducing depositional environment [42]. These results demonstrate
that the Chang 7 shale has a strong hydrocarbon generation ability.
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Figure 4. Photomicrographs of the Chang 7 shale: (a,b) N3, pyrite, telalginite, lamalginite; (c,d) N8,
vitrinite, exsudatinite; (e,f) N9, pyrite, bituminite; (g,h) N15, vitrinite, bituminite; (i,j) N31, exsudati-
nite, liptodetrinite; (k,l) N44, vitrinite, exsudatinite. F = fluorescent light, R = reflected white light).

4.1.4. TOC, Rock–Eval Pyrolysis, Biomarker Characteristics, and Ro

The TOC values of the samples range from 0.15% to 37.40% (average of 7.21%), and
samples with TOC values > 5% account for 40%. The TOC values are higher than those of
other continental shales in China [43–46]. The hydrocarbon generation potential (S1 + S2)
varies from 0.17 mg/g to 122.19 mg/g (mean of 27.93 mg/g) (Figure 5a,b). The hydrogen
index (HI = 100 × S2/TOC) values vary between 69.2 mg/g TOC and 510.3 mg/g TOC
(mean of 266.7 mg/g TOC). Plots of S2 versus TOC and HI versus Tmax are used to assess
the types of OM [47]. Most data are in the regions belonging to type II1–II2 OM (Figure 5c,e).
The maturity of OM can be evaluated by Tmax, the biomarker parameters C29αββ/(αββ +
ααα) and C2920S/(20S + 20R), and Ro [38]. Tmax values range from 427 ◦C to 458 ◦C (mean
of 447 ◦C). The values of αββ/(αββ + ααα) and 20S/(20S + 20R) are two commonly used
maturity indicators for the isomerization of C29 steranes. Values of C29-20S/(20S + 20R)
and C29-αββ/(αββ + ααα) of less than 0.2 and 0.25 indicate the immature stage, values
less than 0.4 indicate the early mature stage, and values more than 0.4 indicate the mature
stage. Both C29-20S/(20S + 20R) and C29-αββ/(αββ + ααα) are in the range of 0.50–0.62.
Ro is also a classic parameter for assessing maturity. When the Ro value is ≤0.5%, OM is
in the immature stage; when Ro values are 0.5~0.8%, OM is in the early stage of maturity;
when Ro values are 0.8~1.2%, OM is in the middle of the mature stage; when Ro values are
1.2~1.6%, OM is at the end of the mature stage. Ro values are in the range of 0.8–1.2%. The
above parameters show that the samples are in a mature stage (Figure 5d–f, Table 1).
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S1 = free hydrocarbon, mg/g; S2 = residual hydrocarbon, mg/g; S3 = mg CO2/g; HI = hydro-
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Figure 5. Distribution frequency diagram of TOC and (S1 + S2) (a,b); plots of S2 versus TOC (c); HI
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Table 1. Geological and geochemical parameters of the Chang 7 shale.

No. Well Depth
(m)

DOM
(wt, %)

TOC
(wt, %) S1 S2 S3 OSI PI PC

(%) HI Tmax
(°C)

Ro
(%)

N3 Z251 1676.74 0.90 16.9 2.99 75.66 2.9 17.69 0.04 6.53 447.69 428 0.89
N8 B522 1953.47 0.66 19.8 3.57 32.00 4.17 18.03 0.1 2.95 161.62 450 1.12
N9 B522 1949.77 0.54 12.1 2.08 15.47 4.45 17.19 0.12 1.46 127.85 440 1.07
N15 L211 2356.35 0.66 7.4 1.19 15.81 7.6 15.99 0.07 1.41 212.50 447 /
N18 L211 2373.77 0.71 8.2 1.60 20.22 4.08 18.89 0.07 1.81 238.72 448 1.22
N31 W336 1977.00 0.34 4.3 1.55 13.54 2.32 36.05 0.1 1.25 314.88 445 1.12
N33 W336 2020.29 0.78 11.9 2.05 47.66 2.47 17.23 0.04 4.13 400.50 442 /
N37 W336 2061.69 0.67 1.9 1.26 6.54 2.4 68.11 0.16 0.65 353.51 445 1.09
N39 W336 2051.27 0.41 2.6 1.16 6.64 2.68 45.49 0.15 0.65 260.39 451 1.06
N44 L82 2181.60 0.19 2.21 0.95 2.85 1.64 42.99 0.25 0.32 128.96 457 1.11

S1 = free hydrocarbon, mg/g; S2 = residual hydrocarbon, mg/g; S3 = mg CO2/g; HI = hydrogen index, S2/TOC
× 100, mg/g TOC; OSI = oil saturation index, S1/TOC × 100, mg/g TOC, PI = production index, S1/(S1 + S2);
PC = pyrolyzable carbon, (S1 + S2) × 0.083 × 100%.
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4.2. Pore Characteristics
4.2.1. Pore Type Classification

According to the pore classification scheme of Loucks [10], the pore space of the Chang
7 shale samples is composed of intraplatelet pores within clay aggregates (IntraP pores),
interparticle pores (InterP pores), OM pores, and fracture pores (Figure 6). IntraP pores
were commonly surveyed in the Chang 7 shales, with curved and irregular shapes. The
aspect ratios of IntraP pores are mostly below 10:1. Moreover, the lengths of IntraP pores
can reach 600 nm, and the widths are generally less than 60 nm (Figure 6c,f,i). InterP pores
mainly reside between quartz and feldspar particles, with a maximum pore size of up to
several micrometers. Due to strong compaction and cementation, the distribution of InterP
pores is relatively isolated. The OM pores are dominated by shrinkage OM, which are in
the shape of curved lines. Shrinkage OM pores usually exist between OM and minerals
or within OM. The maximum width of the shrinkage OM pores can exceed 200 nm, and
the length can reach several microns (Figure 6g). Moreover, nearly circular or irregularly
shaped OM pores are observed within OM aggregates (Figure 6a,b,g), and the pore sizes
are mostly distributed from 10 to 300 nm.
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(d) N9, InterP pores; (e) N15, InterP pores; (f) N15, IntraP pores within clay aggregates; (g) N31,
fracture pores; (h,i) N44, IntraP pores within clay aggregates).
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4.2.2. Pore Distribution Characteristics

According to The International Union of Pure and Applied Chemistry (IUPAC), the
pores are divided by cutoffs of between 2 nm and 50 nm [48]. The CO2 adsorption curve
is a typical type I curve (Figure 7). The CO2 adsorption capacity increases rapidly with
pressure in the range of 0–0.007. At this stage, CO2 first enters larger pores for monolayer
adsorption. The adsorption rate of CO2 decreases gradually and then stabilizes at pressures
> 0.007. This phenomenon is due to multilayer adsorption in smaller pores [49,50].

The N2 adsorption curves are in line with the type IV isotherm, showing that there
is an open and continuous nanopore system. According to the classification of hysteresis
loop (HL) shapes [51,52] (Figure 8), the HLs of the Chang 7 shale samples are type H3 or a
transitional type between type H2 and type H3. These results demonstrate that the pore
shapes in the Chang 7 shales are controlled by slit-like pores, and some ink bottle-type
pores developed, consistent with the microscopic (Figure 6).
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The pore volume (PV) of the micropores ranges from 0.0012 to 0.0044 cm3/g (mean of
0.0028 cm3/g). The specific surface area (SSA) values of the micropores are in the range
of 3.68–14.36 m2/g (mean of 8.51 m2/g). The mesopore PVs of N2 adsorption range from
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0.0052 to 0.0130 cm3/g (mean of 0.0090 cm3/g). The SSA values of mesopores measured
by the BET method are in the range of 1.94–9.83 m2/g (mean of 4.62 m2/g). The PVs
of macropores range from 0.0036 to 0.0075 cm3/g (average of 0.0051 cm3/g). The SSA
values of macropores are in the range of 0.14–0.31 m2/g (average of 0.21 m2/g). The total
PVs range from 0.0129 to 0.0213 cm3/g (mean of 0.0169 cm3/g), and the total SSA values
range from 8.81 m2/g to 18.80 m2/g (average of 13.34 m2/g). The total PV and total SSA
values are significantly lower than the Nenjiang Formation shale and the Barnett shale in
North America, and slightly higher than the Dalong Formation shale from the Sichuan
Basin [43,53].

The PSD curve can provide important information, including the pore size range
and the contribution of different pores to total PV and SSA [50,54]. Quantitative char-
acterization of PSD can be ascertained by combining the adsorption results of N2 and
CO2 (Figures 9 and 10). The PSD shows the multipeak distribution. The main peaks are
distributed at 0.4~0.8 nm and 10~100 nm (Figures 9 and 10). Mesopores are the largest
contributor to PV, accounting for 53.2%, followed by macropores and micropores, which
account for 30.4% and 16.4%, respectively. The average contribution rate of micropores
to SSA is 63.8%, that of mesopores is 34.6%, and that of macropores is 1.6%, which all
decrease sequentially.

Processes 2023, 11, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 9. PV distribution with pore width determined from N2 and CO2 adsorption. 

 
Figure 10. SSA distribution with pore width determined from N2 and CO2 adsorption. 

4.3. Oil Content 
4.3.1. Geochemical Characteristics 

The contents of S1 range from 0.95 mg/g to 3.58 mg/g, with a mean of 1.84 mg/g. The 
percentages of chloroform bitumen “A” are 0.19–0.90%, with a mean of 0.58%. They are 
lower than those of the Shahejie Formation and the Lucaogou Formation and similar to 
those of the second member of the Kongdian Formation and the Qing 1 member [55]. The 
OSI values range from 16.0 mg/g to 68.1 mg/g (mean of 29.8 mg/g) and decrease with 
increasing TOC. The range of percentages of saturated hydrocarbons is 24.6–72.3%, the 
mean is 45.7%, and the range of aromatic hydrocarbon contents is 9.6–22.7%, with an av-
erage of 17.1% (Figure 11). These results are similar to those of the Shahejie Formation 
[55]. 

Figure 9. PV distribution with pore width determined from N2 and CO2 adsorption.

4.3. Oil Content
4.3.1. Geochemical Characteristics

The contents of S1 range from 0.95 mg/g to 3.58 mg/g, with a mean of 1.84 mg/g. The
percentages of chloroform bitumen “A” are 0.19–0.90%, with a mean of 0.58%. They are
lower than those of the Shahejie Formation and the Lucaogou Formation and similar to
those of the second member of the Kongdian Formation and the Qing 1 member [55]. The
OSI values range from 16.0 mg/g to 68.1 mg/g (mean of 29.8 mg/g) and decrease with in-
creasing TOC. The range of percentages of saturated hydrocarbons is 24.6–72.3%, the mean
is 45.7%, and the range of aromatic hydrocarbon contents is 9.6–22.7%, with an average of
17.1% (Figure 11). These results are similar to those of the Shahejie Formation [55].
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4.3.2. NMR T1–T2 Map

According to the cutoff times of T1 and T2, the NMR T1–T2 map was divided into
three regions: kerogen, adsorbed oil, and free oil [33]. The T1–T2 maps (Figure 12) were
compared with previous data. The cutoff values were determined: for 0 ms < T2 < 1 ms,
T1/T2 > 40 was defined as the range of adsorbed oil, and T2 > 1 ms, T1/T2 > 10 was defined
as the range of free oil. Furthermore, the NMR signal intensities of free oil and adsorbed oil
were extracted. The NMR signal intensities of total oil range from 17.5 to 35.2 a.u./g of rock,
with an average of 26.3 a.u./g of rock. The signal intensities of adsorbed oil range from 7.5
to 23.4 a.u./g of rock, and the proportion ranges from 29.4% to 84.0%, with a mean of 55.8%.
The signal intensities of free oil range from 4.4 to 23.2 a.u./g of rock, and the proportions
range from 15.9% to 70.6%, with an average of 44.2%. These values are higher than those in
other regions of China [55]. The signal intensity of the adsorbed oil has a good correlation
with DOM. In addition, the free oil has a good correlation with the OSI. These results show
that DOM is dominated by adsorbed oil, consistent with the geochemical characteristics
(Figure 13).
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5. Discussion
5.1. Effects of Composition on Pore Structure

In this work, the TOC content of six samples shows strong positive correlations with
the PV (Figure 14a, R2 = 0.55) and SSA (Figure 14b, R2 = 0.64) of the micropores, whereas
the TOC shows a negative relationship with the PV and SSA of mesopores and macropores.
The TOC content shows a strong positive correlation with the total PV (R2 = 0.87) and a
weak positive relationship with the total SSA (R2 = 0.13). The results indicate that the OM
pores in the Longdong area are mostly micropores, and the higher the TOC content, the
less developed the mesopores and macropores become, which is due to the low maturity
of OM.

Quartz has a negative relationship with the PV (R2 = 0.60) and SSA (R2 = 0.69) of
micropores, while quartz is well associated with the PV (R2 = 0.77) and SSA (R2 = 0.42) of
mesopores and the PV (R2 = 0.41) and SSA (R2 = 0.40) of macropores. Moreover, quartz
is positively correlated with the total PV (Figure 14c, R2 = 0.79) and negatively correlated
with the total SSA (Figure 14d, R2 = 0.11). The above relationship indicates that the higher
the quartz content is, the more macropores and mesopores there are. This is because a
high content of quartz, as a rigid mineral, promotes the conservation of primary pores.
Feldspar is well associated with the PV (R2 = 0.40) and SSA (R2 = 0.38) of macropores and
is negatively associated with the PVs and SSAs of mesopores and micropores (Figure 14e,f).
As a soluble mineral, the higher the feldspar content is, the more developed the dissolved
pores. The correlations between carbonate minerals and the PV and SSA are not significant
(R2 < 0.2), indicating that pores related to carbonate did not develop (Figure 14g,h). Pyrite
is well associated with the PV (R2 = 0.70) and SSA (R2 = 0.81) of micropores but negatively
correlated with the PVs (R2 = 0.50 and 0.45) and SSAs (R2 = 0.27 and 0.42) of mesopores
and macropores. Furthermore, pyrite is negatively correlated with the total PV (R2 = 0.58)
and positively correlated with the total SSA (R2 = 0.12) (Figure 14i,j). The development of
pyrite is closely related to micropores. The content of clay minerals is negatively associated
with the PV (R2 = 0.68) and SSA (R2 = 0.76) of micropores and positively correlated with
the PVs of macropores (R2 = 0.31) and mesopores (R2 = 0.52), indicating that the pores of
the related clay are mostly macropores and mesopores (Figure 14k–l).

In general, quartz and clay minerals mainly control the formation of macropores and
mesopores. Feldspar mainly controls macropores, while the development of micropores is
significantly influenced by pyrite and OM [53].

5.2. Pore Size Characteristics

The experimental data of CO2/N2 adsorption for the extracted and unextracted shale
samples were compared, and the pore size of shale oil occurrence was revealed. Figure 15
shows the PSDs of unextracted (black line) and extracted (green line) shale samples. When
the pore diameter exceeds 2 nm, the PV of the extracted samples significantly surpasses that
of the unextracted samples, indicating that shale oil mainly exists in pores larger than 2 nm.

5.3. Factors Influencing Free Oil
5.3.1. OM Abundance and Mineral Composition

There is a significant negative correlation between the proportion of free oil and the
TOC (Figure 16a). In particular, when the TOC > 7%, the ratio of free oil significantly
decreases. Due to the strong interaction between OM/kerogen and oil, a considerable
amount of oil is adsorbed and swelled by kerogen [56]. Thus, high OM abundance leads to
the poor mobility of shale oil.

Compared with other minerals, clay minerals have a higher crude oil adsorption
capacity [57,58]. Therefore, the stronger adsorption capacity of minerals to crude oil leads
to reduced oil mobility. The mineral effects are displayed in Figure 17. The proportion of
free oil has no obvious correlation with carbonate minerals (calcite + dolomite) and silicate
minerals (quartz + feldspar) and is negatively correlated with the clay mineral content
(Figure 16b–d).
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Figure 14. Relationships between multiple scales of PVs and SSAs with TOC and mineral contents.
(a) Relationships between multiple scales of PVs and TOC; (b) Relationships between multiple
scales of SSAs and TOC; (c) Relationships between multiple scales of PVs and quartz content;
(d) Relationships between multiple scales of SSAs and quartz content; (e) Relationships between
multiple scales of PVs and feldspar contents; (f) Relationships between multiple scales of SSAs and
feldspar contents; (g) Relationships between multiple scales of PVs and carbonate mineral content;
(h) Relationships between multiple scales of SSAs and carbonate mineral content; (i) Relationships
between multiple scales of PVs and pyrite content; (j) Relationships between multiple scales of
SSAs and pyrite content; (k) Relationships between multiple scales of PVs and clay mineral content;
(l) Relationships between multiple scales of SSAs and clay mineral content.
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5.3.2. Shale Oil Composition

The relationship between shale oil properties and free oil is also reflected in the
characteristics of the shale oil components. The viscosity of oil is inversely proportional to
the content of saturated hydrocarbons. Moreover, non-hydrocarbons and asphaltenes are
more easily adsorbed on the mineral surface, making the mineral surface lipophilic and
thus increasing the resistance of the flow of crude oil. In this work, the proportion of free
oil in Chang 7 shale oil is positively correlated with saturated hydrocarbons and negatively
correlated with the other components (Figure 17).

5.3.3. Pore Volume and Pore Surface Area

From the optical microscope fluorescence and SEM images, large amounts of algae,
bituminite, and exsudatinite are distributed in the InterP pores of the laminae, emitting
bright yellow fluorescence. Figure 18a shows that there is no obvious correlation between
the proportion of free oil and total PV. Thus, the relationship between PVs is larger than a
certain pore size (2, 5, 10, 15, 20, 30, 40, 70, and 90 nm). The proportion of free oil has the
highest correlation with PVs larger than 20 nm, suggesting that free oil mainly occurs in
pores larger than 20 nm (Figure 18c,d). The proportion of free oil is significantly negatively
correlated with the SSA (Figure 18b). This is mainly because the larger the SSA is, the more
adsorption sites there are on the pore surface, with a higher proportion of adsorbed oil [32].
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N9, N15, N31, N44.
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5.4. Modes of Occurrence of Shale Oil

Based on the above analysis, the adsorbed oil and free oil in Chang 7 shale oil have
different distributions for different pore sizes. The occurrence modes in various pores were
preliminarily established (Figure 19). The InterP pores are mainly macropores associated
with minerals, mainly containing free oil. Since the fracture pores are mainly mesopores to
macropores in size, the fracture pores mainly contain free oil. The pore size of the IntraP
pores can reach hundreds of nanometers, and the proportion of free oil gradually increases
with increasing pore size. For pores of the same size, the proportion of adsorbed oil in the
IntraP pores is higher than that in the InterP pores due to the strong adsorption capacity of
clay minerals. OM pores mainly contain adsorbed oil.
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6. Conclusions

(1) According to the analysis of the TOC, mineral composition, and rock structure, two
types of shale lithofacies are identified: OM-rich laminated felsic shale and OM-rich
massive felsic mudstone;

(2) The pore space is composed of IntraP pores, InterP pores, fracture pores, and OM
pores. The pore shape is predominantly slit-type pores. Micropore development
is primarily influenced by OM and pyrite. The development of macropores and
mesopores is influenced by quartz and clay minerals. Feldspar mainly controls
macropores;

(3) Based on the T1–T2 map, the free oil content was obtained, which has good consistency
with the OSI. The proportion of free oil is inversely correlated with the TOC and clay
mineral contents but positively related to the saturated hydrocarbon and PV values of
pores larger than 20 nm;

(4) The modes of shale oil occurrence in various pores were preliminarily established.
OM pores mainly contain adsorbed oil. InterP pores and fracture pores are mainly
occupied by free oil. The proportion of adsorbed oil in the IntraP pores is higher
than that in the InterP pores of the same size. These findings help us to preliminarily
understand the mode of shale oil occurrence. The next step involves quantitatively
characterizing the mode of shale oil occurrence.
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