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Abstract: In cyber–physical power systems (CPPSs), system collapse can occur as a result of a failure
in a particular component. In this paper, an approach is presented to build the load-capacity model
of CPPSs using the concept of electrical betweenness and information entropy, which takes into
account real-time node loads and the allocation of power and information flows within CPPSs. By
introducing an innovative load redistribution strategy and comparing it with conventional load
distribution strategies, the superior effectiveness of the proposed strategy in minimizing system
failures and averting system collapses has been demonstrated. The controllability of the system
after cascading failures under different coupling strategies and capacity parameters is investigated
through the analysis of different information network topologies and network parameters. It was
observed that CPPSs constructed using small-world networks, which couple high-degree nodes from
the information network to high-betweenness nodes from the power grid, exhibit improved resilience.
Furthermore, increasing the capacity parameter of the power network yields more favorable results
compared to increasing the capacity parameter of the information network. In addition, our research
results are validated using the IEEE 39-node system and the Chinese 132-node system.

Keywords: cyber–physical power system; network controllability; cascading failure; load redistribution;
coupling topology

1. Introduction

In recent years, Industry 4.0 has emerged as a fundamental concept in the new wave
of the industrial revolution. This revolutionary force has been instrumental in driving
the global manufacturing industry toward digital transformation and intelligent advance-
ment [1,2]. Inspired by the ideals of Industry 4.0, the smart grid has gradually embodied
comprehensive perception, intelligent decision making, and autonomous control, ultimately
transforming into the cyber–physical power system (CPPS) [3]. CPPS is characterized by
its digitalized, networked and intelligent nature. By seamlessly integrating state-of-the-art
information and communication technology, automation control technology, and data
analysis technology, the power system is equipped to achieve superior optimization and
flexible operation.

However, while the fusion of power systems with communication technology has
brought a wealth of benefits, it has also introduced potential threats to power systems [4–6].
For example, changes in the network topology of the information system have the propen-
sity to cause delays or even obstructions in the transmission of information, thus disrupting
real-time monitoring of the power system [7]. Moreover, the security vulnerabilities inher-
ent in these information systems, such as malicious hacker infiltration and the insidious
spread of computer viruses, are apt to jeopardize the safe and stable operation of these
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power systems. In addition, disruptions and anomalous conditions within the power
system can also have a detrimental impact on the information systems [8]. Unlike other
intricate networks, the cyber–physical power system embodies a higher degree of intricacy,
which reduces its resilience in the face of abrupt power fluctuations or on-site failures,
further accentuating the vulnerabilities within the network.

The failure of a specific component within the CPPS can lead to cascading failures and,
in severe cases, to the total collapse of the system. In 2010, Buldyrev [9] introduced the
concept of interdependent networks in power systems, emphasizing that a failure in one
network can cause failures in nodes of other networks that depend on it, which is referred
to as cascading failures. Subsequently, many researchers built on this concept and used
complex network theory to study the mechanisms of cascading failures in various systems.
They proposed cascading failure models such as load capacity models [10,11], epidemic
models [12], OPA failure models (ORNL-PSERC-Alaska, OPA), sandpile models [13],
and power flow models [14] to explain the causes behind cascading failure phenomena.
Regarding the common load capacity models, various researchers have proposed different
load redistribution strategies. Wang [10], based on the betweenness centrality of each node,
defined initial load and overload functions for each node and then proposed an evaluation
method for the importance of network nodes based on these measures. Wang [15] proposed
the strategy of redistributing the load among the nearest neighbors. As shown in the
approach, the load of each failed node is distributed to its neighbors. On the other hand,
Nguyen [16] ranked the importance of nodes and lines based on the DC power flow in the
power system to reduce the damage caused by cascading failure attacks. Cai [17] proposed
a dependency network model between the power grid and the scheduling data network
based on dynamic flow. In recent years, numerous scholars and researchers have extended
the concept of cascading failure in single-layer networks to the realms of dual-layer and
even multi-layer networks. Artime [18] and Zhou [19], respectively, delve into the impact of
non-local cascading failures and network inter-similarity on the robustness of multi-layered
multiplex networks. Meanwhile, Artime [20] explores the characteristics of networks
under varying circumstances, ranging from the perspective of multi-layered structures and
dynamics. These modeling methods are effective, but the purpose of studying a system is
to gain better control over it. As the scale of CPPS gradually expands, it is imperative for
us to study the controllability during the cascading failure process.

The integration of power systems and information systems has improved the control-
lability and observability of power systems [21]. However, it has also made the control of
cyber–physical power systems more challenging. For a given initial time t0 and final time
t f , if there exists a set of control signals u(t) that allow the network to transition from an
initial state x(t0) to any desired state x(t f ), then the system is said to be fully controllable.
In this paper, the term “node failure” indicates that a node has ceased to function, thereby
interrupting normal operations following the failure of the node. Liu [22] first proposed the
theory of structural controllability, establishing a research framework for the controllability
of complex networks. They also showed that driver nodes tend to avoid high-degree nodes,
addressing the issue of controllability in directed networks. However, it revealed limita-
tions when dealing with undirected networks, weighted networks, and certain large-scale
networks. Therefore, Yuan [23] introduced the concept of exact controllability in 2013,
solving the controllability determination problem for networks with arbitrary topologies,
undirected networks, and networks with weighted edges.Wang [24] extended the concept
of structural controllability by considering the controllability of multi-input multi-output
systems. They found that in certain cases, even if a system satisfies structural controllability,
it may still be uncontrollable. The above problems are based on single-layer networks,
but in reality, many networks are multi-layer. Jiang [25] investigated the controllability
of multi-layer networks with high-dimensional node states and analyzed the structural
controllability of interdependent networks with known directed subnetworks. In addi-
tion, Miao [26] investigated the controllability problem of matrix-weighted discrete-time
leader–follower multi-agent systems (MASs).
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It is worth noting that most of the previous work focused on network topologies with
different types of links, which have different internal coupling patterns. In addition, the
impact of different redistribution strategies on the controllability of CPPS may vary.

Taking these factors into consideration, a load-based redistribution strategy is pro-
posed, and the controllability of CPPS is investigated under different coupling strategies
and attack scenarios. This paper focuses primarily on the controllability of interdepen-
dent power systems in the face of cascading failure models, as well as the influence of
network topology, coupling patterns, and attack scenarios on said controllability. The main
contributions of this research are outlined below:

1. By combining the network topology and functional characteristics of the system, a
load-capacity model is developed to address the research gap in cascading failure of
CPPS. The validity of the results is verified through the modeling of realistic networks,
enhancing the persuasiveness of our findings.

2. By considering the real-time node loads and the distribution of power flow and
information flow in CPPS, a novel load redistribution strategy is introduced. Com-
pared to other strategies, this strategy can quickly terminate failures and prevent
system collapse.

3. This paper comprehensively analyzes different information network topologies and
network parameters, and it investigates the controllability of the system after cascad-
ing failures under different coupling strategies and capacity parameters. Guidelines
for future smart grid planning are provided.

The remaining sections of this paper are organized as follows. Section 2 outlines the
methodology used in this study. Section 3 focuses on the fault propagation model of CPPS
under cascading failures. Section 4 presents the simulation analysis and related discussions.
Finally, Section 5 provides a summary of the research conducted in this paper.

2. Methods

The purpose of studying a system is to gain better control over it. In this paper, the
controllability of CPPS is analyzed based on the cyber–physical power system model,
taking into account both its physical characteristics and topological properties.

2.1. Cyber–Physical Power System Model

A cyber–physical power system is an intricately interconnected network consisting of
a power grid and an information network. Within this system, the nodes of the information
network monitor control the nodes of the power grid, while the nodes of the power grid
provide electrical power to the information devices, as shown in Figure 1.

In explaining the CPPS, it can be said that there is a symbiotic relationship between
the nodes of the power system and the information system. The CPPS intricately weaves
these systems together and embodies their interplay. This interconnectedness facilitates the
transmission and dissemination of power-related data and communication information
between the two systems, thereby promoting the synchronized functioning of the power
and information systems.

In the realm of graph theory, CPPS can be conceptualized as a collection of vertices and
edges. The components of CPPS, which include power plants, loads, and communication
devices, can be aptly viewed as vertices within the graphical construct. Correspondingly,
the power lines and information links that make up CPPS can be perceived as edges within
the same construct. Thus, it becomes plausible to depict CPPS as shown in Figure 2.
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Generator Transmission and distribution Load

Power system

Cloud computing Data center

Wireless communication

Information signal Control signal

Information system

Figure 1. Architecture of cyber–physical power system.

Power system

Information system

Figure 2. Cyber–physical power system modeling.

For a graph G(Gp, Gc, V), where Gp and Gc represent the power network and the
information networks, respectively, and V represents the set of edges in the system, the
power system with N power nodes can be represented as:

Gp =

 p11 · · · p1N
...

. . .
...

pN1 · · · pNN


N×N

(1)
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where pij represents the connection between (i, j), and pij = 1 if there is a connection
between (i, j), i.e.,:

pij =

{
1 there is an edge between node i and node j
0 there is no edge between node i and node j

(2)

Similarly, in the information network with M information nodes:

Gc =

 c11 · · · c1M
...

. . .
...

cM1 · · · cMM


M×M

(3)

where

cij =

{
1 there is an edge between node i and node j
0 there is no edge between node i and node j

(4)

Similarly, the edges connecting the N nodes in the power system and the M nodes
in the information system can be defined as rmn. The coupling matrix between the power
system and the information system can be defined as:

R =

 r11 · · · r1M
...

. . .
...

rN1 · · · rNM


N×M

(5)

where

rij =

{
1 there is an edge between node i and node j
0 there is no edge between node i and node j

(6)

2.2. Controllability of Cyber–Physical Power System

Representing real power information physical systems using unified equations is
difficult due to their nonlinear nature. Nevertheless, there are many similarities between
nonlinear and linear systems. Therefore, when dealing with nonlinear and time-invariant
CPPSs, it is possible to explore their linear dynamics. The dynamics equations for these
linear time-varying systems can be formulated as follows:

dx(t)
t

=

Gp C

CT Gc

x(t) +
[
BτP Bτc

]
u(t) (7)

where x(t) = [x1(t), x2(t), ..., xN+M(t)]′ represent the state of nodes, x(t) ∈ R(N + M).
And u(t) = [u1(t), u2(t), ..., us(t)]′ represents a set of independent input signals, u(t) ∈ Rs.

A =

[
Gp C
CT Gc

]
(N+M)×(N+M)

is the transpose adjacency matrix of the CPPS, which reflects

its internal dynamics. B =
[
Bτp Bτc

]
s defines how the input signals are coupled to the

system, and Bτp represents the input signals in the power network, while Bτc represents the
input signals in the information network.

According to Kalman’s controllability rank condition [27], a system described by (7) is
deemed fully controllable if and only if it can reach any desired state x(t) under the control
of input signals if and only if the matrix

C = [B, AB, A2B, . . . , AN+M−1B] (8)

is full rank, that is,
rank(C) = (N + M). (9)
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Here, the concept of driver node density is employed to assess the controllability of
the network. In Figure 3, input nodes u1, u2, and u3 send control signals to nodes x1 and
x2, which are referred to as controlled nodes. When a controlled node is influenced by only
one control signal, it is called a driver node. In Figure 3, x1 serves as a driver node. The
driver node density, denoted as nd, is defined as follows [22]:

nd = ND/(M + N) (10)

where ND is the minimum number of driver nodes in the network, and (M + N) is the
total number of nodes in the CPPS, including both power and information network nodes.
For a CPPS, the minimum number of driver nodes can be determined by calculating the
maximum algebraic multiplicity δ(λi) of the eigenvalues λi of the network’s adjacency
matrix. This can be expressed as follows [23]:

ND = max
i
{δ(λi)} (11)

The higher the density of driver nodes nd, the greater the number of driver nodes
required for the network, indicating the poorer controllability of the network. Conversely,
the lower the density of driver nodes nd, the fewer driver nodes are needed for the network,
indicating better controllability.

u1
u2 u3

x1

x3

x2

x4

x5x6

Figure 3. Controlling a simple network.

3. Fault Propagation of CPPS under Cascading Failure
3.1. Initial Load and Capacity Model

A cyber–physical power system is a heterogeneous network formed by the coupling of
a power grid and an information network. Therefore, many previous studies have treated
the power grid and the information network equally, and the load-capacity models have
also been treated as homogeneous [17]. As a result, the power grid and information network
are considered separately in the CPPS. Each network’s capacity and load are defined
independently. When describing the cascading failures in chemical process systems, the
load-capacity model proposed by Motter [11] is often employed, where the node capacity
is linearly related to the initial load. Building upon this, a load-capacity model for a cyber–
physical power system is proposed in this paper. However, in contrast to the previous
model, this study introduces a load-capacity model based on electrical betweenness and
information entropy, which better aligns with the real-world scenarios of CPPSs.

3.1.1. Load Capacity Model in Power Networks

In the power grid, power nodes can be classified into three types based on their role:

• Generation Nodes: These nodes feed power into the grid.
• Load Nodes: These nodes consume power from the grid.
• Transmission Nodes: These nodes neither consume nor contribute power to the grid.

In previous research, the principle of shortest path propagation is often used to study
power networks. However, this approach is not appropriate because the power injected by
the generation nodes propagates through all transmission lines.
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For a power system with (N + 1) nodes, the matrix form of the loop current equations
can be given as

U̇b = Zb İb (12)

where U̇b is a column vector of size N × 1, representing the vector of node voltages; Zb is a
N × N matrix of loop impedance; and İb is a column vector of size N × 1, representing the
vector of injection currents. Equation (12) can be expanded as follows:

U̇1
U̇2
...

U̇n

 =


z11 z12 · · · z1n
z21 z22 · · · z2n

...
...

. . .
...

zn1 zn2 · · · znn




İ1
İ2
...
İ4

 (13)

When power currents are injected between nodes i and j (Ii = 1, Ij = −1), the voltage
at node k can be determined using the node voltage equations. Assuming that node k is not
the reference node, the equation can be expressed as follows:

U̇k = zk1 İ1 + zk2 İ2 + · · ·+ zkn İn = zki İi + zkj İj (14)

Unlike complex network theory, the distribution of power in power systems follows
Kirchhoff’s laws. Therefore, the distance between two points is equivalent to the impedance
between those two points. Based on these principles, the impedance between two points in
a power system represents the “distance” or resistance to power flow between those points.
This analysis helps in accurately modeling and understanding the power distribution in
the system.

Dij = U̇i − U̇j =
(
zii − zij

)
−
(
zji − zjj

)
= zii + zjj − 2zij (15)

Therefore, based on the concept of node betweenness centrality, it is possible to
calculate the electrical betweenness [28] of node i in the power network.

B(i) =


∑

l∈L,g∈G

√
WlWg ∑

n∈ f (n)

1
2

∣∣∣Ilg(i, n)
∣∣∣, j /∈ L, G

∑
l∈L,g∈G

√
WlWg ∑

n∈ f (n)

∣∣∣Ilg(i, n)
∣∣∣, j ∈ L, G

(16)

where L and G are the load and generation nodes, and f (i) is the set of neighbors of node
i. Wl is the actual load or rated load of the load, Wg is the actual power output or rated

power of the generator, and
∣∣∣Ilg(i, n)

∣∣∣ represents the current flowing through the branch
(i, n) when a unit current element is injected between the generation node G and the load
node L.

Therefore, the initial load L(i) of node i in the power system can be defined as follows.

Lp(i) = B(i) (17)

In actual power systems, each station will allocate a certain amount of reserve capacity
to ensure the electricity market demand during equipment maintenance, accidents, and
other situations. So, the network capacity parameter α is introduced in the power network
to define the total capacity of each node as follows:

Cp(i) = (1 + α)Lp(i) (18)

3.1.2. Load Capacity Model in Information Networks

For an information network, many studies in the literature equate the initial load of its
nodes directly with the node’s betweenness centrality [29]. However, they overlook the
information exchange between nodes. Entropy [30], which reflects the degree of disorder
in a system, is a concept in physics. A higher entropy value indicates a more disordered
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system, while a lower entropy value indicates a more ordered system. In information theory,
Shannon [31] introduced the concept of information entropy to measure the uncertainty
or randomness of information. It is often used to measure channel capacity and other
related problems.

H(X) = −
n

∑
i=1

p(xi) log p(xi) (19)

where P(xi) is the probability that the random event X is xi. Thus, this paper is based
on the concept of information entropy, and according to the different topologies of the
network, the information entropy of different nodes is defined, which represents the initial
load of information nodes.

Lc(i) = H(X) = −
n

∑
i=1

p(xi) log p(xi) (20)

where p(xi) is the influence of other nodes on node i.

p(xi) =
Ki

∑j∈τi
Kj

(21)

where Ki is the degree of node i, and τi is the set of neighboring nodes of node i. Similarly,
the capacity of a node in an information network can be defined based on the capacity
parameter β as follows:

Cc(i) = (1 + β)Lc(i) (22)

3.2. The Process of Cascading Failure

In CPPS, cascading failures can occur for a variety of reasons, including physical
failures, information failures, operational failures, malicious attacks, and more. When one
node or component fails, it can potentially affect the surrounding nodes or components,
resulting in additional failures. This chain reaction can spread quickly and result in the
entire system being unable to operate normally.

In the domain of power systems, the conditions of a system are commonly categorized
into three classifications according to the magnitude of the load [32]: light load, heavy load,
and overload. Consequently, subsequent to a redistribution of the load, the condition of the
node can be categorized into three classes based on this criterion:

• Underloading Node: The node’s load is within its rated range.
• Heavy-Loading Node: The load on the node exceeds the rated range but does not

exceed the capacity of the node. Therefore, the node is still in a normal operating state,
but it cannot remain in this state for a long time or it will cause the node to fail.

• Overloading Node: The node load exceeds the capacity of the node and the node fails.

For example, in Figure 4a, the different colors of the six nodes represent their respective
states. Due to a certain condition, node N1 becomes overloading. At this point, N1 fails
and its load is transferred to its neighboring nodes. Subsequently, in Figure 4b, due
to capacity constraints, the originally lightly loaded five nodes become burdened with
increased load. As a result, N4 becomes heavy loading, and N2 and N5 become overloading.
Subsequently, N2 and N5 will repeat the process of load redistribution until the network
stabilizes or collapses.
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Overloading

Underloading

Heavy-loading

Overloading

Underloading

Heavy-loading

(a) (b)

N1

N2

N3

N4N5

N6

N5

N6

N2

N1

N3

N4

Figure 4. An example of the cascading failure process. The nodes represent partial locations in the
network, the dashed lines indicate the connections between nodes, and the solid lines represent the
direction of load redistribution after node failures. The colors of the nodes represent their respective
states, where green, yellow, and red indicate nodes in underloading, heavy-loading, and overloading
states, respectively. The darker the color, the heavier the load on the node. In (a), node N1 is in an
overloading state, and after the failure, the load should be distributed among neighboring nodes.
In (b), it represents the state of this set of nodes after the load redistribution of N1. Nodes N2 and N5

also become overloading, and N4 becomes heavy-loading. This process will be repeated until the
network stabilizes or collapses.

When node i fails due to overloading, the load of the failed node is distributed to the
connected nodes in proportion to Qij, where Qij is defined as

Qij =
C(j)− L(j)

∑
n∈ f (n)

C(n)− L(n)
(23)

After load redistribution, the new load of neighboring node j can be calculated as

L(j)′ = L(j) + QijL(i) (24)

As mentioned above, redistributing the load on node j can cause it to become over-
loading, potentially increasing the area of failure.

4. Case Study and Discussion

The load redistribution model proposed in this paper was validated, and its controlla-
bility changes during the process were analyzed using the IEEE standard 39-node system
and the Chinese 132-node system. This paper assumes the assurance of complete synchro-
nization between the power system and the information system, and unless otherwise
specified, the system capacity parameters α and β are 0.5, respectively. The horizontal axis
in the graph of this section, times of attacks, represents the system’s change in terms of
controllability after enduring x instances of node attacks. The simulations in this paper
were performed using MATLAB 2020b on a personal computer equipped with an Intel
Core i5 2.4 GHz CPU and 16 GB RAM.

In general, the network coupling methods of CPPS can be categorized into a “one-
to-one” coupling strategy and “one-to-many” coupling strategy. This paper adopts the
“one-to-one” coupling strategy to analyze the cascading failure in CPPS. Meanwhile, the
coupling methods between nodes in two networks can be divided into the following
four methods:

• DDM: High-degree nodes in the power network are connected to high-degree nodes
in the information network.
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• BBM: High-betweenness nodes in the power network are connected to high between-
ness nodes in the information network.

• DBM: High-degree nodes in the power network are connected to high betweenness
nodes in the information network.

• BDM: High-betweenness nodes in the power network are connected to high-degree
nodes in the information network.

4.1. Initial Network Topology

The power-side electrical network topology established on the basis of the IEEE
39-node system and the Chinese 132-node system is shown in Figure 5a and Figure 5b,
respectively. The IEEE 39-node system consists of a total of 10 generators, 39 busbars, and
12 transformers. In contrast, the Chinese 132-node system represents a more streamlined
provincial network consisting of 25 generators, 101 loads, and 180 transmission lines. The
degree distribution for both systems is shown in Figure 6, and the statistical characteristics
of the networks are summarized in Table 1.

(a) (b)

Figure 5. (a) The network topology of the IEEE 39-node system; (b) the network topology of the
Chinese 132-node system.

Table 1. The characteristics of the networks analyzed in the paper.

Network Type N L nd Clustering Coefficient

IEEE 39-Node System 39 39 0.0769 0.0385
Chinese 132-Node System 132 180 0.2273 0.0880

The degree distributions in these two networks show notable differences. In the
IEEE 39-node system, a significant proportion of nodes are connected to three or two other
nodes, resulting in an intricate and highly clustered pattern. Conversely, in the 132-node
system in China, the majority of nodes are connected to only one or two other nodes,
resulting in a sparse and straightforward network structure. Referring to Table 1, there
is a notable difference in driver node density and network clustering coefficient between
the two networks. A higher minimum driver node density implies a higher number of
required driver nodes. The network clustering coefficient [33] measures the degree to
which neighboring nodes of a node are connected and is defined as the ratio of the actual
number of connections between a node’s neighbors to the maximum possible number of
connections. A larger clustering coefficient indicates more connections between nodes and
a denser network. Indeed, these two networks exhibit different characteristics, and using
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both the IEEE standard 39-node system and the Chinese 132-node system for simulation
helps improve the universality of the models.

0 1 2 3 4 5
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

P(k
)

k
(a)

0 1 2 3 4 5 6 7 8 9 1 0
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

P(k
)

k
(b)

Figure 6. (a) The degree distribution of the IEEE 39-node system, (b) the degree distribution of the
Chinese 132-node system.

To account for the uncertain topology of the information network, the simulation will
be randomly run for 10,000 iterations. This approach aims to minimize the random errors
stemming from the inherent randomness of the network.

4.2. The Controllability of CPPS in Different Network Types

The underlying topology of the information network is unknown, so all cascading
failure processes in this paper are based on the failure of power nodes. In typical scenar-
ios, the use of networks of equal scale, such as scale-free (BA) networks or small-world
(WS) networks, is considered. Therefore, the impact of different attack strategies on the
controllability of the system within these two network models is investigated.

4.2.1. Case A: IEEE 39-Node System

Under the three attack strategies, the information network is constructed into a BA
network topology of the same scale, which is coupled with the IEEE 39-node system to
form the CPPS. The controllability after cascading failure is shown in Figure 7, where
(a), (b), and (c) represent the controllability changes of the network under random attack,
degree attack, and betweenness attack, respectively. As shown in the figure, after the
network is subjected to random attacks, the density of driver nodes gradually increases,
while the controllability of the network gradually decreases. After the eighth attack, the
network is on the verge of collapse under all four coupling modes. In contrast, after four
degree attacks and three betweenness attacks, all four networks suddenly collapse. Prior to
this, even though the network was under attack, the network still retained some isolated
islands due to the redistribution of loads to neighboring nodes. However, the loads of
certain nodes had reached the threshold, and after another attack, the network immediately
collapsed completely.
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Figure 7. (a–c) The nd variation curves of the CPPS under four different coupling strategies after
random attack, degree attack, and betweenness attack, respectively. The CPPS is formed by coupling
the IEEE 39-node system and the BA network.

After we constructed the information network into a WS network of the same scale
and coupled it with the IEEE39 node system to form the CPPS, then three attack strategies
of random, degree and betweenness are used to attack the IEEE 39-node system. The
controllability of the network after the node load redistribution process is shown in Figure 8,
and like the CPPS coupled with the information network built by the BA network, the
CPPS drive node density under random attacks gradually increases and the network
controllability gradually decreases. After the number of attacks reaches the 8th time,
the network almost collapses under the four coupling methods. When the network was
subjected to multiple attacks, the CPPS did not collapse most of the network after the third
attack as before. Instead, it still survived most of the nodes and suddenly collapsed after
the fourth attack. It is worth noting that after the third betweenness attack, the driver
node density of the CPPS has been close to 1, which means that most of the CPPS was
decomposed into islands at this time, and it can no longer meet the power demand or
communicate with other nodes.
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Figure 8. (a–c) The nd variation curves of the CPPS under four different coupling strategies after
random attack, degree attack, and betweenness attack, respectively. The CPPS is formed by coupling
the IEEE 39-node system and the WS network.

4.2.2. Case B: Chinese 132-Node System

Similarly, the Chinese 132-node system is taken as an example, and the BA network
and WS network of the same size are coupled with the Chinese 132-node system to form
a CPPS. The controllability of the network with different coupling strategies under three
different attack strategies is shown in Figures 9 and 10, respectively.

Figure 9 shows the controllability changes of a CPPS constructed with a BA network as
its information network topology under different attack strategies. (a), (b), and (c) represent
the controllability variation curves of the system under random, degree, and betweenness
attack strategies, respectively. When the system is subjected to random attacks, the density
of driver nodes gradually increases, while the controllability of the system decreases. The
system is already in a state of collapse when the number of attacks reaches about 20.
Meanwhile, under degree attacks, the controllability of the CPPS constructed with DDM
and DBM strategies differs significantly from that of the CPPS constructed with BBM and
BDM strategies when the number of attacks reaches 4. In comparison, the changes in
the controllability of the CPPS under BBM and BDM strategies are relatively small when
faced with multiple-node attacks, allowing for greater opportunities for system adaptation.
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Finally, under betweenness attacks, the system suddenly collapses when subjected to the
fourth attack, and before that, the CPPS under all four coupling strategies was in a partially
dysfunctional state.
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Figure 9. (a–c) The nd variation curves of the CPPS under four different coupling strategies after
random attack, degree attack, and betweenness attack, respectively. The CPPS is formed by coupling
the Chinese 132-node system and the BA network.

Similarly, Figure 10 shows the changes in the controllability of the CPPS using the WS
network as the information network when it is subjected to three attack strategies.

It is noteworthy that in any situation, deliberate attacks on networks do not signifi-
cantly reduce the controllability of the network compared to random attacks. Deliberate
attacks often target “hub” nodes that are connected to many other nodes. As a result,
when a hub node fails, its neighboring nodes take over the load, preventing any further
propagation of failures. In addition, the BDM coupling approach better withstands node
failures or attacks, as the controllability degradation of the CPPS formed by BDM coupling
is the slowest compared to the other three methods in all cases.

After comparing the two methods of constructing information networks, it was found
that under the same circumstances, the CPPS composed of a WS network can exhibit
stronger controllability when subjected to node attacks or failures. This finding has im-
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portant implications for future designs of information systems and holds certain guiding
significance. Small-world networks possess short average paths and high aggregation,
which are highly advantageous in a CPPS, as they enable global connectivity and in-
formation transfer while maintaining local communication efficiency. Therefore, in the
subsequent research, the information network will be constructed as a small-world network
of the same size as the power network. Additionally, the power network and the informa-
tion network will be coupled in a one-to-one manner based on BDM, thereby enhancing its
adaptability to node attacks or failures.
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Figure 10. (a–c) The nd variation curves of the CPPS under four different coupling strategies after
random attack, degree attack, and betweenness attack, respectively. The CPPS is formed by coupling
the Chinese 132-node system and the WS network.

4.3. CPPS Controllability under Different Redistribution Strategies

Network attacks can be divided into static and dynamic attacks. Static attacks refer
to the attack sequence that has been determined when the system is established, while
dynamic attacks dynamically adjust the attack sequence based on the real-time status and
load of the system. Different from static attacks [34], this paper adopts dynamic attack
strategies to make the attacks more targeted, and the network that survives this situation
has higher stability. This section compares the load redistribution strategy introduced in this
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paper with the load redistribution strategies in other studies in the literature [35,36], and it
analyzes the impact of different load redistribution strategies on the network controllability
under different attack strategies.

Strategy I [35]: Distributing the failed load evenly among the neighboring nodes of
the faulty node, based on the average number of neighboring nodes for each fault node.

Qij =
1

N f (i)
(25)

where N f (i) indicates the number of neighbor nodes of node i, and f (i) is the set of neighbor
nodes of node i.

Strategy II [36]: Distributing the failed load evenly among the neighboring nodes of
the faulty node based on the average number of neighboring nodes for each fault node.

Qij =
Dj

∑
n∈ f (n)

Dn
(26)

where Dn indicates the degree of node n.
For degree attacks and betweenness attacks, the impact of various load redistribution

strategies on system controllability was investigated in both scenarios.

4.3.1. Case A: IEEE 39-Node System

Using the IEEE 39-node system as an example, a comparison was made between the
reallocation strategy proposed in this paper and strategy I and strategy II. The simulation
results are shown in Figure 11. Under a degree attack on the network, the driver node
density of strategies I and II increased significantly after the first attack, reaching about 0.8.
However, before the network of the redistribution strategy in this paper was attacked for
the third time, the driver node density of the network increased significantly. The density
is kept below 0.3. At this point, the controllability of the network is much greater than
that of the network under other redistribution strategies. It is worth noting that under
betweenness attacks, after two betweenness attacks, the redistribution strategy of this paper
still maintains the driver node density of the network below 0.1, which means that most
nodes in the network are still in a normal state, while the other two redistribution strategies
drive the node density to increase to about 0.8 after one betweenness attack, indicating that
most nodes in the network are in an isolated state at this time.
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Figure 11. (a,b) The nd change curves of the CPPS with different load redistribution strategies in two
different attack strategies, respectively. CPPS is coupled through the IEEE 39-node system and the
WS network.



Processes 2023, 11, 3046 17 of 19

4.3.2. Case B: Chinese 132-Node System

In the simulation of the Chinese 132-node system, under the degree attack, the sim-
ulation results are shown in Figure 12, which is similar to Case A. However, due to the
increase in network scale, the driver node density of the network of the other two strate-
gies is reduced after being attacked by two nodes. It reaches 0.8, while the redistribution
strategy in this paper drives the node density to remain below 0.4 before being attacked
by eight nodes, and the growth rate is much smaller than the other two strategies. Under
betweenness attacks, the driver node density of the network of the three redistribution
strategies is similar to that of case A, but the number of node attacks required to collapse
the network is one more than that of case A, which is the reason why the network scale is
larger than that.
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Figure 12. (a,b) show the nd change curves of CPPS with different load redistribution strategies in
two different attack strategies, respectively. CPPS is coupled through the Chinese 132-node system
and the WS network.

4.4. Effect of Various Parameters on the Controllability Of CPPS Cascading Failures

Under high-degree attacks, an analysis was conducted to assess the influence of
various capacity parameters on the controllability of the network cascading failure process.
The simulation results are shown in Figure 13. Figure 13a,b show the two networks under
different capacity parameters, respectively, indicating the controllable performance of the
cascading failure process. In Figure 13a,b, when α and β are both 1, the driver node density
of the network increases the slowest. As α and β decrease, the driver node density of the
network increases under the degree attack. The slope of the density curve also increases
gradually, meaning that for the same number of node attacks, the driver node density
increases as α and β decrease. It is worth noting that when α and β decrease by 0.2 each,
the increment of the network’s driver node density is not the same, which means that the
node capacity of the power network has a greater impact on the network’s controllability
than the node capacity of the information network.
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Figure 13. (a,b) represent the varying curves of the parameter nd in the system under the degree
attack strategy in two different networks.

5. Conclusions

This study has considered both power flow and information exchange, and it has
developed a load-capacity model for CPPS based on electrical betweenness and infor-
mation entropy. By introducing a novel load redistribution strategy, the changes in the
controllability of the network under different scenarios are analyzed. The research results
suggest that the CPPS built on a small-world network coupled with high-degree nodes
in the information network and high-betweenness nodes in the power network exhibits
better resilience when dealing with network failures. In addition, improving the capacity
parameters of the power network has a more significant effect than improving the capacity
parameters of the information network. These research results provide valuable insights for
future power network planning. In future research, emphasis will be placed on investigat-
ing the methods of one-to-many and many-to-many coupling as well as further exploring
the controllability of CPPSs in the case of cascading failures under temporal constraints.
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