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Abstract: Regenerated magnesia-calcium brick samples with different aluminium oxide (Al2O3)
contents were prepared using spent magnesia-calcium bricks and fused magnesia as the main raw
materials and Al2O3 powders as the additive. The phase compositions, microstructures, room temper-
ature, hot flexural strength, and kiln coating adherence of the regenerated samples were investigated.
This indicates that the Al2O3 content increased, mainly resulting in the content of tetracalcium
aluminoferrite (C4AF) and tricalcium aluminate (C3A) increasing in the regenerated samples. The
bulk density, room temperature flexural strength, and kiln coating adherence all increased, whereas
the hot flexural strength and corrosion resistance to cement clinker both deteriorated with an increase
in the Al2O3 content. This was because, on the one hand, the low melting point phases of C4AF
and C3A improved the sinterability of the regenerated samples during the burning stage, and on
the other hand, they melted or existed in the liquid phase at the experimental temperature, which
degraded the hot flexural strength and corrosion resistance but enhanced the kiln coating adherence
as the wettability of the liquid phase. The content of Al2O3 in the regenerated magnesia-calcium
brick should not be higher than 1.1 wt.%, considering its comprehensive performance for cement
rotary kiln.

Keywords: regenerated magnesia-calcium bricks; aluminium oxide; microstructures; flexural strength;
kiln coating adherence

1. Introduction

Currently, magnesite-chrome bricks are widely used in the cement rotary kiln in
China [1]. This has led to serious environmental problems because Cr(III) is easily oxidized
into toxic Cr(VI) in magnesite-chrome bricks under natural conditions [2], and spent
magnesite-chrome bricks have not been reasonably handled. Therefore, it is urgently
needed to develop free chrome refractory bricks as substitutes for magnesite-chrome bricks
in cement rotary kiln [3–5].

Magnesia-calcium bricks have been widely used as lining materials in ferrous met-
allurgy to produce clean steel such as in refining furnaces [6] because of their excellent
performance [7]. However, there are amounts of spent magnesia-calcium bricks not being
reused effectively [8] because impurity elements such as Si, Fe, and Al from molten steel
and slag remain in spent magnesia-calcium bricks, and these impurities can damage the
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usability of regenerated products [9–11]. These spent magnesia-calcium bricks have not
been reused, as they not only occupy large amounts of land and cause environmental
harm but also cause a waste of resources such as magnesia and calcium oxide in the spent
bricks. At present, there are very few studies on the utilization of spent magnesia-calcium
bricks [8,12].

Magnesia-calcium bricks are also regarded as a substitute for magnesite-chrome bricks
for the cement rotary kiln [13] because they have similar operational performances, such
as high-temperature resistance, corrosion resistance, and good coating adherence [14,15].
However, the application of magnesia-calcium bricks in the cement rotary kiln has been
restricted since they have poor hydration resistance, which can result in serious structural
damage [16]. Related studies have shown that aluminium oxide (Al2O3) can enhance the
hydration resistance of magnesia-calcium bricks [17,18].

In a previous work [19,20], a kind of regenerated magnesia-calcium brick with high-
hydration resistance was prepared based on spent magnesia-calcium bricks, without re-
moving impurities from spent magnesia-calcium bricks. The maximum utilization rate of
the spent magnesia-calcium brick was 67 wt.%. This not only leads to the high reutilization
rate of spent magnesia-calcium bricks but also provides the possibility for the application of
regenerated magnesia-calcium bricks in the cement rotary kiln to substitute for magnesite-
chrome bricks due to the improved hydration resistance. Nevertheless, the content of
Al2O3 impurities in different spent magnesia-calcium bricks was fluctuant in previous
experiments; moreover, high-temperature performances, such as high-temperature strength
and refractoriness, can be degraded because of excessive impurity content, particularly
the content of Al2O3 [21,22]. Therefore, the content of Al2O3 impurity in the regenerated
magnesia-calcium bricks might have a remarkable influence on the performance of the
cement rotary kiln.

In this work, the effects of Al2O3 content on regenerated magnesia-calcium bricks for
the cement rotary kiln were studied in detail by investigating the regenerated magnesia-
calcium bricks with different mass ratios of Al2O3 additive to the main materials.

2. Materials and Methods
2.1. Raw Materials of the Regenerated Magnesia-Calcium Bricks

The raw materials of the regenerated magnesia-calcium bricks were divided into main
materials and additives, of which the main raw materials were spent magnesia-calcium
bricks and fused magnesia, and the additive was Al2O3 powders. The spent magnesia-
calcium bricks were obtained from a refining furnace in the ferrous industry, the fused
magnesia was obtained from a refractory materials plant, and the Al2O3 powder additive
was a kind of analytical reagent with a particle size of less than 0.088 mm purchased
from Sinopharm Chemical Reagent Co., Ltd. of China (Shanghai, China). The chemical
compositions of the main raw materials were determined by measuring their powders with
a particle size of less than 0.088 mm using an 1800 X-ray fluorescence spectrometer (XRF)
with a test error of less than 0.05%, and the results are shown in Table 1.

Table 1. Compositions of the raw materials of the regenerated magnesia-calcium bricks (wt.%).

Constituents MgO CaO SiO2 Fe2O3 Al2O3

Spent magnesia-calcium bricks 58.18 33.92 2.81 2.68 1.51
Fused magnesia 94.16 1.63 2.64 1.00 0.27
Al2O3 powders - - 0.30 0.03 98.75

2.2. Preparation of the Regenerated Magnesia-Calcium Bricks

Figure 1 shows the synthetic process of the regenerated magnesia-calcium bricks,
which was an improvement of the previous work [19,20]. Spent magnesia-calcium bricks
and fused magnesia were crushed and screened into powders (particle size < 0.088 mm),
among which spent magnesia-calcium bricks powders were calcinated at 1173 K for 2 h and
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fused magnesia powders were dried at 383 K for 2 h in order to remove the hydration factor
from the main raw materials. The mixture of the regenerated magnesia-calcium brick green
body was prepared by mixing spent magnesia-calcium bricks and fused magnesia powders,
Al2O3 powder additive, and melted paraffin (purchased from Sinopharm Chemical Reagent
Co., Ltd. of China) as the binder. The green body was prepared by pressing the mixture
at 100 MPa to form a rectangle with dimensions of 60 mm × 8 mm × 8 mm subsequently.
The regenerated magnesia-calcium brick samples (regenerated samples) were obtained by
firing the green bodies in a silicon-molybdenum bar heating furnace, heating to 1873 K at a
rate of 5 K/min, and maintaining for 2 h under an air atmosphere finally.
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Figure 1. The synthetic process flow chart of regenerated magnesia-calcium bricks with Al2O3

powder addition.

In a previous work, the content of Al2O3 impurity in a regenerated sample containing
70 wt.% MgO was from 1.10 wt.% to 3.34 wt.% [13]. In order to study the effects of Al2O3
content on the regenerated samples for cement rotary kiln, in this work, three kinds of
regenerated samples were prepared, among which the mass ratios of the spent magnesia-
calcium bricks to the fused magnesia were all 67.15:32.85, and the mass ratios of the Al2O3
powder additive to the main materials were 0:100, 1.5:100, and 3.0:100; that is, the Al2O3
addition was 0 wt.%, 1.5 wt.%, and 3.0 wt.%, respectively. Their compositions are shown
in Table 2, and their corresponding fired samples are marked as samples A0, A1.5, and
A3.0. It can be seen that the Al2O3 impurity content in samples A0, A1.5, and A3.0 was
from 1.10 wt.% to 3.94 wt.% (as shown in Table 2), it could cover the fluctuation range of
the Al2O3 content in regenerated samples prepared in the previous work.

Table 2. Compositions of the regenerated magnesia-calcium bricks’ green bodies (wt.%).

Sample MgO CaO SiO2 Fe2O3 Al2O3

A0 70.00 23.31 2.66 2.21 1.10
A1.5 68.97 22.97 2.63 2.18 2.54
A3.0 67.96 22.63 2.59 2.15 3.94

2.3. Methods of Investigation
2.3.1. Phase Compositions

To determine the phase compositions of the regenerated samples, their powders
(<0.088 mm) were identified via MXP21VAHF X-ray powder diffractometry (XRD) analysis.
The formation reactions of the impurity phases were calculated using thermodynamics.
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2.3.2. Microstructures and Elements Distribution

To explore the microstructures of the regenerated samples, their surfaces and fractures
were investigated using an MLA 250-FEI Quanta scanning electron microscope (SEM),
and the element distribution of the microstructures was investigated using an energy
dispersive spectrometer (EDS). In addition, the bulk density of each kind of regenerated
sample was measured using the Archimedes method to characterize the compactness of
the regenerated samples.

2.3.3. Room Temperature and Hot Flexural Strength

The three-point bending test method was used to measure the room-temperature
flexural strength of the regenerated samples. The maximum force to break each regenerated
sample was carried out using a WDW-10E microcomputer-controlled electronic universal
testing machine.

The hot flexural strength of the regenerated samples was determined using the
three-point bending test method. Each regenerated sample was placed into a CMT 5204
temperature-mechanical load coupling testing machine and heated to 1573 K at a rate of
5 K/min. The maximum force required to break each kind of regenerated sample was
determined after maintaining 1573 K for 30 min.

2.3.4. Kiln Coating Adherence

Kiln coating adherence refers to the ability of the refractory lining to react with cement
to form a protective layer during the formation of cement. Suitable kiln coating adherence
can protect refractories, inhibit their further erosion, and extend their service life. Therefore,
kiln coating adherence is one of the most important properties of cement rotary refractories.

Two identical regenerated samples of each batch, A0, A1.5, and A3.0, were bonded with
5 mm thick cement clinker grout that contained 90.48 wt.% cement clinker, 4.76 wt.% K2SO4,
and 4.76 wt.% glycerol to make the test sample, as shown in Figure 2a, among which the
cement clinker was a kind of 425 Portland cement clinker from a cement plant, and K2SO4
and glycerol were both kinds of analytical reagents. These test samples were named bonded
samples BA0, BA1.5, and BA3.0, and they were placed in a silicon-molybdenum bar heating
furnace, heated to 1823 K at a rate of 5 K/min, and kept at 1823 K for 3 h. After cooling to
room temperature, the maximum breaking force of each test sample was determined using
the three-point bending test method with a WDW-10E microcomputer-controlled electronic
universal testing machine, as shown in Figure 2b. The flexural strengths of the bonded
samples were determined using the three-point bending test method, which was used
to characterize the kiln coating adherence of the regenerated sample; that is, the higher
the flexural strengths of the bonded sample, the better the kiln coating adherence of the
regenerated sample. In addition, to explore the reaction mechanism between kiln coating
and regenerated samples, the microstructure and element distributions of the bonded
samples after the kiln coating adherence experiment were investigated using an MLA
250-FEI Quanta SEM and an EDS.
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3. Results
3.1. Phase Compositions of the Regenerated Magnesia-Calcium Bricks

Figure 3a shows the XRD patterns of samples A0, A1.5, and A3.0. The results indicate
that the main phase compositions of the samples A0 and A1.5 were identical to those
of magnesia (MgO), free calcium oxide (f-CaO), tricalcium silicate (Ca3SiO5, C3S), and
tetracalcium aluminoferrite (Ca2FeAlO5 and C4AF), whereas the main phase compositions
of the sample A3.0 were MgO, f-CaO, C3S, C4AF, and tricalcium aluminate (Ca3Al2O6,
C3A). This shows that a new C3A phase was generated and other phases did not change
according to the increase in Al2O3 content in the regenerated samples.
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Figure 3. XRD patterns of samples A0, A1.5, and A3.0: (a) the range of 20–80◦; (b) the range of 28–42◦.

Figure 3b shows that the intensity of the characteristic diffraction peaks of f-CaO
[ICaO(200)] and MgO [IMgO(111)] were the two highest peaks in the range of 28–42◦ and
varied significantly. The relative intensities of ICaO(200)/IMgO(111) decreased observably
along with an increase in Al2O3 content in the regenerated magnesia-calcium bricks, as
shown in Figure 4. It also indicates that the content of f-CaO decreased along with an
increase in Al2O3 content in the regenerated samples because the phase of MgO was
exclusive and stable in the regenerated samples, as shown in Figure 3.
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Figure 3 shows that the element Fe in the regenerated samples existed only in the
C4AF phase, and the element Al in the regenerated samples existed in both the C4AF and
C3A phases. The standard Gibbs energy of reactions between Fe2O3, Al2O3, and f-CaO
which generate C4AF and C3A, are shown in Figure 5 of lines a and c [23]. This shows that
the phase of C4AF generates preferentially when the impurity elements of Fe and Al exist
concurrently, and the phase of C3A generates when there is excess Al element impurity
(the mole ratio of Fe2O3 to Al2O3 < 1). In addition, a preliminary study proved that the
phase of dicalcium ferrite (Ca2Fe2O5, C2F) is generated when the mole ratio of Fe2O3 to
Al2O3 is >1 [20], and the standard Gibbs energy of the reaction between Fe2O3 and f-CaO
for generating C2F is shown in Figure 5 of line b [23].
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Figure 5. Standard Gibbs energy of the reactions between Fe2O3, Al2O3, and f-CaO vs. temperature
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The theoretical content of the C3S, C4AF C2F, C3A, and f-CaO phases (calcium-based
phases) in the regenerated samples can be calculated using Equations (1)–(7) [24]. The
results (as shown in Table 3) indicate that with an increase in Al2O3 content in the regener-
ated samples, the form of the element impurity of Fe in the regenerated samples changed
from the phase of C2F to C4AF, whereas the form of the element impurity of Al in the
regenerated samples changed from the phase of C4AF to C4AF and C3A. The theoretical
content of the phase C2F in sample A0 and the phase C3A in sample A1.5 were both less
than 5 wt.%; therefore, their character diffraction peaks are not observed in Figure 3.

w(C3S) = 3.80w(SiO2) (1)

w(C4AF) = 4.77w(Al2O3) (mole ratio of Fe2O3 to Al2O3 > 1) (2)

w(C4AF) = 3.04w(Fe2O3) (mole ratio of Fe2O3 to Al2O3 < 1) (3)

w(C2F) = 1.70[w(Fe2O3) − 1.57w(Al2O3)] (4)

w(C3A) = 2.65[w(Al2O3) − 0.64w(Fe2O3)] (5)

w(f-CaO) = w(CaO) − 1.10w(Al2O3) − 0.70w(Fe2O3) − 2.80w(SiO2) (mole ratio of Fe2O3 to Al2O3 > 1) (6)
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w(f-CaO) = w(CaO) − 1.65w(Al2O3) − 0.35w(Fe2O3) − 2.80w(SiO2) (mole ratio of Fe2O3 to Al2O3 < 1) (7)

w(C3S), w(C4AF), w(C2F), w(C3A), and w(f-CaO)—the mass fraction of the calcium-based
phases in the regenerated samples, wt.%;
w(SiO2), w(Al2O3), w(Fe2O3), and w(CaO)—the mass fraction of the regenerated samples’
composition, wt.%.

Table 3. Theoretical contents of each calcium-based phase in the regenerated samples (wt.%).

Calcium-Based Phases A0 A1.5 A3.0

C3S 10.11 9.98 9.85
C4AF 5.25 6.62 6.53
C2F 0.82 0.00 0.00
C3A 0.00 3.05 6.81

f-CaO 13.11 10.66 8.12

3.2. Microstructures and Elements Distribution of the Regenerated Magnesia-Calcium Bricks

Figure 6a,c,e show the SEM images of the regenerated samples’ surfaces, and Figure 6b,d,f
show the element distribution of the regenerated samples’ surfaces. It shows that the white
phases shown in the selected areas 1, 2, and 3 in Figure 6a,c,e are f-CaO, C4AF or C4AF-C3A,
and C3S phases, respectively, whereas the dark phases shown in Figure 6a,c,e are all MgO
phases based on the element distribution shown in Figure 6b,d,f, and these calcium-based
phases became more and more continuous along with an increase in Al2O3 content in the
regenerated samples. Moreover, it indicates that the phases of C4AF and C3A showed
a tendency of aggregation in samples A1.5 and A3.0. This is because the elements of Fe
and Al existed in the form of a liquid phase at the firing temperature (1873 K), and the
C3A phase (melting point of 1808 K [23]) and C4AF phase (melting point of 1688 K [25])
successively crystallized from the liquid phases and sintered together during the furnace
cooling process.

Figure 7a–c show the SEM images of the regenerated samples’ fractures, and Figure 7d
shows the bulk density of the regenerated samples. It can be seen that the compactness
of the regenerated samples was enhanced along with an increase in Al2O3 content in the
regenerated samples. This is because the content of the liquid phase in the regenerated
samples at the firing temperature increased along with an increase in Al2O3 content in the
regenerated samples, and it improved the sinterability of the regenerated samples.
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3.3. Room Temperature and Hot Flexural Strength of the Regenerated Magnesia-Calcium Bricks

Figure 8 shows the results of the room temperature and the hot (1573 K) flexural
strength of samples A0, A1.5, and A3.0. This indicates that the room-temperature flexural
strength of the regenerated samples increased, and the hot flexural strength of the regener-
ated samples reduced with Al2O3 content increasing. This is because, with an increase in
Al2O3 content in the regenerated samples, the density of the regenerated sample increased
on the one hand, as shown in Figure 7d, leading to an increase in its room-temperature
flexural strength, and on the other hand, the regenerated sample generated more low-
melting-point phases (such as C4AF and C3A), as shown in Table 3, resulting in a decrease
in its hot flexural strength.
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3.4. Kiln Coating Adherence of the Regenerated Magnesia-Calcium Bricks

The flexural strengths of the bonded samples BA0, BA1.5, and BA 3.0 are shown
in Figure 9a. It shows that the flexural strengths of the bonded samples were enhanced
along with an increase in Al2O3 content in the regenerated samples; that is, there was
an increasing tendency of the kiln coating adherence as Al2O3 content in the regenerated
samples increased.

The SEM images of the cross-section of the bonded samples BA0, BA1.5, and BA3.0
after the kiln coating adherence experiment are shown in Figure 9b–d. It can be seen that
the cement clinker corroded the regenerated samples along the calcium-based phases, and
the corrosion was more serious in bonded samples BA1.5 and BA3.0 than in bonded sample
BA0. This is because the low-melting-point phases in the calcium-based phases of the
regenerated samples existed in the form of a liquid phase at the experimental temperature
(1823 K), which improved the wettability of the regenerated samples, and thus, the melting
cement clinker was much easier to corrode the regenerated samples along the areas of
these low-melting-point phases (indicated by red arrows in Figure 9b–d). Therefore, more
cement clinker corroded the regenerated sample along with an increase in Al2O3 content
in the regenerated samples as the content of the low-melting-point phases increased, and
it also increased the reaction areas between the cement clinker and regenerated samples,
which enhanced the kiln coating adherence, as shown in Figure 9a.

Moreover, the reaction between the cement clinker and the phase of MgO, which was
the major phase of the regenerated sample, was carried out by an element distribution
scanning analysis across their contact areas, as shown in Figure 10a. This indicates that
a reaction layer containing Ca, Sim, and Mg existed on the interfacial surface of these
contact areas. The thickness d of the reaction layer gradually became larger with increasing
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Al2O3 content in the regenerated samples, as shown in Figure 10b, which also indicates
aggravating corrosion of the cement clinker to the phase of MgO.
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Generally, the increase in Al2O3 content in the regenerated samples led to an increase
in the content of the low-melting-point phases of C4AF and C3A, and it had a positive effect
on the bulk density, room-temperature flexural strength, and kiln coating adherence of the
regenerated samples; on the contrary, it had an adverse effect on the hot flexural strength
and the corrosion resistance of the cement clinker.

The performances of chromium-free refractories used in the cement rotary kiln as
reported in [26,27] were compared with the corresponding performances of the regenerated
samples, and the results are shown in Table 4. It shows that the bulk density, room-
temperature flexural strength of the samples A0, A1.5, and A3.0, and the flexural strengths
of the bonded samples BA0, BA1.5, and BA 3.0 were all higher than those reported in
the literature; however, only the hot flexural strength of sample A0 was higher than
that reported in the literature. Therefore, sample A0 behaved the best comprehensive
performances; that is, the content of Al2O3 in the regenerated magnesia-calcium brick
should not be higher than 1.1 wt.%.

Table 4. Comparison of the performances between chromium-free refractories and the regener-
ated samples.

Performances Sample
A0/BA0

Sample
A1.5/BA1.5

Sample
A3.0/BA3.0 Literature

Bulk density
(g/cm3) 2.95 3.05 3.18 2.93

Room-temperature
flexural strength

(MPa)
68.58 70.91 93.11 21.60

Hot flexural strength
(MPa) 9.65 4.34 3.62 5.40

Bonded sample
Room-temperature

flexural strength
(MPa)

1.61
(BA0)

2.25
(BA1.5)

7.89
(BA3.0) 0.52

4. Conclusions

In this work, the effects of Al2O3 content on regenerated magnesia-calcium bricks
for the cement rotary kiln were systematically researched. The regenerated magnesia-
calcium brick samples were prepared using spent magnesia-calcium brick, fused magnesia,
and Al2O3 powder additive as the raw materials, liquid paraffin as the binder, and firing
at 1873 K for 2 h under an air atmosphere. The phase composition of the regenerated
magnesia-calcium bricks with different Al2O3 contents indicated that the main phases of
samples A0 and A1.5 were magnesia (MgO), free calcium oxide (f-CaO), tricalcium silicate
(C3S), and tetracalcium aluminoferrite (C4AF). In sample A3.0, a new phase of tricalcium
aluminate (C3A) was observed besides MgO, f-CaO, C3S, and C4AF. The increase in Al2O3
content in the regenerated samples mainly led to an increase in the content of the C4AF
and C3A phases in the regenerated samples according to the theoretical calculation. The
content of Al2O3 in the regenerated samples has a significant impact on the performance
of cement rotary kiln applications. Specifically, as the content of Al2O3 increased, the
content of the low-melting-point phases of C4AF and C3A increased, which improved
the sinterability of the regenerated sample, leading to an increase in the bulk density,
room-temperature flexural strength, and the kiln coating adherence of the regenerated
sample. The high-temperature performances of the regenerated samples, such as the hot
flexural strength (1573 K) and the corrosion resistance to cement clinker, deteriorated along
with an increase in Al2O3 content because the melting points of the C4AF and C3A phases
were close to the experimental temperature. Furthermore, C4AF and C3A were in the
liquid phase form at 1823 K, which wetted the regenerated sample to enhance the reaction
between the cement clinker and the regenerated samples, resulting in increasing the kiln
coating adherence. Based on the performance and application scenarios of the regenerated
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magnesium-calcium brick, the total content of Al2O3 in the regenerated magnesia-calcium
brick should be no more than 1.1 wt.% compared to the main performances with other
chromium-free refractories for cement rotary kiln. Moreover, sample A0 can be considered
the most suitable regenerated sample for the cement rotary kiln because of its excellent
comprehensive performance with a bulk density of 2.95 g/cm3, room temperature and hot
flexural strength of 68.58MPa and 9.65 MPa, bonded sample flexural strength of 7.89 MPa,
and good corrosion resistance to cement clinker. This may provide a reference for the
replacement of hazardous magnesite-chrome bricks in the cement rotary kiln with the
regenerated magnesia-calcium bricks.
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