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Abstract: The implementation of renewable portfolio standards (RPS) and tradable green certificate
schemes will exert significant influences on the market equilibrium outcomes and generation firms’
strategic behaviors. To quantitatively investigate these influences, firstly, considering the difference
in power generation cost and the uncertainty of renewable energy power generation, the equilibrium
model for various trade subjects in the electricity market is established. Secondly, the nondominated
sorting genetic algorithm II is adopted for solving the equilibrium model to find well-distributed
Pareto-optimal solutions. Finally, the grey relational projection method is used to calculate the
priority membership of each decision-making scheme so as to determine the optimal compromise
solution. The simulation focuses on analyzing the impact of RPS on the equilibrium results and
market behavior of power generators and introduces the Lerner index to quantify the market power
of generators. The results show that: (1) An increase in the quota ratio can effectively increase
power generation in renewable energy generators. The game between thermal power generators
and renewable energy generators raises the prices of both markets at the same time. (2) Improving
the forecasting accuracy is conducive to alleviating the market power behavior of various power
generators, thereby ensuring the healthy operation of the power market.

Keywords: renewable energy quota; green certificate system; equilibrium model; renewable energy
uncertainty; market power

1. Introduction

To support the development of renewable energy, China was the first to implement
mandatory grid access and fixed electricity prices for renewable energy [1]. In the early
stage of the market, the fixed electricity price system plays a certain role in supporting
renewable energy, but with the further maturity of the market, it can not solve the root prob-
lem of renewable energy consumption [2]. With the gradual decline in the cost of renewable
energy in recent years, the government actively encouraged renewable energy companies to
participate in the electricity market competition [3] and the adoption of renewable portfolio
standard (RPS), which is more suitable for the current market environment, has become a
consensus [4].

The influence of RPS on the operation of the power market has always been a research
hotspot [5]. Existing studies can be divided into two categories: first, feasibility analyses
based on foreign experience to design renewable energy power and green certificate trading
mechanisms applicable to China. Reference [6] studied different foreign renewable energy
electricity consumption mechanisms, providing reference experience for China to establish
the quota system, but did not put forward a specific implementation plan of the quota
system suitable for China’s national conditions. Reference [7] demonstrates the rationality
and effectiveness of the quota system from the perspective of institutional construction
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and the evolution of power generation manufacturers’ behavior strategies. Combined
with China’s specific national conditions, countermeasures and suggestions are given.
Based on the oligarchic competitive equilibrium theory, reference [8] established Cournot
competitive equilibrium models in the electricity market, respectively, considering feed-in
tariff and tradable green certificates (TGC) policies, and studied the influence of the two
different policies on the equilibrium results of the electricity market and social welfare.
The simulation results show that compared with the TGC mechanism, under feed-in tariff
policy, fossil fuel power generators do not directly bear environmental costs, which makes
them less incentive to reduce power generation output. Therefore, feed-in tariff policy
has a poor effect on energy conservation and emission reduction. Compared with the
feed-in tariff mechanism, TGC policy is closer to the market competition mechanism, so
social welfare is higher. Reference [9] proposed the TGC-fractional fuzzy stochastic robust
optimization model, which effectively deals with the multi-objective tradeoff between
economy and environment. The simulation results show that the TGC mechanism is a
cost-effective way to achieve carbon emission reduction. Specifically, it can effectively
promote the development of renewable energy and reduce the use of fossil fuels. In the
framework of a two-level market, reference [10] establishes a nonlinear two-level optimal
absorption model with the goal of minimizing market operation costs. The simulation
results show that the implementation of RPS can effectively stimulate the enthusiasm of
market subjects to consume new energy and reduce the phenomenon of abandoning wind
and solar power, but it will also bring corresponding market costs. In reference [11], a
grid-connected energy-saving economic dispatching model of wind power under the quota
system is constructed, and the thermal power and wind power output plans before and
after the implementation of the quota system are compared and analyzed so as to study
the influence of the implementation of the quota system on wind power consumption.
Simulation results show that RPS is beneficial in increasing wind power consumption.
Based on RPS policy, reference [12] constructed the system dynamics model of a multi-
market coupled trading system in the renewable power market, over-quota consumption
market, and tradable green certificate market. Based on six scenarios, the effects of policy
parameters such as RPS quota planning target, unit penalty, and TGC price caps were
investigated. The results show that RPS not only affects the price and trading volume of
multi-markets but also promotes renewable energy generation in China. Reference [13]
established a market equilibrium model for TGC and analyzed the strategic behavior of
renewable energy companies. The results suggest that renewable energy companies will
exercise market power to drive up energy prices, reduce renewable energy integration, and
raise consumer costs when renewables penetration is high. However, upon introducing the
TGC market, the strategic behavior of renewable energy generators in the energy market
will be largely mitigated because they can earn TGC incentives by selling more electricity.

The second is to establish an equilibrium or optimization model to discuss the transfer
relationship between power price and certificate price and study the decision-making
behavior of each market subject [14]. The falling costs of renewable energy generators
have led to a growing number of countries allowing and encouraging renewable energy
generators to compete directly in wholesale markets. The participation of renewable energy
generators in market competition will not only affect the competitive behaviors of original
participants in the market but also may have strategic behaviors in order to ensure profits.
Based on equilibrium theory, the following reference studies the impact of renewable
energy generators’ participation in market competition on the electricity market. Based on
the oligarchic competitive equilibrium theory, reference [15] uses the Cournot equilibrium
model to simulate the competitive behavior of power generators in the unilateral open
power market and studies the strategic quotation of power generators. The literature
shows that in the oligopoly competition market environments, the power generation will
choose to deliberately bid high prices to exercise the market power and then raise the
market price, increasing income. However, this model does not consider the impact of new
energy generators on market competition behavior. Reference [16] establishes an electricity
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market equilibrium model based on a stackdberg competition, which allows wind power
generators to directly participate in day-ahead market competition and studies the strategic
behavior changes in wind power generators in different market states. However, this model
does not involve the strategic competitive behavior of traditional energy generators. In
order to promote renewable energy consumption, reference [17] established an evolutionary
game model between power grid enterprises and renewable energy enterprises under
the RPS, studied the decision-making behavior and interaction between the two in the
green certificate market and electricity market, and analyzed the influence of combination
standard parameter adjustment on the evolution direction. However, this model does not
consider the volatility and intermittency of renewable energy generation. Reference [18]
established a Nash–Cournot market clearing model considering the high penetration of
prosumers. The influence of the uncertainty of renewable energy output, the penetration
level of wind power, and the demand level on the market equilibrium are studied, but
this model does not consider the effect of the implementation of the quota system on the
decision-making behavior of power generators. Reference [19] introduced the TGC system
into the daily scheduling plan model of a wind power generation system and, combined
with an RPS system, established an economic scheduling model with the maximum net
income of both parties as the objective function. The simulation results comprehensively
analyze the influence of large-scale wind power grid entry on TGC-based power system
economy but ignore the influence of different proportions of renewable energy quota.
Reference [20] proposed the competitive edge model of leading enterprises for the market
power in the implementation of RPS and analyzed the influence of the market power of
different leading enterprises on TGC price and feed-in price. Under different quota ratio
requirements, empirical research is conducted to obtain the impact of the market power
of different leading enterprises on TGC price and feed-in tariff, indicating that too low
TGC price will lead to insufficient investment in long-term renewable energy development,
while too high a TGC price will distort the incentive signal of investment and lead to
inefficient allocation of long-term power generation resources. In addition, this model is
limited to theoretical analysis, and no empirical analysis is conducted.

Based on the above analysis, the existing literature does not consider the uncertainty
of renewable energy power generation, the impact of the difference in the cost of thermal
power generation and renewable energy power generation on the market equilibrium result,
and the decision-making behavior and interaction between various power generation
entities under the renewable energy quota system. In order to fill the gaps in the existing
literature, this study proposes a multi-transaction entity equilibrium model of the electricity
market under the renewable energy quota system. The main contributions of this study are
summarized as follows:

(1) By studying the cost difference between thermal power generation and renewable
energy power generation, the power generation cost of the two power generation
modes is analyzed in detail. In order to maximize the revenue of the thermal power
producers alliance and renewable energy power producers alliance, a market equi-
librium model including the green certificate trading market and electricity market
is constructed.

(2) The model was solved by combining nondominated sorting genetic algorithm II
(NSGA-II) with grey relational projection (GRP). In the first stage, the NSGA-II algo-
rithm was used to find a well-distributed Pareto solution set. In the second stage, the
GRP method is used to calculate the priority membership of the solution set to select
the best compromise solution.

(3) The changes in power generation and clearance results of different types of power
producers under different quota ratios were compared, and the market power behav-
ior of each power producer based on the market equilibrium results was analyzed. By
introducing the market power index, this study quantifies the influence of renewable
energy forecasting errors on the market power of power generators.
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The remainder of this study is organized as follows: Section 2 constructs the electricity
market equilibrium model under the renewable energy quota system. In Section 3, the
process of solving the equilibrium model is studied. In Section 4, the validity of the model
is verified by simulation analysis. Section 5 concludes.

2. Equilibrium Model of Electricity Market under Renewable Portfolio Standard
2.1. Model Building Ideas

Based on the basic idea of game theory, this study simulates the bidding behavior of
generators in the electricity market, and each generator formulates a reasonable bidding
strategy to seek the maximization of its own interests. After many games, all the generators
involved in the market will reach an equilibrium state. In this state, each generator has no
motivation to change its own strategy and achieves the maximization of its own interests,
also known as the Nash equilibrium state.

2.2. Model Assumptions

Assumption 1. Consider the energy market composed of a green certificate market and an electricity
market, in which the number of thermal power generators is M, and the number of renewable energy
power generators is N. The market stipulates that power generators have quota requirements, and
the quota is represented by K; that is, each power generator must ensure that K’s share of its total
power generation comes from renewable energy. At the same time, one unit of green certificate can
be obtained for every 1 MWh of renewable energy produced.

Assumption 2. In the electricity market, the electricity supply and demand are always in a state
of balance, and a linear function relationship is satisfied between the transaction price and the
total electricity demand. Therefore, the inverse demand function of the transaction price can be
expressed as:

Ps = A− BQ (1)

where Ps is the electricity market transaction price, A and B are constants greater than 0, and Q is
the total demand in the electricity market.

Assumption 3. Assume that all generators compete in the electricity market in a Cournot competi-
tion model. Renewable energy generators can sell excess green certificates for additional income.
Renewable energy generators participate in the certificate market competition in the form of the
following supply functions:

QTGC
j = αj + β j pc (2)

where αj and β j are the intercept and slope of the supply function, respectively. QTGC
j is the

number of green certificates sold by the j-th renewable energy generator, and pc is the price of
green certificates.

2.3. Green Certificate Transaction Mode

Figure 1 shows the interrelationships among various participants, including govern-
ment departments, thermal power generators, and renewable energy generators. Govern-
ment departments, as policymakers, assign quota tasks to power generators. Both thermal
power generators and renewable energy generators can make profits by selling electricity
in the electricity market. When renewable energy generators produce green electricity, the
government issues green certificates to them. As a green certificate holder, it trades with
thermal power generators in the green certificate market and attains additional income.
In the green certificate market, the price of the certificate is inversely proportional to the
quantity. The volume of green certificates is related to the amount of electricity generated
and sold by renewable energy generators. For renewable energy generators, they can
choose to sell their existing certificates in time, or they can hold certificates and wait for
them to be sold when the price of these certificates rises.
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2.4. Renewable Energy Uncertainty

With the rapid increase in the grid-connected scale of renewable energy, in order to
ensure the safe and stable operation of the power system, the allocation of reserve capacity
must be strengthened on the original basis to cope with the volatility and intermittency of
renewable energy generation.

For a power system with renewable energy, an important basis for examining whether
the reserve configuration is reasonable is whether the reliability of the system remains
unchanged before and after the renewable energy is connected. In this study, the reliability
index loss-of-load probability (LOLP) is used as the basis for determining the reserve
capacity. According to the reference [21], it can be seen that the user load prediction
approximately obeys the law of normal distribution, so the calculation formula of the
probability of loss of load is shown in Equation (3).

LOLP =
∫ ∞

Rl

1√
2πσl

exp(−∆Pl
2

2σ2
l
)d∆Pl (3)

where σl is the standard deviation of the load forecast error, which is generally considered
to be inversely proportional to the installed capacity of the system; Rl is the load reserve of
the system, which can usually be set as a fixed proportion of the load demand; ∆Pl is the
load prediction error.

In the existing studies, the probability distribution of renewable energy prediction
error exists in various forms, and this study takes wind power uncertainty as an example.
Reference [22] regards renewable energy as a negative equivalent load and believes that
it also obeys the law of normal distribution near the predicted value, thus obtaining the
additional reserve capacity after renewable energy is connected to the grid. However, a
large number of statistical data prove that the use of normal distribution to simulate the
power prediction error of renewable energy cannot accurately reflect the peak and thick
tail characteristics of the probability density curve. Therefore, this study uses the joint
probability density function of normal and Laplace distributions to fit the forecast error of
renewable energy generation, namely:

f1(∆Pwind) =
a1

2b
exp(−|∆Pwind|

b
) +

a2√
2πσwind

exp(−∆Pwind
2

2σwind
2 ) (4)

where ∆Pwind is the renewable energy generation forecast error, σwind is the standard
deviation of the renewable energy generation forecast error, b is the scale parameter, a1, a2
is the proportional coefficient, and its calculation formula is:{

3a1 + 6a2 = kW
a1+a2 = 1

(5)
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where kW is the kurtosis, and its size is related to the peak value of the probability density
curve at the mean value.

It can be seen from the reference [23] that the forecast error of renewable energy and
the load forecast error are independent of each other. If the renewable energy power
generation is regarded as a negative equivalent load, the probability density function of the
forecast error of the net load of the system is:

f (∆Pnet) = f (∆Pwind + ∆Pl) = f1(∆Pwind) ∗ f2(∆Pl) (6)

where f2 is the probability density function of the normal distribution.
Since the probability of system load loss remains the same before and after the addi-

tion of renewable energy, the reserve capacity to be set can be determined according to
Equation (7): ∫ Rdemand

−∞
f (∆Pnet)d∆Pnet = 1− LOLP (7)

where Rdemand is the reserve capacity that the renewable energy generator needs to configure.

2.5. Objective Function
2.5.1. Maximize the Revenue of Thermal Power Generators

The income of each thermal power generator mainly includes two parts: the first part
is the net income from power generation, which is the income from power generation minus
the cost of power generation; the second part is the fee that thermal power generators
need to pay for purchasing green certificates in the green certificate market. Therefore,
the maximum revenue objective function of the thermal power generation alliance can be
expressed as: 

max
m
∑

i=1
fTermal,i =

m
∑

i=1
(Psqi − CTermal,i − Kpcqi)

CTermal,i = CRL,i + CME,i + CZJ,i
CRL,i = aiq2

i + biqi + ci
CME,i = Kme,i · qi

CZJ,i =
Caz,i

8760 fi
· r(1+r)ki

(1+r)ki−1
· qi

(8)

where fTermal,i is the revenue of the i-th thermal power generator, CTermal,i is the power
generation cost of the i-th thermal power generator, CRL,i is the fuel cost of the i-th thermal
power generator, qi is the power generation of the i-th thermal power generator, ai, bj, cj
are the fuel cost coefficients of the i-th thermal power generator, respectively, CME,i is the
maintenance cost of the i-th thermal power generator, Kme,i is the equipment maintenance
coefficient of the i-th thermal power generator, CZJ,i is the equipment depreciation cost
of the i-th thermal power generator, Caz,i is the installation cost of the i-th thermal power
generator, fi is the installation volume coefficient of the i-th thermal power generator, ki
is the operating life period of the device of the i-th thermal power generator, and r is the
annual interest rate.

2.5.2. Maximize the Revenue of Renewable Energy Generators

The income of each renewable energy generator mainly includes two parts: the first
part is the net income of power generation, which is the income from power generation
minus the cost of power generation; the second part is the income from selling a part of the
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green certificate in the green certificate market. Therefore, the maximum revenue objective
function of the renewable energy generator alliance can be expressed as:

max
n
∑

j=1
fRenewable,j =

n
∑

j=1
(Psqj − CRenewable,j + pcQTGC

j )

CRenewable,j = CME,j + CZJ,j + CDE,j
CME,j = Kme,j · qj

CZJ,j =
Caz,j

8760 f j
· r(1+r)kj

(1+r)kj−1
· qj

CDE,j = mjR2
demand,j + njRdemand,j

(9)

where fRenewable,j is the revenue of the j-th renewable energy generator, CRenewable,j is the
power generation cost of the j-th renewable energy generator, CME,j is the maintenance cost
of the j-th renewable energy generator, Kme,j is the equipment maintenance coefficient of the
j-th renewable energy generator, and qj is the power generation of the j-th renewable energy
generator, CZJ,j is the equipment depreciation cost of the j-th renewable energy generator,
Caz,j is the installation cost of the j-th renewable energy generator, f j is the installation
volume factor of the j-th renewable energy generator, k j is the operating life of the device
of the j-th renewable energy generator, CDE,j is the reserve cost when the j-th renewable
energy generator configures the reserve capacity Rdemand,j, mj, nj are the reserve capacity
coefficient of the j-th renewable energy generator.

2.6. Constraints

Constraint 1: The upper and lower limits of the power generation capacity of each
generator.

qmin
i ≤ qi ≤ qmax

i (10)

qmin
j ≤ qj ≤ qmax

j (11)

where qmin
i , qmax

i , qmin
j , and qmax

j represent the minimum and maximum power generation
of the i-th thermal power generator and the j-th renewable energy generator, respectively.

Constraint 2: The total number of green certificates actually sold by each renewable
energy generator is equal to the total number of green certificates purchased by each
thermal power generator.

n

∑
j=1

QTGC
j = K

m

∑
i=1

qi (12)

Constraint 3: The number of green certificates actually sold by renewable energy
generators does not exceed the upper limit of the number of green certificates available
for sale.

0 ≤ QTGC
j ≤ (1− K)qj (13)

Constraint 4: Green certificate price constraint.

QTGC
j = αj + β j pc (14)

3. Model Solving
3.1. Solving Framework

The competitive equilibrium of power generation trading entities is not only an
optimization problem but also a decision problem. In this study, the method of multi-
objective optimization combined with GRP is adopted. In order to show the logical structure
of this study more clearly, the overall solution framework of the market equilibrium model,
as shown in Figure 2, is constructed. The solution of the market equilibrium model is
divided into two stages. The first stage is the multi-objective optimization stage. The
NSGA-II algorithm is used to solve the established model, and a Pareto solution set is
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obtained, which enters the optimal decision stage in the decision range. The second stage
is the optimal decision stage. GRP method is used to evaluate each solution of the Pareto
solution set, and the optimal compromise solution under different quota ratios is obtained.
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3.2. NSGA-II Solving Algorithm

The revenue maximization of the power generator alliance is a multi-objective problem,
which can be solved using the NSGA-II algorithm [24]. In the green certificate trading
market, renewable energy generators use αj as the decision variable of renewable energy
generators in the certificate market, determine their own strategy variable αj to affect the
price of green certificates, and then seek to maximize their own benefits under strategic
equilibrium. In the electricity market, all generators participate in output competition in
the form of a Cournot, and a non-cooperative game is adopted among generators, and the
decision variable of each generator is selected as its own power generation. Each generator
seeks to maximize its own benefits by choosing the amount of electricity it generates in the
electricity market.

Firstly, a set of optimal parameters is randomly generated in the feasible region, and
the clearing results of the electricity market and the green certificate market are simulated.
The two optimization objective function values of the model are obtained, the statistical
objective function values are fed back to the optimization algorithm, and the fast, non-
dominated sorting and congestion calculation are achieved in the optimization algorithm.
Then, the optimal algorithm is used to cross and mutate the optimal parameters, and then
the appropriate individuals are selected to evolve into a new parent population, which
is simulated again in the simulation module. Follow the above steps to iterate until the
requirements are met, as shown in Figure 3.
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3.3. Grey Relation Projection

Upon combining the grey system theory and the vector projection principle, the GRP
method suitable for dealing with grey decision-making problems in practical systems can
be obtained [25]. In order to further solve the optimal revenue of the power generation
alliance under different quota ratios, this section uses GRP to evaluate each revenue and
selects the optimal revenue according to the value of priority membership. The process of
calculating the priority membership is as follows:

According to the characteristics of the indicators, the two objectives in this study are
“benefit-type” indicators and the projection value V+(−)

l of the l-th scheme on the ideal
(negative ideal) scheme is:

V+(−)
l =

Ng

∑
k=1

γ
+(−)
lk

w2
G,k√
t

∑
k=1

w2
k

(15)

where the superscript “+” represents the ideal solution, and the superscript “−” represents
the negative ideal solution, Ng is the number of indicators used to assess a scheme, γlk is
the gray correlation coefficient between the k-th indicator of the l-th solution and the ideal
(negative ideal) solution, wG,k is the weight of each indicator of the scheme. The priority
membership dl is

dl =
(V0 −V−l )

2

(V0 −V−l )
2
+ (V0 −V+

l )
2 , 0 ≤ dl ≤ 1 (16)
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where V0 is the value of Vl at γ = 1. It can be seen from the above formula that in order
to make the selected scheme closer to the ideal scheme and away from the negative ideal
scheme, the method proposed in this study selects the scheme with the largest priority
membership as the optimal compromise solution.

The overall calculation process of GRP is as follows: (1) Calculate the grey relation
coefficient γlk between the indicator and scheme. (2) Calculate the projection value Vl of
the scheme l onto the ideal schemes according to Formula (15). (3) Calculate the priority
membership dl of the scheme l according to Formula (16). (4) Output the best comprise
solutions with the highest priority membership values.

4. Case Study
4.1. Parameter Setting

This study assumes that there are six power generators participating in the market
competition, including four thermal power generators (G1, G2, G3, G4) and two renewable
energy generators (G5, G6). The electricity market transaction price is the inverse demand
function Ps = 100 − 0.04 Q. The parameter settings are shown in Table 1 below.

Table 1. Parameter settings.

Parameter G1 G2 G3 G4 G5 G6

qmax 280 MW 310 MW 320 MW 330 MW 300 MW 350 MW
qmin 30 MW 30 MW 30 MW 30 MW 100 MW 100 MW

a 0.082 0.076 0.073 0.061 - -
b 25.265 23.588 23.097 23.971 - -
c 96.3 95.1 95.3 94.9 - -

4.2. Pareto Optimal Solution Set

The population size of the NSGA-II algorithm is 50, the genetic algebra is 50, the
probability of intersection is 0.9 [26], the probability of mutation is 0.1, and the maximum
number of iterations is set to 100. The Pareto solution sets obtained when the quota ratio
ranges from 0.1 to 0.6 are shown in Figure 4.
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The priority membership degree of each solution in the Pareto solution set is calculated
using GRP, and the solution with the highest priority membership degree is regarded as
the optimal revenue of the power generation alliance. The results are shown in Table 2.

Table 2. Optimal compromise solutions for multi-objective optimization problems.

Quota Ratio
Thermal Power

Generators Alliance
Revenue/$

Renewable Energy
Generators Alliance

Revenue/$
Priority Membership

10% 29,932.92 7927.11 0.835
20% 25,822.22 13,092.61 0.865
30% 18,942.55 20,016.52 0.834
40% 10,682.59 30,898.27 0.872
50% 8779.87 34,858.33 0.872
60% 7957.80 36,142.83 0.828

It can be seen from the above that the proposed algorithm can solve the multi-objective
optimization problem of this example by effectively combining NSGA-II and GRP and
screening out the optimal compromise solution.

4.3. Analysis on the Equilibrium Results under Renewable Portfolio Standard
4.3.1. The Impact of Quota Changes on the Power Generation of Power Generators

Figure 5 shows the impact of quota changes on the power generation of thermal power
generators and renewable energy generators.
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As can be seen from Figure 5, with a continuous increase in the quota, the power gen-
eration of renewable energy generators gradually increases, while the power generation of
thermal power generators gradually decreases. The reason is that when the quota increases,
the market price of certificates increases, which increases the power generation cost of
thermal power generators. In order to reduce costs, rational thermal power generators will
choose to reduce power generation. Among them, the coal consumption coefficient of the
thermal power generator G1 is relatively high, which is a high energy-consuming unit and
is in a disadvantageous position in this market competition. The thermal power generation
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alliance chooses to let low energy-consuming power generators generate more power and
high energy-consuming power generators less power when striving for maximum revenue.

4.3.2. The Impact of Quota Changes on the Number of Market Transaction Certificates

Taking the renewable energy generator G5 as an example, Figure 6 shows the impact
of quota changes on the actual number of traded certificates and the number of tradable
certificates for the G5.
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As can be seen from Figure 6, under the same quota, the more electricity generated by
renewable energy generators means more certificates they can sell in the certificate market.
When the quota is below 30%, the actual number of certificates sold is always lower than
the number of certificates that can be traded. This means that renewable energy generators
choose to retain some green certificates in order to increase the price of green certificates
and increase their earnings. When the quota ratio is 0.1, the number of green certificates
held by renewable energy generators is 89; When the quota ratio is 0.2, the number of green
certificates retained is 46. It can be seen that the lower the quota ratio, the more green
certificates are retained by renewable energy generators. With an increase in the proportion
of quotas, the demand for quotas by renewable energy generators themselves and the
volume of green certificates demanded in the market also increased. When the quota is
higher than 30%, the number of certificates that can be traded is equal to the number of
certificates actually traded, indicating that at this time, renewable energy generators no
longer hold green certificates in the certificate market (no excess green certificates can be
retained), but with an increase in the quota proportion, their power generation gradually
decreases. It can be seen that renewable energy generators reduce the number of certificates
that can be traded in the certificate market by reducing the amount of electricity generated
and thus increasing the certificate price. To sum up, renewable energy generators choose
different strategies under different quotas to ensure the maximization of their own interests.

4.3.3. The Impact of Quota Changes on Electricity Market Transaction Prices and Green
Certificate Prices

Figure 7 shows the impact of quota changes on electricity market transaction prices
and green certificate prices.
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As can be seen from Figure 7, with an increase in the quota ratio, the transaction price
of the two markets increases simultaneously. The reason is that with an increase in the quota
ratio, on the one hand, when the quota ratio is low, the renewable energy power generators
hold green certificates, which increases the price of green certificates; on the other hand,
the thermal power generators need to buy more green certificates, and the thermal power
generators will reduce the purchase cost of green certificates by reducing power generation,
thus increasing the transaction price in the power market. In the green certificate market,
with an increase in the quota ratio, the number of green certificates traded by renewable
energy power generators gradually equals the number of green certificates actually traded.
Renewable energy power generators cannot raise the price of green certificates by retaining
them, and renewable energy power generators will reduce the number of green certificates
traded by reducing power generation, thus increasing the price of green certificates.

4.3.4. The Impact of Quota Changes on the Market Power of Generators

In order to more directly reflect the market power of generators, this study introduces
the Lerner index, which can measure the difference between the transaction price of
the electricity market and the marginal cost of generators. The Lerner index of the x-th
generator is:

Lernerx =
Ps −MCx

Ps
(17)

where MCx is the marginal cost of the x-th generator. Table 3 shows the impact of quota
changes on the Lerner index of G1 and G5.

Table 3. The impact of quota changes on the Lerner index of G1 and G5.

Quota Ratio 10% 20% 30% 40% 50% 60%

G1 0.492 0.529 0.551 0.599 0.610 0.673
G5 0.293 0.528 0.679 0.764 0.813 0.866

As can be seen from Table 3, with an increase in quota ratio, the market power of
both thermal power generators and renewable energy power generators is on the rise, and
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the average increase in the market power of renewable energy power generators is 26.8%,
much higher than the 6.49% of thermal power generators. In particular, when the quota
ratio is 0.2, its market power index increases by 0.235. The reason is that, with an increase
in quotas for renewable energy generators, the simultaneous increase in both market prices
is the result of their exercise of market power. For thermal power generators, an increase
in the market price of certificates makes the cost of power generation increase. Thermal
power generators will choose to reduce the cost by reducing the power generation. On
the one hand, reducing the power generation will increase the transaction price of the
power market. On the other hand, a reduction in power generation reduces the demand
for certificates in the certificate market, which can reduce the purchase of certificates.

4.4. Sensitivity Analysis of Model Parameters
4.4.1. The Impact of Renewable Energy Forecast Errors on the Power Generation of
Power Generators

Taking the thermal power generator G1 and the renewable energy generator G5 as
examples, Figures 8 and 9 show the impact of renewable energy forecast errors on the
power generation of renewable energy generators and thermal power generators when the
quota ratio ranges from 0.1 to 0.6.
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As can be seen from Figure 8, with an increase in quota ratio, the power generation
of thermal power generators presents a trend of first increasing and then decreasing.
The reason is that when the quota is low, the higher the cost of electricity generation for
the renewable energy generator, the more competitive the thermal power generator, and
therefore the more electricity generation. However, when the quota is higher, the market
power of renewable energy power generators is larger, and the higher forecast error of
renewable energy will make renewable energy generators have stronger market power,
and they will choose to reduce more power generation to reduce the number of tradable
certificates, which limits the power generation of thermal power generators. Therefore, the
higher the prediction error of renewable energy, the lower the power generation of thermal
power generators.
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As can be seen from Figure 9, the reduction in renewable energy forecast error leads to
an overall increase in the power generation of renewable energy generators. The reason is
that a reduction in forecasting errors makes renewable energy generators more competitive,
and their power generation increases and the increase is significant at low quotas. The
reason is that, under different quotas, renewable energy generators exercise market power
in different ways. When the quota is lower than 30%, because its own demand for quota is
low, the way for renewable energy power generators to exercise market power is to hold
the number of tradable certificates in the certificate market and then increase the certificate
price and reduce the power generation of thermal power generators. This strategic behavior
has little impact on its power generation, so the power generation increases significantly.
When the quota is higher than 30%, the renewable energy generators themselves have an
increased demand for the number of green certificates, and they have no surplus certificates
to keep in the certificate market. In order to increase the certificate price, the renewable
energy generators will exercise market power by reducing the power generation, thereby
reducing the number of tradable green certificates and increasing the certificate price.

4.4.2. The Impact of Renewable Energy Forecast Errors on the Market Power of Generators

Selecting the thermal power generator G1 and the renewable energy power generator
G5 for analysis. Table 4 shows the impact of the forecast accuracy of renewable energy on
the Lerner index of G1 and G5 when the quota ratio ranges from 0.1 to 0.6.

Table 4. The impact of the forecast accuracy of renewable energy on the Lerner index of G1 and G5
when the quota ratio ranges from 0.1 to 0.6.

Quota Ratio 10% 20% 30% 40% 50% 60%

G1
0.1 0.462 0.504 0.521 0.539 0.550 0.586

0.15 0.489 0.512 0.532 0.565 0.582 0.604
0.2 0.492 0.529 0.551 0.599 0.610 0.673

G5
0.1 0.245 0.421 0.596 0.633 0.635 0.709

0.15 0.262 0.444 0.631 0.699 0.710 0.795
0.2 0.293 0.528 0.679 0.764 0.813 0.866
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As can be seen from Table 4, with a decrease in renewable energy prediction accuracy,
the Lerner index of both types of power generators decreases correspondingly, which
indicates that the market power of both thermal power generators and renewable energy
power generators decreases. Especially when the quota is high, the change is more obvious.
Specifically, the Lerner index of G5, a renewable energy generator with higher generation
costs, is larger, which means that the renewable energy generator with higher generation
costs has greater market power in the two markets. When the power generation cost
of renewable energy generators is relatively high, the Lerner index of thermal power
generators is relatively large. The reason is that when the electricity generation cost of
renewable energy generators is higher, renewable energy generators have more market
power to raise the price of green certificates. In order to reduce the purchase cost of
green certificates, thermal power generators will exercise more market power to lower
the price of green certificates. In addition, when the forecast accuracy is 0.2, the average
increase in the market power of the renewable energy power producer G5 is 26.79%, which
is higher than the average increase of 26.25% when the forecast accuracy is 0.1, which
confirms the mitigation effect of improving the forecast accuracy on the market power of
the power producer.

4.5. Comparison with Multi-Objective Particle Swarm Optimization Algorithm

In order to verify the optimization performance of the NSGA-II algorithm used in
this study, the multi-objective particle swarm optimization algorithm (MOPSO) is used
as a comparison algorithm of the equilibrium model, and the convergence speed and
optimization effect are compared. The parameters of the multi-objective PSO are set as
follows: the population size is 50, and the maximum number of iterations is 100. In order to
analyze the solving speed of the two algorithms, the convergence of the two independent
repeated operations is compared. Taking thermal power producer G1 with a quota ratio
of 0.2 as an example, the change in its income with the number of iterations is shown in
Figure 10.
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As can be seen from Figure 10, the convergence speed of the NSGA-II algorithm is bet-
ter than that of the MOPSO algorithm. When the revenue of the generator reaches a stable
level, MOPSO needs to repeat 20 iterations, while NSGA-II requires only 15 iterations. In
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the early stage of evolution, because of the uncertainty of the search direction, the volatility
is large, and the power generator constantly revises its strategy to obtain the maximum
benefit. With an increase in evolutionary algebra, the income of power generators tends to
be stable. When the preset maximum number of iterations is reached, the distribution of
the Pareto optimal solution sets obtained by the MOPSO algorithm and NSGA-II algorithm
in the target space is shown in Figure 11.
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As can be seen from Figure 11, although MOPSO algorithm can also obtain a Pareto
optimal solution set that is generally complete and evenly distributed, the optimization
effect of the algorithm used is significantly superior to MOPSO algorithm, and the obtained
extreme solutions are all better than MOPSO algorithm, further confirming its superiority.
In summary, the optimization effect and convergence speed of the NSGA-II algorithm are
superior to the commonly used MOPSO algorithm.

5. Conclusions

Based on the market competition equilibrium theory, this study establishes a multi-
transaction entity market equilibrium model, including the green certificate trading market
and electricity trading market, considering the uncertainty of renewable energy power
generation and the difference between traditional power generation and renewable energy
power generation cost. The NSGA-II algorithm combined with GRP is used to solve
the model, which not only provides a well-distributed Pareto solution set through multi-
objective optimization but also obtains the optimal compromise solution. Based on the
analysis of market equilibrium results, this study focuses on the market power decision-
making behavior and interaction between thermal power producers and renewable energy
power producers in two markets under different quota requirements. The case study
shows that:

(1) In the process of electricity market transactions, renewable energy generators will
exercise market power in two markets, and under different quota requirements,
renewable energy generators will choose to exercise market power in different markets.
When the quota is relatively low, renewable energy generators will choose to exercise
market power by holding certificates in the green certificate market; when the quota is
relatively high, renewable energy generators will exercise market power by reducing
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power generation in the electricity market. These strategic actions will lead to the rise
of certificate prices and electricity market transaction prices. The higher the quota,
the greater the market power of renewable energy generators.

(2) For thermal power generators the increase in the price of green certificates increases
the cost of power generation for thermal power generators. In response to the higher
price of green certificates, thermal power generators choose to reduce their demand
for certificates by reducing the electricity market generation, thereby reducing the cost
of purchasing green certificates. At the same time, a reduction in electricity generation
in the power market will further increase the market trading price.

(3) The improvement of the prediction accuracy of renewable energy means a reduction
in the power generation cost of renewable energy generators, which can effectively
reduce the transaction price of the two markets and ease the market power behavior of
power generators. Renewable energy generators with relatively low power generation
costs are more inclined to earn higher returns by selling more electricity in the power
market, which has a positive effect on easing the market power of renewable energy
generators. By introducing the Lerner index, we can intuitively quantify and verify the
market power decision-making behavior of each power producer in the two markets.
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Abbreviations

Abbreviation Meaning
RPS Renewable portfolio standard
TGC Tradable green certificates
NSGA-II Nondominated sorting genetic algorithm II
GRP Grey relational projection
Ps Electricity market transaction price
A, B Constants greater than 0
Q Total demand in the electricity market
αj, β j Intercept and slope of the supply function, respectively
QTGC

j Number of green certificates sold by the j-th renewable energy generator
pc Price of green certificates
σl Standard deviation of the load forecast error
Rl Load reserve of the system
∆Pl Load prediction error
∆Pwind Renewable energy generation forecast error
σwind Standard deviation of the renewable energy generation forecast error
b Scale parameter
a1, a2 Proportional coefficient
kW Kurtosis
f2 Probability density function of the normal distribution
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Rdemand Reserve capacity that the renewable energy generator needs to configure
fTermal,i, fRenewable,j i-th thermal power generator and the j-th renewable energy generator

CTermal,i, CRenewable,j
the power generation cost of the i-th thermal power generator and the j-th
renewable energy generator

CRL,i Fuel cost of the i-th thermal power generator

qi, qj
Power generation of the i-th thermal power generator and the j-th
renewable energy generator

ai, bj, cj Fuel cost coefficients of the i-th thermal power generator

CME,i, CME,j
Maintenance cost of the i-th thermal power generator and the j-th
renewable energy generator

Kme,i, Kme,j
Equipment maintenance coefficient of the i-th thermal power generator
and the j-th renewable energy generator

CZJ,i, CZJ,j
Equipment depreciation cost of the i-th thermal power generator and the
j-th renewable energy generator

Caz,i, Caz,j
Installation cost of the i-th thermal power generator and the j-th renewable
energy generator

fi, f j
Installation volume coefficient of the i-th thermal power generator and the
j-th renewable energy generator

ki, kj
Operating life period of the device of the i-th thermal power generator and
the j-th renewable energy generator

r Annual interest rate
CDE,j Reserve cost of the j-th renewable energy generator
mj, nj Reserve capacity coefficient
Vl Projection value
Ng Number of indicators
γlk Gray correlation coefficient
wG,k Weight of each indicator
dl Priority membership
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