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Abstract: The monitoring of air quality continues to be one of the most important tasks when ensuring
the safety of our environment. This paper aims to look at correlations between different types of
pollutants, so that robust air quality measurement systems can be deployed in remote, inaccessible
areas, at a reduced cost. The first matter at hand was to design an affordable and portable system
capable of measuring different air pollutants. A custom PCB was designed that could support the
acquisition of readings of, among others, particulate and CO sensors. Then, correlations between
the concentrations of different pollutants were analyzed to identify if measuring the concentration
of one type of pollutant can allow the extrapolation of the concentration of another. This particular
study focuses on the correlations between the concentrations of particulate matter and CO. Finally,
after observing a moderate correlation, it was proposed to measure the concentrations of pollutants
that require less expensive sensors, and to extrapolate the concentrations of pollutants that require a
more expensive sensor to measure their concentration. The link between particulate pollution and
CO concentrations was identified and discussed as the result of this study.
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1. Introduction

Air pollution continues to play an increasingly significant role in our everyday lives,
not only because of its impacts on climate change, but also those on public and individual
health due to increasing morbidity and mortality [1]. As countries become more urban-
ized and as developing economies strive to reach the status of developed economies, the
environment is often overlooked [2]. It is estimated that air pollution alone prematurely
ends the lives of about 8.8 million people every year, as well as shaving off between 2.3
and 3.5 years of the average life expectancy throughout the world, more than even tobacco
smoking [3]. Every nation sets its own laws when it comes to the parameters that describe
air quality, and even when the laws are strict and the legislation is tight, rarely is air quality
monitored extensively, reliably, and over a large amount of territory. Usually, monitoring is
confined to a few locations, even in cities inhabited by millions, and equipment usage tends
to be confined to only some key places. The WHO does set its Air Quality Guidelines [4],
but the challenge still remains to measure air pollution without the use of expensive and
cumbersome equipment. The basis of this study is the measurement of air pollutant levels
and the correlation that might emerge between their concentrations. It is important to dif-
ferentiate between the levels of pollutants, and the general quality of air, since developing
an aggregate Air Quality index [5,6] requires data on more pollutants, usually five, such as
SO2, O3, and VOCs in addition to the pollutants measured in this study.

As the monitoring of air pollution becomes more important throughout the world,
many studies and papers have been published that looked into developing cheaper, more
accessible air quality measurement systems that can be deployed even in remote or un-
derdeveloped areas. Low-cost solutions are often published [7–10], as many authors try
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to develop simpler sensors or techniques to monitor various air quality parameters, such
as the concentration of CO, NO2, and particulate matter. Sometimes these systems are
developed for very specific purposes [11], as the world transitions to a fossil-fuel-free future.
These systems are necessary to monitor the manner in which alternative and sustainable
energy sources affect air quality when deployed. Also relevant is the research which aims
to fill the gaps caused by the inevitable malfunction of IoT systems and sensors [12], which
results in missing data about air quality parameters and can skew data one way or the
other. Such methods are important when reliability and consistency of sensor readings is of
utmost importance.

Hence, some authors have taken to evaluating such low-cost solutions and their per-
formance over prolonged periods of time [13]. These experiments have led to suggestions
such as using comparisons of timelines of pollutant concentrations, rather than looking
simply at raw values. Another important part of reliable data gathering is to ensure that
environmental noise and glitches do not affect the end results in a meaningful way. This
is why methods were developed [14] to analyze how the noise level of parameters affects
prediction inaccuracy and uncertainty.

Emerging technologies that are still expanding can also be of great use when mon-
itoring air quality parameters. Machine learning [15–17] and advanced Learning Edge
computing frameworks [18] offer the possibility of predicting future air pollutant concentra-
tions, or simply reduce the amount of data that needs to be transmitted so that air pollutant
concentrations can be reliably obtained. Ultimately, what may truly and meaningfully
affect air quality monitoring are cheap and available platforms that any average citizen may
choose to install at their own location [19]. Such citizen science projects do not only provide
valuable resources, but they also have the added benefit of impacting the knowledge and
attitudes of those involved [20]. These systems have to be affordable and simple enough to
be used by people without a science degree or a background in this field.

The UN has 17 Sustainable Development Goals, one of which targets the atmosphere,
specifically the promotion of systematic observation of, among other things, the Earth’s
atmosphere [21]. This paper aims to develop an affordable solution and demonstrate
how its implementation can enable researchers to find correlations between different air
pollutants. Later, an estimation could be provided of the concentration of others that may
otherwise prove difficult or more expensive to track. As these systems would replace an
expensive sensor that is cumbersome to use with a cheaper one, costs can go down and
more systems can be deployed around the world.

2. Materials and Methods

Extensive monitoring of air pollution requires a number of sensors, each measuring a
different air pollutant. It was deemed necessary to develop a platform that enables all of
them to transmit data continuously, as well to utilize a method to transmit data wirelessly
to a remote location where it can be analyzed, stored, and used for different purposes, one
of which is the very topic of the paper. Hence, a system was designed and developed on a
circuit board that has the capability of continuously collecting data from multiple sensors.

The system proposed in this paper consists of a PCB with several components that enable
it to work properly. First of all, it utilizes a Microchip microcontroller PIC24FJ256GA106 [22],
which was mounted on a printed circuit board in a way that offers easy access to all
microcontroller pins, and two different voltage levels stabilized at 3.3 V and 5 V. In order
to transmit data wirelessly, a Telit GE864-GPS [23] modem was added to the board. This
modem can communicate over 3 G and GPRS protocols, and it was selected primarily
due to its small size, good characteristics, and low price. The microcontroller has a 16-bit
infrastructure, possesses 64 pins, 256 kbytes of programming memory, 16 kbytes of SRAM
memory, and a 10-bit A/D converter with 16 channels. It was selected primarily because it
has 31 remappable pins, which enables users to reconfigure the purpose of the main board
without changing the layout. The frequency of its internal oscillator is 8 MHz, but using the
PLL it can further be increased to 32 MHz. Overall, it has 53 I/O pins which are divided
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into six separate ports. It has 66 mapped interrupts in its interrupt table to choose from.
Figure 1 outlines the block diagram of the system, with the designed circuit board at its
center, along with the used sensors and the direction of data flow.
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Data on particulate matter concentrations were obtained using OPC-N2 [24] sensors,
which were connected to the main board via the SPI communications protocol. These
sensors are optical particle monitors. They use laser beams to detect particles that can range
in size from 0.38 µm to 17 µm. Count measurements are converted into mass concentrations
of PM1, PM2.5, and PM10, which have an aerodynamic diameter of up to 1 µm, 2.5 µm, and
10 µm respectively. The conversion is made possible thanks to embedded algorithms. The
sensor can count a maximum of 10,000 particles per second, with detection limits for PM10
particles set at a minimum of 0.01 µg/m3 and a maximum of 1500 µg/m3. The sensor can
be used in the temperature range of −20 ◦C to 50 ◦C, and in environments with a relative
humidity of 0 to 95%.

CO levels were monitored using the sensor TGS2442 [25]. This sensor has a glass
thermal insulation layer printed between a RuO2 heater and an alumina substrate, with a
pair of Au electrodes formed on a thermal insulator. The gas-sensing layer is formed of
SnO2 and printed on an electrical insulation layer, which covers the heater. The pair of
Au electrodes is used to measure sensor resistance, which is done by sampling the sensor
output voltage using the microcontroller’s A/D convertor. The sensitivity of this sensor
(defined by the change ratio of its internal resistance, Rs) is 0.23–0.49. It has a typical
detection range of 30–1000 ppm.

The measurements using the sensors that were previously described were conducted
over a period of 28 days at the same location in Rumenačka street in Novi Sad, Serbia. The
precise geographic coordinates of the station are 45◦15′45′′ N and 19◦49′8′′ E [26,27]. The
precise location of the station can be seen marked with a green pin on the map of the city of
Novi Sad, as displayed in Figure 2.

The sensors were positioned at 1.5 m above ground level. The measurement equip-
ment was situated at a busy intersection, where significant amounts of pollutants were to
be expected.
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The implemented system resulted in a full four weeks of data, taken between 15 of
November and 13 of December 2021, stored as an Excel table, which consists of the concen-
trations of pollutants on an hourly basis. This raw data had to undergo several mathematical
operations so that useful information could be extracted.

First of all, the Least Squares Method (LSM) [28] was used as a standard method for
data fitting. The resulting equations yielded the most important parameters that were used
in analyzing the correlation of different air pollutants. First, the arithmetic means of each
data set, corresponding to every collected air pollutant, were calculated. So, if there were
data sets for two different gasses, then the arithmetic means of the concentration of the
two gasses would be represented by x and y, respectively.

Then variances were calculated, which represent the mean discrepancy square. Along
with variances, co-variances were also calculated, since they represent the measure of
strength of correlation among variables.

σ2
x =

1
n

n

∑
i=1

(xi − x) 2 (1)

σ2
y =

1
n

n

∑
i=1

(yi − y) 2 (2)

cov(x, y) =
1
n

n

∑
i=1

(xi − x)(yi − y) (3)

If the co-variance is 0, it means that there is no linear relation between the variables.
A co-variance greater than 0 implies that y changes in accordance with x, and implies a
direct linear correlation. On the other hand, if the co-variance is below 0, this means that
the correlation exists, but it is negative, or inverse.

The problem with the co-variance is its lack of ability to take into account other degrees
of variability and non-linearity, and crucially, it does not take into account measurement
units. To express pollutants in a numerically intuitive way, different measurement units
and orders of magnitude are used. As an example, concentrations of CO in the outside air
can easily climb to over 100 times the concentration of other pollutants, such as nitrous
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oxides or sulfur dioxide [29]. It is therefore important to use the correlation coefficient,
which gives the same numerical values for the same correlation degree regardless of the
order of magnitude or measurement units. This value is defined in the following way:

r =
cov(x, y)

σ2
x σ2

y
(4)

The correlation coefficient r measures the degree of linear dependency between two
variables. Its value can lie in a range between −1 and 1, depending on whether the
correlation is completely negative or positive, respectively. If it equals zero, there is a lack
of linear dependency. Absolute values of r less than 0.3 are not regarded as statistically
significant, although they are usually not immediately dismissed. Absolute values of r
between 0.3 and 0.7 point to a moderately strong correlation, while values over 0.7 point to
a strong correlation between two trend lines. The square of the correlation coefficient (also
called the Pearson coefficient) is also included in the table with the results. This coefficient,
also called coefficient of determination (R2), is just the squared Pearson coefficient. This is
included as it is easier to explain linear regression in terms of R2 rather than r. As r ranges
from −1 to 1, R2 ranges from 0 to 1, clearly explaining the relationship, with 0 being not
related and 1 being perfectly related.

One thing to note about the correlation coefficient is that it does not recognize non-
linear relationships between two trends. The second thing to note is that its significance
does not necessarily stem from its absolute value, since the sample size also plays an
important role. Hence, the t value for t distribution [30] is calculated as follows:

t = r
√

N − 2
1− r2 (5)

where N is the number of samples. Using the Student distribution, the value of p is obtained,
and a statistically significant correlation emerges whenever p is greater than 0.05.

3. Results

Data were obtained for a number of pollutants, including CO, SO2, NO, NOx, and
NO2, which were tracked by separate sensors. The results were saved in a central database
and analyzed. Correlations emerged between the concentrations of CO and particulate
matter, particularly PM10, PM2.5, and PM1. Proving the assumption that the main source
of these gasses is the combustion of fossil fuels in internal combustion engines would
enable the approximation of the concentrations of particulate pollution. Another reason for
selecting this particular correlation was the fact that phasing out PM sensors in the setup
would have the biggest impact on the price reduction of the system. In addition, wind
speed was also observed since the system also employs an ultrasonic wind speed meter,
as well as air temperature and pressure sensors. These parameters were tracked to ensure
that no abnormal weather event would skew the data in a particular direction. Since these
parameters did not change in an unexpected way, calculating correlations could proceed.

It should be noted that CO concentration was originally given in mg/m3, whereas
particulate matter concentration was given in µg/m3. To ease the visualization of data and
provide graphs that can be used to clearly visualize the concentration of both pollutants,
CO concentration was multiplied by 100 and is displayed in 10 µg/m3. No further changes
were made that interfere with the data itself. The Y-axis represents CO and particulate
concentrations, with measurement units given for each separate pollutant, while the X-axis
denotes the number of samples taken. It is enumerated in hours of time elapsed since
samples were taken once every hour.

Figure 3 depicts the change in concentrations of CO vs. PM1, PM2.5, and PM10 over time.
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Over the course of 28 days, a total of 697 data points were collected. Twenty-seven
of those were discarded so as not to skew the data because of incomplete readings caused
by system malfunction, which resulted in one of the parameters (or all of them) not being
logged properly. The data that were discarded had at least one sensor give a reading of
zero, and if any sensor malfunctioned in such a way, the entire data point was deleted.
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Such malfunctions were rare, occurring in only 4% of the samples taken. It should also
be noted that these malfunctions were non-consecutive, so there were never more than a
couple of hours of coverage missing. Generally, if less than 5% of data points are missing, it
is acceptable to ignore them without having a great impact on the reliability of the study.
The missing data do not have a pattern of missingness (i.e., the data are missing completely
at random, MCAR), so any influence on the results of the study would also be random [31].
This left 671 valid data points for all four tracked air pollutants.

The data show a moderate correlation between CO and particulate concentrations. As
seen in Figure 4, the trend holds for all observed particulates, i.e., PM1, PM2.5, and PM10.
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The Pearson coefficients for each correlation are shown in Table 1. t-test values and
p-values are shown in Table 2. The probability values of the regression coefficient in the
significance test are all below 0.05, so the model is feasible.

Table 1. R and R2 values in correlations between the concentrations of CO and particulates.

Pollutant R R2

PM1 0.68 0.46
PM2.5 0.69 0.48
PM10 0.70 0.49

Table 2. Student’s t-test and p-values and R2 values in correlations between the concentrations of CO
and particulates.

Pollutant t-Test p-Values

PM1 24.168 0.000
PM2.5 25.134 0.000
PM10 25.512 0.000

Table 2 shows the t-test values and p-values. It should be noted that these values are
statistically significant since a large number of samples was obtained. If one takes any
lookup table used to convert the t-test value into p-values, it can be seen that our t-test
values are very big, which is directly related to the large number of samples taken. For
a two-tailed type of t-test, and a p-value of 0.001, based on our number of samples, the
t-value would need to be between 3.373 and 3.3. Our t-test values were over 24. This is
why p-values are marked as 0.000, i.e., not even the third digit after the decimal point is
above zero.

4. Discussion

The results show a statistically significant relationship between the levels of CO and
particulate pollutants in the air. The correlation between CO and PM2.5 has been the subject
of other studies [32,33]. However, these results were obtained in an indoor environment. A
study conducted outdoors on the correlation between CO and PM2.5 found the Pearson
coefficient to be 0.66 [34], which is similar to the results produced by our measuring station.
The study does not, however, mention other particulates such as PM1 or PM10. Wind
speeds are included in the Supplementary Materials. The impact of wind speeds on the
concentrations of particulates is not easy to define, as one study [35] shows that lower
wind speeds can reduce the concentrations of PM2.5 and PM10, but higher wind speeds can
increase the concentration of PM10 depending on the direction of the wind. This station
has no instrument to determine the wind direction, so a more refined version of the station
might be able to give a more precise answer. Some authors even found an increase in PM
concentrations during low winds in summer, but not in winter [36]. It should be noted
that the data used for this study were obtained during parts of November and December,
which is a period of low temperatures in Serbia. To ensure that households burning solid
fuel for heating did not skew the results, as the primary target was automotive emissions,
the measuring station was set up in an urban area of the city, where residential homes and
apartments utilize district heating [37]. One study [38] indeed found that vehicles that are
high CO emitters also emitted a larger amount of particulate matter. It is, however, noted
that there is no consistent quantitative relationship between emissions of these pollutants
on an individual vehicle basis.

Another aspect worth discussing is the validity of the acquired data. The system and
the sensors used to acquire the results of this study are operated by the Serbian Environ-
mental Protection Agency (SEPA). The CO sensor was calibrated at two CO concentrations,
as outlined in the datasheet [25]. It has been shown that this means that the CO sensor can
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satisfy strict performance standards such as UL2034 [39] and the CSA 6-96 standard [40].
The OPC-N2 sensor comes pre-calibrated, as is pointed out in the datasheet. The OPC-N2
sensor used in this research was field-tested at the South Coast AQMD Rubidioux fixed
ambient monitoring station under ambient weather conditions [41]. In this test, the sensor
was compared against professional sensors that cost 50–100 times more than the OPC-N2.
While the accuracy of the OPC-N2 varied, the sensor consistently showed high precision
and the measurements correlated very strongly (R2 = 0.99) with the control. Since this
study mainly focuses on the change in particulate levels, rather than the absolute value of
their concentrations, it is deemed that the OPC-N2 sensors were sufficiently precise. Other
studies [42,43] also found that OPC-N2 sensors’ readings were highly correlated with the
control sensor. The sensors were maintained by professional SEPA personnel during the
course of this study. One final remark is that this system also gathered information on the
concentration of NO2. While the correlation between the concentration of CO and NO2
has already been the topic of another study [44], the Pearson coefficient for this correlation
in the data collected during the course of this research indicates 0.65 largely supports the
findings of that study (r ≈ 0.7, depending on the location).

5. Conclusions

Currently, the CO gas sensor used as a part of this study costs less than a tenth of
the price of a typical OPC sensor. The price of sensors that detect air pollutants is the
main reason why the focus was placed on CO and PM correlation, and other pollutants
such as SO2, NOx, O3, and VOCs were excluded. The sensors used to measure their
concentration are all significantly cheaper than quality PM sensors. Since OPC sensors
used to measure particulate matter in the air are usually much more expensive than CO
sensors, based on our analysis, we can potentially enable communities or places without
extensive resources for air quality monitoring to assume that particulate levels in the air
match the levels of CO, within a reasonable degree of certainty. Our results show that there
is a moderate correlation between CO and particulate concentrations in the air. This opens
the door to deploying such systems in places where the cost of OPC sensors would be
prohibitive, while still being able to give a relatively good estimate of particulate pollution
concentrations.

Another reason why the study specifically targeted PM sensors is communication
protocols. OPC sensors use the SPI communication protocol. This is more complex than
simple AD conversion, which is used to acquire the readings of sensors that monitor other
air pollutants. Moreover, AD conversion requires just one wire between the sensor and
microcontroller, while SPI communication requires two.

It should be noted that the purpose of the sensor used in this study is limited to
indicative measurements only, and that it is not intended to be used to give accurate
particulate concentrations based on CO concentrations, but rather to track the change in the
concentrations of particulates in correlation with CO concentrations. Another limitation
worth mentioning is that the data were collected over 28 days, which is insufficient for
far-reaching conclusions. The study would be more precise if the authors could track other
confounding factors or sources of variation that may influence the relationship between
CO and particulates, such as other meteorological conditions besides wind speed, traffic
volume, land use, emission sources, etc. However, because the sensors were placed in an
urban part of Novi Sad, where dense traffic accounts for most of the air pollutants emitted,
we can conclude with a degree of reasonable certainty that motor vehicles played the most
important role in contributing to the air pollutants measured. This part of town utilizes
district heating, and measurements were taken at a time of the year when there is little or
no agricultural work carried out in the fields. The best addition to this study would be
a longer time period during which pollutant concentrations are tracked; however, SEPA
only publishes pollutant concentrations for the past 30 days, and yearly concentrations are
currently not available to the public.
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The system could further be improved if temperature and relative humidity sensors,
as well as wind direction sensors, were implemented. This leaves the field open for
future research.
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43. Markowicz, K.M.; Chiliński, M.T. Evaluation of Two Low-Cost Optical Particle Counters for the Measurement of Ambient Aerosol
Scattering Coefficient and Ångström Exponent. Sensors 2020, 20, 2617. [CrossRef] [PubMed]

44. Rajs, V.; Milosavljevic, V.; Mihajlovic, Z.; Zivanov, M.; Krco, S.; Drajic, D.; Pokric, B. Realization of Instrument for Environmental
Parameters Measuring. Elektron. Elektrotech. 2014, 20, 61–66. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s20092617
https://www.ncbi.nlm.nih.gov/pubmed/32375350
https://doi.org/10.5755/j01.eee.20.6.7269

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	Conclusions 
	References

