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Abstract: Cold recycled mixtures with asphalt emulsion (CRME) suffer the majority of damage from
freezing and thawing cycles in seasonal freezing regions. However, an effective model for describing
the internal damage evolution behavior of the CRME is still lacking. The objective of this study is
to explore the performance of the destroy and damage model of the CRME subjected to freezing
and thawing cycles with various water contents. The damage degree of performance at 60 ◦C and
−10 ◦C, as well as the mechanical properties, were first analyzed in the laboratory. Then, the damage
evolution models were established based on macroscopic properties, reliability, and damage theory.
The results showed that the performance of the CRME decreased obviously as the number of freezing
and thawing cycles increased; after 20 freezing and thawing cycles, the damage degree of 60 ◦C
shear strength and 15 ◦C and −10 ◦C indirect tensile strength were 21.5%, 20.6%, and 19.8% at dry
condition, but they were 34.9%, 31.8%, and 44.8% at half water saturation condition and 51.5%, 49.1%,
and 56.1% at complete water saturation condition; the existence of water and the phase transition of
water changed the failure characteristics of the CRME; the correlation coefficient of the damage model
parameters was more than 0.98, so the damage evolution model could reveal the internal damage
evolution law. Clearly, the freezing and thawing cycles accelerated the damage caused by CRME.

Keywords: asphalt emulsion; cold recycled mixtures; damage model; freezing and thawing cycles;
property destroy

1. Introduction

With increasing of the road service life, an increasing number of early-built roads
require annual maintenance, causing a dramatic enhancement in the amount of old asphalt
material [1]. The disposal of old asphalt materials demands a large amount of land and
pollutes the environment [2]. The topic of resource conservation and environmental friend-
liness has gradually risen to prominence in road construction. Asphalt pavement recycling
has become an excellent technique in road construction and maintenance [3,4]. Due to the
depression of aggregate, cost, and carbon emissions, cold recycling technology has been
widely accepted globally and adopted in many countries [5–7].

Zhang J et al. [8] studied the influences of compaction and water contents on the
properties of the CRME, and a design approach for CRME using single compaction was
presented. Han Z et al. [9] demonstrated that the vertical vibration testing method showed
more excellent mechanical and fatigue performances than Marshall compaction and Super-
pave Gyratory Compactor on cold recycled mixtures. And the number and diameter of
voids and fractal dimension of the vertical vibration testing method samples were similar
to actual core samples in the vertical direction. Chen T et al. [10] proposed that cement
and asphalt emulsion need to be completely mixed before the mixing between aggregate
and mortar to achieve the more excellent property of the cold recycled mixture; moreover,
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aggregate stirred with asphalt emulsion firstly may be an excellent design. Gao L et al. [11]
showed that the cold in-place recycling mixtures tend to have larger size and a lower
amount of air voids. Kim Y et al. [12] stated that emulsion form and residual asphalt
stiffness of reclaimed asphalt pavement (RAP) materials had impacted on the dynamic
modulus, flow number, and flow time. Jiang J et al. [13] obtained that the polymer mod-
ifiers could enhance the high-temperature property obviously, and adding chloroprene
rubber latex seemed to be a more excellent idea to enhance the high-temperature stability
of asphalt emulsion. Zhang J et al. [14] found that a recycling agent had an impact on
the fracture energy indicator of more than 60%. Yan J et al. [15] proposed cement had
active influences on early-age strength and long-term property of cold recycled mixtures.
Yang Y et al. [16] showed cold recycled mixtures had more excellent low-temperature
property when adding cement was between 1% and 2%. Dong S et al. [17] concluded the
rejuvenation agent, styrene–butadiene rubber latex, and Buton rock asphalt could enhance
the comprehensive property of the modified CRME. Moreover, the rejuvenation agent had
the largest influence. Du S [18] found polyester fiber, polypropylene fiber, polyacrylonitrile
fiber, lignin fiber, and basalt fiber could improve the performance of the emulsion recycled
mixture. Polyester fiber had better advancement on fatigue life than others. Xu S et al. [19]
found the new cold-mix SBS modified emulsified asphalt had better mechanical perfor-
mance, rutting performance, and water stability than the normal hot and warm mix asphalt
mixtures. In comparison with deicing agents containing calcium chloride, the deicing
agents containing calcium magnesium acetate obviously could reduce the disruptive influ-
ences of freeze–thaw cycles on the mechanical performance of cold recycled mixtures using
polymer-modified bitumen emulsion [20]. Yang Y et al. [21] discovered the numerical value
and quantity of the tensile force chain in DEM raised markedly; as the stress ratio increased,
the fatigue performance decreased significantly. Lin J et al. [22] presented the viscoelastic
of the CRME was worse than HMA. The fatigue life of the CRME was 10%−20% normal
asphalt mixture at high strain. Xia Y et al. [6] proposed the initial cracking point appeared at
approximately 60% of the fatigue life based on the SCB fatigue test through image analysis.
The value of the destroyed variable was 0.06–0.17 at the initial cracking point according to
the cracking model.

However, the road performance of the CRME decayed obviously, and diseases such
as crushing and loosening appeared in the seasonal frozen region [23]. Water was the
key factor for the destruction. Due to temperature variation, the water would freeze
and thaw with the changing seasons, causing significant damage to the CRME [24].
Lachance-Tremblay et al. [25] demonstrated the linear viscoelastic properties containing
glass aggregates were significantly altered during freezing and thawing cycles. The addition
of hydrated lime containing glass aggregates obviously decreased the linear viscoelastic
property. Freezing and thawing cycles enhanced the interior destruction of the asphalt
mixture, resulting in air voids increasing and adhesion decreasing [26]. Fan Z et al. [27]
observed that the fatigue life of asphalt mixtures reduced with saturation and freezing–
thawing cycles increasing. Fu L. et al. [28] showed that freezing and thawing cycles
changed the failure type of asphalt mixtures, made it harder for microcracks to form early
on, sped up the growth of macrocracks, and made it easier for asphalt and aggregates to
separate. Wang T. et al. [29] found the tensile modulus of steel slag, basalt, and recycled ag-
gregate permeable asphalt concrete decreased by 80–90% after 20 freezing–thawing cycles.
Ud Din et al. [30] found freezing and thawing could obviously impact the compressive
strength, air voids, fatigue cracking, and the rutting of the asphalt pavement. Fatigue and
rutting were more sensitive to climatic conditions. Xu H et al. [31] presented the interior
void evolution law: expansion of original voids; connection of independent voids; occur-
rence of new voids, demonstrating the nonnegligible impact of pore structure on dynamic
flow law subjected to freezing and thawing cycles [32]. Wang J et al. [33] put forward the
damage mechanism of the biobased cold-mix epoxy asphalt subjected to freezing and thaw-
ing cycles: post-curing and damage of the cross-linking network; agglomeration and aging
of asphalt; diffusion and reaction of water. Jin D et al. [34] found asphalt emulsion chip
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seal showed a decrease in interlayer shear strength and interlayer tensile strength under
repeated loading, freezing, and thawing cycles. The weak bond between asphalt emulsion
and aggregate could be due to repeated loading and freezing and thawing behaviors. Zhao
H et al. [35] found the indirect tensile strength, the modulus, and the fracture properties of
cold recycled mixtures using foamed asphalt significantly decreased subjected to freezing
and thawing cycles. Lövqvist L et al. [36] presented a new thermodynamics-based multi-
scale model of freezing and thawing destruction in asphalt mixtures, which also calculated
the destruction from water and traffic. Chen Y et al. [37] presented the freeze–thaw cycles
made the nonlinear characteristics of the stress–strain relationship of the asphalt mixture
remarkable. Yang Y. et al. [38] concluded the void ratio of CRME went up by 1.06%, the
ultrasonic wave velocity and high and low temperature performance all went down, and
the splitting strength went down by 26.3% after 20 unsatisfied freezing–thawing cycles.
Under freezing and thawing cycles, the voids of vacuum-saturated samples were primarily
characterized by the formation of new voids, void expansion, and void bonding [39].

In summary, researchers have conducted a large number of studies on mix design,
air void characteristics, performance evaluation, early strength, additives, and fatigue
performance to improve the CRME. Although extensive research has been conducted on
normal asphalt mixtures during freezing and thawing cycles, a few studies have been
conducted on the CRME, despite the fact that its application in a seasonally frozen area
is crucial. CRME has greater air voids (8–13%) than normal asphalt mixture. The water
could easily permeate the CRME and weaken the bond among asphalt, old asphalt, new
aggregate, and old aggregate. The adhesion has an immediate impact on the performance
of the CRME. Therefore, the aim of this research is to explore the performance degradation
and damage model of the CRME under freezing and thawing cycles with various water
contents. The uniaxial penetration test and indirect tensile test are carried out to evaluate
the high–low temperature performance and mechanical properties. The damage degree of
the 60 ◦C shear strength and 15 ◦C and −10 ◦C indirect tensile strength are calculated and
analyzed. Finally, the damage model of CRME is developed to reveal the internal law of
damage evolution based on macroscopic properties, reliability, and damage theory.

2. Materials and Methods
2.1. Materials

Table 1 illustrates the characteristics of asphalt emulsion referencing JTG T5521-
2019 [40]. The RAP was milled from a first-class highway in Shenyang, China and divided
into 0 mm, 0.075 mm, 0.15 mm, 0.3 mm, 0.6 mm, 1.18 mm, 2.36 mm, 4.75 mm, 9.5 mm,
13.2 mm, 16 mm, and finally 19 mm. Referring to JTG T5521-2019 [40], the sand equivalent
value of RAP was 65%, which met the specification requirements that is not less than 50%.
The characteristics of the new aggregate satisfied the requirement of the JTG F40-2004 [41],
which was divided into the single size. The biggest size of RAP could not satisfy the
gradation composition of CRME referencing to JTG T5521-2019 in China [40]. A total of
19–26.5 mm of new aggregate was added. Drinking water and 32.5# of regular Portland
cement were added in the meantime.

Table 1. Characteristics of asphalt emulsion [24].

Characteristic Requirements Results

Demulsification speed Slow-cracking Slow-cracking
Particle charge Cation (+) Cation (+)

Remained content on 1.18 mm/wt% ≤0.1 0.021
Solid content/wt% >60 63.6

Penetration (25 ◦C, 100 g, 5 s)/0.1 mm 50~130 69.5
Softening point/◦C — 45.6

Ductility (15 ◦C)/cm ≥40 76.5
Solubility in trichloroethylene/wt% ≥97.5 99.1
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Table 1. Cont.

Characteristic Requirements Results

Storage stability at 1 d/wt% ≤1 0.4
Storage stability at 5 d/wt% ≤5 2.6

2.2. Mixture Design and Preparation of the Samples
2.2.1. Mixture Design

The selected gradation and composition of RAP and new aggregate are displayed in
Table 2 [16]. The cement dosage was adopted by the early result, which was 1.5 wt% [16].
The selected gradation of the CRME is shown in Figure 1. The optimum water content of
CRME was determined referencing JTG E40-2007 [42], which was 3.0 wt%. The optimum
asphalt emulsion content of CRME was determined referencing to JTG T5521-2019 [40],
which was 3.5 wt%.

Table 2. Selected gradation of RAP and new aggregates.

Size/mm 26.5 19 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075

Passing rate/%
RAP (68.95%) 100 100 88.8 78.7 63.5 38.1 22.8 13.7 7.6 4.1 2.0 1.0

New
Aggregate (29.55%) 100 93.9 88.8 78.7 63.5 38.1 22.8 13.7 7.6 4.1 2.0 1.0Processes 2023, 11, x FOR PEER REVIEW 5 of 18 
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Figure 1. Selected gradation of CRME.

2.2.2. Preparation of the Samples

The Superpave gyratory compactor (AFG2C) was applied to form the samples. The
1.25◦ rotation compaction angle, 600 kPa vertical compressive stress, and 30 rpm were set
in a Superpave gyratory compactor. The diameter of the sample was 100 ± 0.5 mm. The
CRME samples were molded under the optimum mixture composition. Firstly, the mixture
was placed into the mold and compacted up to 63.5 mm in height. Then, all the samples
were cured in a 60 ◦C environmental oven for more than 40 h. Finally, the samples were
put in an indoor temperature environment for longer than 12 h [40].

2.3. Experimental Methods
2.3.1. Freezing and Thawing Test

The cured sample was subjected to a freezing and thawing test with various water
content. The dry condition, half water saturation condition, and complete water saturation
condition were adopted. The parallel four samples were carried out for every test under a
saturated condition and different freezing and thawing cycles.
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(1) Dry condition, namely 0% water saturation condition. The cured samples were
directly covered with plastic preservative film.

(2) Complete water saturation condition, namely 100% water saturation condition. Firstly,
the cured samples were vacuumed for 15 min in water. The vacuum pressure was
98.3~98.7 kPa. Secondly, the vacuumed samples were kept in normal pressure water
for longer than 2 h until absorbing water completely. Thirdly, the surface of vac-
uum saturated samples was dried through the wet cloth and covered with plastic
preservative film.

(3) Half water-saturation condition, namely 50% water saturation condition. The cured
samples were weighed. The weighted samples were vacuum saturated according
to (2). The weight of the vacuum-saturated sample was measured. The environmental
furnace then reduced the weight of water absorption by half. Finally, the surface of
the half water-saturated specimens was covered with plastic preservative film and
placed in an indoor environment for more than 12 h.

The samples with different water contents were frozen and thawed. The sample
was stored at −20 ◦C and 20 ◦C for 6 h, respectively, completing one freeze-thaw cycle.
The whole samples were frozen-thawed zero, five, ten, fifteen, and twenty times, respec-
tively [27,43]. The frozen-thawed samples were used to evaluate the characteristics of
CRME after drying. The partial samples are shown in Figure 2.
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2.3.2. Uniaxial Penetration Test

The uniaxial penetration test was used to evaluate the high-temperature performance
of CRME at 60 ± 1 ◦C. The 1 mm per minute was used as the loading rate referencing JTG
D50-2017 [44]. The electromechanical universal tester (70-S18B2) (Controls S.R.L., Milan,
Italy) was used for the test to obtain the maximum load. The shear strength was obtained
by Equation (1).

RS = f × P/A (1)

where RS, f, P, and A represent the shear strength (MPa), the sample dimension correc-
tion coefficient f = 0.34, the maximum loading (N), and the cross-sectional area (mm2),
respectively.

2.3.3. Indirect Tensile Test

The indirect tensile test was performed at 15 ± 0.5 ◦C based on the loading rate of
50 mm per minute to evaluate the mechanical property referencing JTG E20-2011 [45].
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However, the indirect tensile test was performed at −10 ± 0.5 ◦C based on the loading
rate of 1 mm per minute to reveal the low-temperature cracking resistance referencing JTG
E20-2011 [45]. The electromechanical universal tester (70-S18B2) (Controls S.R.L., Milan,
Italy) was used for the indirect tensile test to obtain the limit load. The indirect tensile
strength was obtained by Equation (2).

RT = 0.006287F/h (2)

where RT, F, and h represent the indirect tensile strength (MPa), the limit loading (N), and
the height of the sample (mm), respectively.

2.4. Modeling Method
2.4.1. Basic Model Assumptions

If the CRME could satisfy the basic assumptions of the general model of reliability
and damage theory, the damage evolution law of CRME could be analyzed under freezing–
thawing cycles [46,47]. The modelling of each surface of the cube subjected to the same
damage was adopted to investigate the damage situation of CRME under freezing and
thawing cycles with various water contents.

Situation 1: The interior of CRME was considered continuous and homogeneous. RAP,
new aggregate, cement, and asphalt emulsion conform to the random distribution and were
proportionally smaller than the sample. Consequently, the sample could be considered as
homogenous material.

Situation 2: The boundary of the CRME was in the same freezing and thawing con-
ditions. The damage was developed from outside to inside gradually under freeze–thaw
cycles with various water content. Therefore, all microscopic unit points with the shortest
distance between the interior and boundary of CRME satisfied the damage evolution law.
Each surface of the cube subjected to the same damage was drawn in Figure 3.
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Situation 3: The destroyed occurrence of CRME was from the gradually accumulated
interior damage as freezing and thawing cycles increased. The failure possibility of every
component increased over time in CRME exposed to freezing and thawing cycles with
various water contents. Therefore, it was considered that the destruction of CRME accorded
to the Weibull damage distribution under freezing and thawing cycles, as represented by
Equation (3).

F(t) = 1 − exp [−(λt)α] (3)

where t, λ, and α represent the number of freezing and thawing cycles (time), the scale
factor (dimensionless), and the shape factor (dimensionless), respectively.
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Situation 4: Each point was subjected to the same amount of damage. Based on the
characteristics of the Weibull distribution, the failure curve shape of each point was the
same approximately. Consequently, it was possible to conclude that the shape factor α was
the same. If the microscopic unit point had any coordinate (x, y, z), then Equation (4) could
be used to determine the shape factor α.

λ (x, y, z) =λ (|x|, |y|, |z|) (4)

2.4.2. Model Derivation

The microscopic unit (x, y, z) was selected randomly in CRME. The probability density
function of the internal point from the microscopic unit was f (x, y, z; t) at t time. Therefore,
the number of damaged microscopic units was V (x, y, z; t) at time t. The random variable
satisfied the spatial Poisson distribution requirement. Therefore, Equation (5) represents
the probability P of internal point failure.

P = f (x, y, z; t) dςdηdσ (5)

According to the mathematical expectation of the Poisson distribution, the mathemati-
cal expectation of V (x, y, z; t) could be derived as shown in Equation (6).

E(V) = nP = dx dy dz dς−1 dη−1 dσ−1 f (x, y, z; t) dςdηdσ = f (x, y, z; t) dx dy dz (6)

where the n represents the quantity of sample points in the space area.
The failure volume of the whole section was shown in Equation (7).

V =
x

V0

E(V) (7)

According to the previous studies [47], the study defined the degree of damage using
Equation (8).

D = V/V0 (8)

where D, V, V0 represent the degree of damage (%), the volume of the damaged unit
(dimensionless), and the volume of the original unit (dimensionless), respectively.

According to Equations (3)–(8), the damage degree equation could be obtained as
shown in Equation (9).

D = V−1
0

x

V0

f (x, y, z; t)dxdydz = V−1
0

x

V0

α(λt)
α−1

exp
[
−(λt)α]dxdydz (9)

2.4.3. Numerical Algorithm of Damage Evolution

Equation (9) could be altered through discretization of the calculated spatial region. In
the calculated spatial region, each boundary was divided into N parts on average, and N
was a dual number. Based on situation 2, the i-layer unit number distribution was identical.
According to Equation (10), the units with the shortest distance from the model boundary
were determined.

Ni = 6N2 − 24iN + 24i2 − 12N + 24i + 8 (10)

where i = 0, 1, 2······ (n = N/2 − 1), respectively.
At t time, the distribution function of i-layer unit damage was Fi(t). When the number

of sample points of the Poisson distribution was large, the Poisson distribution could be
transformed into the Bernoulli distribution based on the relationship between the Poisson
distribution and the Bernoulli distribution, namely Ni damage in the unit of the i layer. The
mathematical expectation of the event Φi was shown in Equation (11).

E(Φi) = NiFi (t) (11)
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Based on situation 3, Equation (12) could be obtained.

Fi(t) = 1 − exp [−(λt)α] (12)

The scale factor λi was simulated with the linear formula, and the mesh was sufficiently
divided. The influence of micro-unit size could be neglected. The scale factor λi could be
shown in Equation (13).

λi = λ0 − 2iv/ (N − 2) (13)

where λ and v represent the scale factor (dimensionless) and the gradient factor (dimen-
sionless), i = 0, 1, 2······ (n = N/2 − 1), respectively.

The microscopic unit was in the outer layer at i = 0, and λi = λ0. The microscopic
unit was in the inner layer at i = N/2 − 1, and λi = λ0 − v. The average scale factor of
the outer and inner layers of the CRME could be substituted into the calculation. The
mathematic expectation of the unit damage eventω at time t could be obtained as shown
in Equation (14).

E(ω) =
N/2−1

∑
i=0

E(φi) =
N/2−1

∑
i=0

NiFi(t) (14)

According to the Equation (14), the expected value of regional damage degree could
be calculated. As shown in Equation (15).

E(D) = E(ω)/V0 = N−3
N/2−1

∑
i=0

(
6N2 − 24iN + 24i + 8

)
×

{
1− exp

[
−
(

λ0t− ivt
N/2− 1

)α]}
(15)

E(D) = 0 at t = 0, which showed that the damage degree of CRME was 0 without
freezing and thawing cycles. E(D) = 1 at t→∞, which showed that the damage degree of
CRME was 1 after infinite freezing and thawing cycles. Based on the application of the
equal strain assumption in macroscopic phenomenological damage mechanics, the damage
degree of the CRME after freezing and thawing cycles could be calculated according to
Equation (16).

Dn = (E0 − En)/E0 (16)

where Dn, E0, and En represent the degree of damage of CRME after n freezing and
thawing cycles, the performance of the CRME without freezing and thawing cycles, and
the performance of CRME after n freezing and thawing cycles, respectively.

3. Results and Discussions
3.1. Experimental Results

The results of the 60 ◦C uniaxial penetration test and 15 ◦C, and−10 ◦C indirect tensile
strength test under freezing and thawing cycles with various water contents are shown in
Table 3.

3.2. Damage Models

The damage models of the high–low temperature performance and mechanical prop-
erty of the CRME were used to investigate the damage situation. The damage degree of
CRME was calculated based on the Equation (16). The damage degree results of CRME are
displayed in Table 4. Figure 4 illustrates the damage degree change trend of CRME under
freezing and thawing cycles with various water content.
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Table 3. Test results of CRME under freezing and thawing cycles with various water contents.

Freeze-
Thaw

Cycles/Times

60 ◦C Shear Strength/MPa 15 ◦C Indirect Tensile Strength/MPa −10 ◦C Indirect Tensile Strength/MPa

Dry
Condition

Half Water
Saturation
Condition

Complete
Water

Saturation
Condition

Dry
Condition

Half Water
Saturation
Condition

Complete
Water

Saturation
Condition

Dry
Condition

Half Water
Saturation
Condition

Complete
Water

Saturation
Condition

0 0.573
(0.041)

0.548
(0.040)

0.556
(0.039)

0.65
(0.023)

0.63
(0.015)

0.66
(0.003)

1.11
(0.008)

1.05
(0.012)

1.07
(0.019)

5 0.542
(0.024)

0.483
(0.033)

0.459
(0.057)

0.60
(0.016)

0.56
(0.011)

0.55
(0.003)

1.03
(0.023)

0.90
(0.018)

0.86
(0.010)

10 0.491
(0.015)

0.431
(0.018)

0.374
(0.020)

0.57
(0.011)

0.49
(0.007)

0.46
(0.008)

0.96
(0.031)

0.77
(0.026)

0.70
(0.009)

15 0.468
(0.029)

0.396
(0.022)

0.317
(0.012)

0.54
(0.005)

0.44
(0.012)

0.38
(0.007)

0.92
(0.014)

0.65
(0.009)

0.55
(0.011)

20 0.455
(0.038)

0.374
(0.031)

0.283
(0.019)

0.51
(0.017)

0.41
(0.006)

0.32
(0.008)

0.86
(0.014)

0.58
(0.006)

0.47
(0.007)

The data of () are the standard deviation.

Table 4. The damage degree results of CRME under freezing and thawing cycles with various
water content.

Freeze-
Thaw

Cycles/Times

Damage Degree of 60 ◦C Shear Strength/% Damage Degree of 15 ◦C Indirect
Tensile Strength/%

Damage Degree of −10 ◦C Indirect
Tensile Strength/%

Dry
Condition

Half Water
Saturation
Condition

Complete
Water

Saturation
Condition

Dry
Condition

Half Water
Saturation
Condition

Complete
Water

Saturation
Condition

Dry
Condition

Half Water
Saturation
Condition

Complete
Water

Saturation
Condition

0 0 0 0 0 0 0 0 0 0
5 7.7 11.1 16.7 5.4 11.9 17.4 7.2 14.3 19.6

10 12.3 22.2 30.3 14.3 21.4 32.7 13.5 26.7 34.6
15 16.9 30.2 42.4 18.3 27.7 43.0 17.1 38.1 48.6
20 21.5 34.9 51.5 20.6 31.8 49.1 19.8 44.8 56.1
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As shown in Table 4 and Figure 4, with the number of freezing and thawing cycles
increasing, the damage degree of the high–low temperature performance and mechanical
property of CRME increased. As the saturation rate rises, the performance changes under
freezing–thawing cycles become more pronounced. It indicated that the temperature cycle
would damage the CRME and that the water would exacerbate the damage of the CRME
during the temperature cycle.

Three parameters (α, λ0, v) of the damage evolution model could be achieved by the
nonlinear fitting of Equation (15) according to the damage degree of CRME from Table 4.
Therefore, the damage evolution model could be established. The calculation results of
the parameters would be affected by the number of grids N. The fitting results would
become more accurate as the number of grids N increased. The parameters of the damage
evolution model would also be more accurate. However, the iteration times of the damage
evolution model would become higher as the number of grids N increased, which would
affect the computational efficiency. Therefore, it was necessary to determine an appropriate
N value. The MATLAB (2018A) software was used to nonlinearly fit the parameters of
the damage evolution model. The initial value of N was set to 4, and N = N + 2 was
used for the cyclic calculation until the parameters were stable. The degree of damage of
high–low temperature performance and mechanical property of the CRME and the number
of freezing and thawing cycles were fitted with different water contents. The predicted
data became stable, and the calculation result was accurate when N = 48. In order to obtain
a stable model and accurate results, N = 100 was adopted for calculation during the study.

3.3. Parameter Analysis of Damage Model

The damage evolution models were established based on the damage degree data
calculated by different properties under 20 freezing and thawing cycles. The calculated
performance parameters are shown in Table 5. The damage degree evolution diagrams
of 60 ◦C shear strength and 15 ◦C and −10 ◦C indirect tensile strength are shown in
Figures 5–7.

Table 5. Parameters results of damage model.

Performance Water-Saturated Condition Correlation
Coefficient

Parameters of Damage Model

The Shape
Factor α

The Scale
Factor λ

The Gradient
Factor v

15 ◦C indirect
tensile strength

Dry condition 0.995 0.7873 0.0208 0.0197
Half water saturation condition 0.997 1.0427 0.0455 0.0451

Complete water saturation
condition 0.996 1.3223 0.0838 0.0831

60 ◦C shear
strength

Dry condition 0.985 0.7821 0.0252 0.0218
Half water saturation condition 0.998 0.9898 0.0488 0.0466

Complete water saturation
condition 0.999 1.2009 0.0875 0.0871

−10 ◦C indirect
tensile strength

Dry condition 0.994 0.9115 0.0265 0.0234
Half water saturation condition 0.999 1.2011 0.0675 0.0668

Complete water saturation
condition 0.988 1.4273 0.1046 0.0988

Table 5 showed that the damage evolution model of CRME fit well and that the
correlation coefficients were greater than 0.98 when freezing and thawing cycles happened.
The shape factor, scale factor, and gradient factor showed different characteristics of the
CRME under freezing and thawing cycles with different water contents. Figures 5–7
showed that the model fitting effect was good and the error was small.
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The shape factor revealed the failure characteristics of the inner points of the CRME
under freezing and thawing cycles with different water contents [47]. Table 5 showed that
the shape factors of 60 ◦C shear strength and 15 ◦C and −10 ◦C indirect tensile strength
increased from 0.7873 to 1.3223, 0.7821 to 1.2009, 0.9115 to 1.4273, respectively. The shape
factors of the CRME were similar to hot asphalt mixtures [46,47]. It indicated the inner
points failure of the CRME gradually accumulated with the increasing of water contents.
The presence of water and the phase transition of water changed the internal failure
characteristics of the CRME [24,39]. The shape factors of 60 ◦C shear strength and 15 ◦C and
−10 ◦C indirect tensile strength were different at various water contents, which showed
that water contents had different influences on the same performance of CRME.

The scale factor indicated the resistance ability of the internal points of the CRME
under freezing and thawing cycles with various water contents. The scale factor was
mainly determined by air voids, gradation, additives, and so on [47]. The greater the
value of the scale factor, the weaker the ability to resist freezing and thawing damage [46].
As shown schematically in Table 5, the scale factors of 60 ◦C shear strength and 15 ◦C
and −10 ◦C indirect tensile strength increased from 0.0208 to 0.0838, 0.0252 to 0.0875,
0.0265 to 0.1046, respectively. The scale factors of the CRME were similar to hot asphalt
mixtures [46,47]. It indicated that the resistance ability of CRME decreased with the
increasing of water contents. Moreover, the −10 ◦C indirect tensile strength was influenced
by water contents obviously. The frost heaving force from the phase transition of water
accelerated the formation of new voids and the connection of voids, which resulted in a
significant decrease in performance under freezing and thawing cycles with different water
contents [39].
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The gradient factor showed the difference in destruction development of the interior
points of the CRME under freezing and thawing cycles with different water contents [47].
The absolute value of the gradient factor represented the difference. When the absolute
value of the gradient factor was small, the damage to the internal points occurred at
the same time, indicating that the material was homogeneous. The gradient factor was
positive, which indicated that the damage developed from the surface to the interior. The
gradient factor was negative, which indicated that the damage developed from the interior
to the surface [46]. The gradient factors of 60 ◦C shear strength and 15 ◦C and −10 ◦C
indirect tensile strength increased from 0.0197 to 0.0831, 0.0218 to 0.0871, 0.0234 to 0.0988,
respectively. The gradient factor of the CRME was positive, which indicated that the
damage developed from the surface to the interior in CRME under freezing and thawing
cycles. However, the absolute value of the gradient factor for hot asphalt mixtures was less
10−7 [46,47]. It shows that the homogeneity of the CRME was worse than hot mix asphalt.
Moreover, the gradient factors of 60 ◦C shear strength and 15 ◦C and−10 ◦C indirect tensile
strength increased gradually with the water contents. It indicated the damage of the CRME
gradually accumulated with the increasing of water contents.
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4. Conclusions

In this paper, the damage model investigated the damage characteristics of CRME
under freezing–thawing cycles with various water contents. The following conclusions
were drawn:

1. The damage degree of 60 ◦C shear strength and −10 ◦C and 15 ◦C indirect tensile
strength of the CRME increases with the freezing and thawing cycles increasing. As
the water content increases, the damage degree of performance increases significantly
under freezing and thawing cycles.

2. The fitting accuracy of the damage evolution model of CRME was good under freezing
and thawing cycles, and the correlation coefficients were greater than 0.98.

3. The shape factor and gradient factor of 60 ◦C shear strength and −10 ◦C and 15 ◦C
indirect tensile strength gradually increased with the increasing degree of saturation.
On the contrary, the scale factors gradually decreased with the increase in saturation
degree.

4. With the water content increasing, the generation of new voids and the interconnection
of voids occurred. The homogeneity of the CRME became worse, resulting in a
significant decrease in performance under freezing and thawing cycles with different
water contents.

5. Based on the results of the present study and other studies on the CRME subjected
to freezing–thawing cycles with various water contents, it is recommended that
future studies examine the fatigue performance, dynamic characteristic, and cracking
behaviors and establish a multi-scale model to reflect damage mechanisms.
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