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Abstract: The identification of sedimentary structures in lithofacies is of great significance to the
exploration and development of Paleogene shale in the Boxing Sag. However, due to the scale
mismatch between the thickness of laminae and the vertical resolution of conventional wireline logs,
the conventional lithofacies division method fails to realize the accurate classification of sedimentary
structures and cannot meet the needs of reservoir research. Therefore, it is necessary to establish
a lithofacies identification method with higher precision from advanced logs. In this paper, a
method integrating the gray level co-occurrence matrix (GLCM) and random forest (RF) algorithms
is proposed to classify shale lithofacies with different sedimentary structures based on formation
micro-imager (FMI) imaging logging and elemental capture spectroscopy (ECS) logging. According to
the characteristics of shale laminae on FMI images, GLCM, an image texture extraction tool, is utilized
to obtain texture features reflecting sedimentary structures from FMI images. It is proven that GLCM
can depict shale sedimentary structures efficiently and accurately, and four texture features (contrast,
entropy, energy, and homogeneity) are sensitive to shale sedimentary structures. To accommodate the
correlation between the four texture features, the random forest algorithm, which has been proven
not to be affected by correlated input features, is selected for supervised lithofacies classification. To
enhance the model’s ability to differentiate between argillaceous limestone and calcareous mudstone,
the carbonate content and clay content calculated from the ECS logs are involved in the input features.
Moreover, grid search cross-validation (CV) is implemented to optimize the hyperparameters of the
model. The optimized model achieves favorable performance on training data, validation data, and
test data, with average accuracies of 0.84, 0.79, and 0.76, respectively. This study also discusses the
application of the classification model in lithofacies and production prediction.

Keywords: shale lithofacies; sedimentary structure; FMI image; GLCM; texture features; random
forest

1. Introduction

The Paleogene shale rich in organic matter in the Boxing Sag was deposited in a
continental faulted lacustrine basin. In contrast with coarse clastic sedimentary rocks and
marine shale, Paleogene shale in the Boxing Sag develops more lithofacies types [1–3]. In
the past ten years, geologists have performed many studies on shale lithofacies identifica-
tion and classification in the Boxing Sag [4]. Their results indicate that three main types
of sedimentary structures (laminated structure, layered structure, and massive structure)
are developed, and sedimentary structures of shale play a significant role in determining
the reservoir properties [5–7]. Recent studies have proven that lithofacies with different
sedimentary structures vary greatly in their physical and oil-bearing properties [8,9]. Litho-
facies with laminated structures possess higher values of porosity, TOC (total organic
carbon), and S1 (residual hydrocarbon). Hence, lithofacies with laminated structures are
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identified as the most promising lithofacies types, followed by lithofacies with layered
structures and lithofacies with massive structures. Therefore, the identification of shale
sedimentary structures is an important part of lithofacies classification for Paleogene shale
in the Boxing Sag.

Generally, shale lithofacies identification exploits petrophysical measurements, in-
cluding wireline logs and laboratory core tests [10–12]. Due to limited core data in many
instances, shale lithofacies are often classified from conventional wireline logs. In general,
conventional wireline logging projects include caliper logging, gamma ray logging, self-
potential logging, bulk density logging, neutron porosity logging, compressional waves
sonic logging, and resistivity logging. Antariksa et al. predicted lithofacies, including
shale, shaly sandstone, sandstone, and coal, from a well logging dataset in the Tarakan
Basin, Indonesia [13]. Bhattacharya et al. classified five mudstone lithofacies, along with
calcareous siltstone and limestone lithofacies from conventional well log suites (gamma ray,
deep resistivity, bulk density, neutron porosity, and photoelectric factor log) [14]. Kim et al.
defined four lithofacies in Eagle Ford shale (organic-matter-rich mudstone, organic-matter-
lean calcareous marl, heterogeneous argillaceous wacke stone, and marl and massive marly
chalk) and Lower Austin chalk using five wireline logs (gamma ray, bulk density, neutron
porosity, deep resistivity, and compressional sonic logs) [15].

However, previous studies have mainly focused on the interpretation of shale min-
eral components or the classification of lithologies rather than the identification of shale
sedimentary structures. This is mainly attributed to the scale mismatch between the shale
sedimentary structures and the vertical resolutions of conventional wireline logs. In general,
shale laminae are millimeter-scale, while the highest vertical resolution of conventional
wireline logs is 0.5 m, which makes it impossible to identify sedimentary structures in
conventional wireline logs.

Among current logging technologies, FMI logging has the highest vertical resolution,
5 mm, providing clear images of sedimentary structures, and it is an ideal tool for dis-
criminating sedimentary facies and lithologies [16–18]. With the rapid development of
image processing techniques, various texture analysis approaches have emerged, including
the Tamura method, LBP (local binary pattern), GLCM (gray level co-occurrence matrix),
wavelet transform, autocorrelation function, etc. Based on these methods, a growing
number of studies related to feature extraction from FMI images have been performed.
Zhang et al. extracted 69 texture features from FMI images using the autocorrelation func-
tion method to identify rock types in quartz sandstone reservoirs and achieved an accuracy
of 78% [19]. Wang Man et al. successfully distinguished five types of volcanic rocks from
FMI images by adopting GLCM [20]. Chai et al. employed LBP for feature extraction from
FMI images to identify lithology in reef-bank reservoirs [21]. Luo et al. extracted four
texture features using GLCM on FMI images to classify sedimentary microfacies in the
gravel reservoir [22]. Yan et al. utilized the image-connected domain labeling algorithm to
mark the solution-hole-connected domain from FMI images and obtain the heterogeneity
information about solution hole in the carbonate reservoir [23]. Shafiabadi et al. detected
fractures in FMI images using the Canny and Sobel algorithms as edge detection oper-
ators [24]. Wang Min et al. successfully transformed FMI images into continuous core
gravel information after performing filtering with a median filter, image segmentation
through the gray threshold segmentation algorithm, and gravel extraction through the
Hoshen–Kopelman algorithm [25]. From Table 1, it can be concluded that at present, image
feature extraction methods are mostly used to detect gravel, fracture, and classify litholo-
gies from FMI images, with few studies on the division of sedimentary structures and even
fewer applications in shale.

On the other hand, shale lithofacies possess relatively consistent petrophysical proper-
ties in contrast to conventional reservoirs, which causes some shale lithofacies interpreted
from core data to not be distinguishable from wireline logs. To address this problem,
machine learning algorithms have been increasingly introduced in shale lithofacies classifi-
cation. With the ability to learn from large datasets, machine learning algorithms can grasp
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data features and discover patterns in data [26–29]. The commonly used classification
algorithms include support vector machine (SVM), K-nearest neighbors (KNN), naive
Bayes (NB), decision tree (DT), artificial neural network (ANN), AdaBoost, and random
forest (RF).

Table 1. Application of texture analysis methods on FMI images.

Texture Analysis Methods Reference Year Reservoir Application

Autocorrelation function [19] 2014 Quartz sandstone Extracted 69 texture features to identify
rock types

GLCM [20] 2009 Volcanic rock Distinguished five types of
volcanic rocks

LBP [21] 2009 Reef-bank Identified sedimentary facies
and lithology

GLCM [22] 2023 Gravel Classified four types of
sedimentary microfacies

Image-connected domain labeling algorithm [23] 2016 Carbonate Extracted solution pore information
Canny and Sobel algorithm [24] 2021 Fracture Detected fractures

Median filter, gray threshold segmentation
algorithm, Hoshen–Kopelman algorithm [25] 2019 Gravel Extracted core gravel features

Bhattacharya et al. used an SVM to recognize the pattern of different shale lithofacies
associated with basic petrophysical parameters from conventional well log suites [30].
Kim et al. trained a convolutional neural network (CNN) model to classify the lithofacies
of Eagle Ford shale from five wireline logs [15]. Liu et al. employed an ANN approach
to better understand the primary factors that control lacustrine shale lithofacies develop-
ment [31]. Merembayev et al. compared machine learning algorithms, including KNN,
DT, RF, eXtreme gradient boosting (XGBoost), and LightGBM, in lithofacies classification
from various well log data from Kazakhstan and Norway. The random forest model had
the best score among the considered algorithms [32]. Hoang et al. used the random forest
algorithm to predict the lithofacies of the Balder field from well logs and seismic data and
obtained favorable outcomes [33]. Antariksa et al. compared several machine learning
algorithms in classifying lithofacies in the Tarakan Basin, Indonesia. Random forest and
gradient boosting outperformed the other models in the experiment, with accuracies of
87.49% and 87.01%, respectively [13]. The abovementioned applications are summarized in
Table 2.

Table 2. Performance of machine learning models in lithofacies classification.

Machine Learning Algorithms Reference Year Accuracy

SVM [30] 2016 87.3%
CNN [15] 2022 77.7%
ANN [31] 2020 88.6%

KNN, DT, XGBoost, LightGBM, RF [32] 2021 RF (93.8%) LightGBM (90.1%)
RF [33] 2022 91.1%

DT, RF, Gradient Boosting, KNN,
SVM, Logistic Regression [13] 2022 RF (87.5%)

Gradient Boosting (87.0%)

In this work, we aim to introduce a convenient and effective approach for the classifi-
cation of shale lithofacies with different sedimentary structures from FMI logs and ECS
logs. This method combines the GLCM technique and a machine learning algorithm. First,
the texture features that can quantitatively characterize the shale sedimentary structure
are extracted from FMI images by adopting the GLCM technique. A sensitivity analysis
of texture features is conducted to assure adaptability. Afterward, a dataset for training
the classification model is constructed. This dataset consists of texture features as well
as mineral contents from ECS logs. Finally, a hyperparameter-optimized random forest
classifier is applied for automatic lithofacies classification.
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2. Geological Setting

The Boxing Sag located in the southwest of the Dongying Depression is a graben
basin controlled by faults. The whole area is characterized by the development of basin-
dipping faults and reverse parallel faults (Figure 1a,b). The sag is filled with the Kongdian
Formation, Shahejie Formation, and Dongying Formation of the Paleogene System; the
Guantao Formation and Minghuazhen Formation of the Neogene System; and the Pingyuan
Formation of the Quaternary System. The Shahejie Formation is the principal oil-producing
zone, and it is subdivided into four members (Es4, Es3, Es2, and Es1, from bottom to top)
(Figure 1d). The early deposition period of Es4 to the late deposition period of Es3 is the
main active period of fault subsidence. During this period, the water depth of the lake
basin increases, and there are multiple lake transgression and regression cycles, which form
a series of lacustrine shale deposits. The total thickness of the lacustrine shale is more than
1000 m, and it is the main source rock of the Boxing Sag. The lithology is mainly mudstone,
limestone, calcareous marl, and oil shale. There are 69 evaluation wells in the sag, two of
which have core samples (Figure 1c). The previous analysis suggests that the target lower
third and upper fourth members of the Shahejie Formation in the Boxing Sag exhibit great
shale oil exploration potential [34].
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Figure 1. Geological maps: (a) Sketch map of the Bohai Bay Basin; (b) tectonic division of the
Dongying Depression; (c) locations of the evaluation wells in the Boxing Sag; (d) section of the
stratigraphic subdivision of the study area (adapted from [3]).
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3. Data
3.1. Data Acquisition and Preprocessing

Two cored shale wells were utilized for this study: well FY1 and well FX184. The
length of the cored interval is 191.7 m for well FY1 and 239.7 m for well FX184. A total of
359 core samples from well FY1 and 201 core samples from well FX184 were tested. X-ray
diffraction (XRD) data, thin sections, and scanning electron microscopy (SEM) images were
used for lithofacies analysis.

Conventional wireline logs were run in both wells, including spontaneous potential,
gamma ray, caliper, compressional sonic log, neutron porosity, bulk density, deep resistivity,
and shallow resistivity logs, as shown in the second column to the fourth column in Figure 2.
The fifth column demonstrates the core-interpreted sedimentary structures based on the
XRD data. The cross plots in the sixth column show that there are no distribution patterns
for the three types of sedimentary structures in the conventional cross plots, indicating that
it is difficult to distinguish shale sedimentary structures from conventional wireline logs.
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Figure 2. Conventional wireline logs, sedimentary structure from XRD and cross plots of well FY1.

In addition to conventional wireline logs, the two wells both have FMI logs and
ECS logs. The measured intervals of the two wells are 3250 m~3413 m for well FY1 and
3400 m~3614 m for well FX184. Mineral contents from the ECS logs are described in Figure 3
and Table 3.

Data preprocessing was implemented before lithofacies identification. First, depth
calibration was conducted for the FMI logs and ECS logs. Then, the FMI static images were
converted to grayscale images with 230 pixels in length and width, and the gray level was
set to 16. A total of 652 FMI grayscale images were obtained from well FY1, and 842 FMI
grayscale images were obtained from well FX184.
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Table 3. Mineral content distribution from ECS logs.

Mineral
Content %

FY1 FX184

Min Max Mean Min Max Mean

Carbonate 10.2 63.8 40.1 35.9 80.3 57.9
Clay 12.2 79.0 35.9 4.4 26.8 16.3

QFM 1 3.2 41.3 21.5 8.0 42.4 24.0
Pyrite 0 6.6 2.5 0 5.2 1.8

1 QFM = quartz, feldspar, and mica.

3.2. Lithofacies Classification

According to the sedimentary structure, the Paleogene shale in the Boxing Sag is
divided into three categories: laminated, layered, and massive. The shale is close in mineral
composition. The main minerals are clay minerals and carbonate. Therefore, the lithology
is defined by clay mineral content and carbonate content by the cut-offs of 50% and 25%.
When the clay content is greater than 50% and the carbonate content is greater than 25%
and less than 50%, shale is defined as calcareous mudstone. When the carbonate content is
greater than 50% and the clay mineral content is greater than 25% and less than 50%, it is
defined as argillaceous limestone. When the carbonate content is greater than 50% and the
clay mineral content is less than 25%, it is defined as marly limestone. In this way, the shale
in the study is divided into three kinds of lithology: argillaceous limestone, calcareous
mudstone, and marly limestone. The definitions of five lithofacies can be concluded in the
following Table 4.

Table 4. Definition of the five lithofacies.

Lithofacies Types Sedimentary Structure Clay Mineral Content Carbonate
Content

Lithofacies 1 Laminated 25~50% ≥50%
Lithofacies 2 Laminated ≥50% 25~50%
Lithofacies 3 Layered 25~50% ≥50%
Lithofacies 4 Layered ≥50% 25~50%
Lithofacies 5 Massive ≤25 ≥50%

3.2.1. Lithofacies 1: Laminated Argillaceous Limestone

This lithofacies is formed in saline standing water with stable conditions for the
stratification of water bodies and the preservation of organic matter. The core is dark
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gray and consistent interbedded organic-rich dark argillaceous laminae and bright calcite
laminae appear. The calcite laminae are relatively thicker than the argillaceous laminae
(Figure 4a,d). The FMI image shows obvious alternate bright and dark bands (Figure 4b).
The mineral composition consists of carbonate (calcite and dolomite), clay minerals, and
small amounts of quartz and pyrite (Figure 4e). The clay mineral content and carbonate
content from ECS logs are shown in Figure 4c. The carbonate content is between 41% and
72%, the clay mineral content is between 28% and 52%, and the quartz content is between
4% and 21%. The pore types include clay mineral intragranular pores, dissolution pores,
intragranular pores, intergranular quartz feldspar pores, organic matter pores, and calcite
intergranular pores. The pore diameter is usually less than 3 µm. The organic matter
content is high, and the TOC is between 3% and 4%.
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Figure 4. Lithofacies 1 (laminated argillaceous limestone): (a) core; (b) FMI image; (c) mineral
contents from ECS logs; (d) thin section: interbedded organic-rich dark argillaceous laminae and
bright calcite laminae; (e) SEM image: calcite surface filled with quartz particles and crude oil.
Cc = calcite; Q = quartz.

3.2.2. Lithofacies 2: Laminated Calcareous Mudstone

This core is dark black and laminated, but the boundaries between the layers are
not as evident as those in Lithofacies 1 (Figure 5a). The FMI image is characterized by
frequent alternate light and dark bands (Figure 5b). As shown in thin section (Figure 5d),
laminae are clearly identified and are mainly composed of organic-rich argillaceous laminae
and calcite-rich mixed laminae. The clay mineral content ranges from 39% to 75%, the
carbonate content lies between 23% and 51%, and the quartz content is between 2% and
18% compared with those of Lithofacies 1 (Figure 5c,e).

3.2.3. Lithofacies 3: Layered Argillaceous Limestone

This lithofacies is mainly formed in a reducing environment with humid climate
and deep water. Due to the weak seasonal climate control on deposition, the shale is
dominated by a layered structure. The core is light gray with indistinct layers (Figure 6a).
The dark bands are intermittently exhibited in the FMI image (Figure 6b). As displayed
in thin section (Figure 6d), the layers can be observed distinctly, and the micritic calcite
layers are interbedded with mineral-mixed layers. The pore types are mainly clay mineral
intergranular pores and calcite intergranular pores, as well as calcite dissolution pores and
a small amount of quartz feldspar intergranular pores. The carbonate content is between
42% and 78%, the clay mineral content is between 21% and 47%, and the quartz content is
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between 7% and 19%. (Figure 6c,e). The abundance of organic matter is high, and the TOC
is distributed between 2% and 4%.
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Figure 5. Lithofacies 2 (laminated calcareous mudstone): (a) core; (b) FMI image; (c) mineral contents
from ECS logs; (d) thin section: organic-rich clay laminae and calcite-rich mixed laminae; (e) SEM
image: banded calcite. Cc = calcite.
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from ECS logs; (d) thin section: layered calcite; (e) SEM image: pores filled by pyrite, quartz, and
crude oil. pr = pyrite; Q = quartz.

3.2.4. Lithofacies 4: Layered Calcareous Mudstone

The core is dark gray with faintly visible layers, and the argillaceous layer is relatively
thick (Figure 7a). The bright bands intermittently appear in the FMI image (Figure 7b).
As observed under a microscope, clay, feldspar, quartz, and calcite are mixed, and calcite
is locally rich with a lenticular or layered distribution (Figure 7d). Feldspar and quartz
are mostly dispersedly distributed. The clay mineral content increases, generally between
48% and 82%, with an average of 68%, compared with that of Lithofacies 3. The carbonate
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content ranges from 27% to 49%, and the quartz content is between 5% and 11% (Figure 7c,e).
The abundance of organic matter is close to that of Lithofacies 3.

Processes 2023, 11, x FOR PEER REVIEW 10 of 26 
 

 

 
Figure 7. Lithofacies 4 (layered calcareous mudstone): (a) core; (b) FMI image; (c) mineral contents 
from ECS logs; (d) thin section: calcite minerals are partly mixed with other minerals and partly 
layered abundant; (e) SEM image: dissolution pores and intercrystal seam are identified. Cc = calcite; 
D = dolomite. 

3.2.5. Lithofacies 5: Massive Marly Limestone 
The lithofacies is mainly developed in a dry climate and a saline water environment 

with fewer material sources. The core is light gray without laminae, and abundant ostra-
cod fragments and scattered quartz silt particles can be observed (Figure 8a,d). The FMI 
image exhibits a bright yellow block (Figure 8b), and the quartz feldspar content is be-
tween 4% and 15%, with traces of pyrite (Figure 8c,e). The bedding fractures are not de-
veloped; generally only structural fractures are developed. The pore types are mainly in-
tergranular pores with poor connectivity. The content of organic matter is low, and the 
TOC is mainly between 1% and 2%. 

 

Figure 7. Lithofacies 4 (layered calcareous mudstone): (a) core; (b) FMI image; (c) mineral contents
from ECS logs; (d) thin section: calcite minerals are partly mixed with other minerals and partly
layered abundant; (e) SEM image: dissolution pores and intercrystal seam are identified. Cc = calcite;
D = dolomite.

3.2.5. Lithofacies 5: Massive Marly Limestone

The lithofacies is mainly developed in a dry climate and a saline water environment
with fewer material sources. The core is light gray without laminae, and abundant ostracod
fragments and scattered quartz silt particles can be observed (Figure 8a,d). The FMI image
exhibits a bright yellow block (Figure 8b), and the quartz feldspar content is between 4%
and 15%, with traces of pyrite (Figure 8c,e). The bedding fractures are not developed;
generally only structural fractures are developed. The pore types are mainly intergranular
pores with poor connectivity. The content of organic matter is low, and the TOC is mainly
between 1% and 2%.
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4. Methods

GLCM measures image texture features based on the spatial relationship of pixels. The
laminae of shale are mostly parallel, exhibiting parallel textures with various gray scales in
grayscale FMI images. The different sedimentary structures of shale demonstrate different
spatial correlation characteristics of gray scales in FMI images, which provide the basis for
the application of GLCM.

4.1. Gray Level Co-Occurrence Matrix (GLCM)

The gray level co-occurrence matrix of an image can be obtained by first counting
the frequency of an element P (i, j, d, θ) of the image and then transforming the frequency
into probabilities. These steps are performed by dividing by the total frequency of all
elements, where i is the gray level of a pixel at location (x, y) and j is the gray level of
a neighboring pixel at location (x + dx, y + dy). This relationship of the two pixels is
defined by two parameters: offset, d, and orientation, θ (Figure 9). GLCMs with different
(d, θ) combinations capture different information related to the textural appearance of an
image [35].
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The size of the GLCM depends on the gray level value of an image. Suppose L is the
gray level value of an image; then, its GLCM is an L × L dimensional matrix. In general,
considering the amount of matrix computation and the quality of the image texture, the
grayscale L-value is usually chosen to be 8 or 16.

After computing the GLCM, different features can be obtained. Haralick proposed the
extraction of 14 statistical features from a GLCM [36]. It has been found that 5 features of
the 14 statistical features, including energy, contrast, entropy, homogeneity, and correlation,
are not only easy to calculate but can yield higher classification accuracy [37–39]. The five
properties are explained below along with the mathematical equations used.

4.1.1. Energy

Energy =
L−1

∑
i=0

L−1

∑
j=0

P(i, j)2 (1)

The energy measures the homogeneity of an image. The more uniform the image, the
greater the value of energy.

4.1.2. Contrast

Contrast =
L−1

∑
i=0

L−1

∑
j=0

(i− j)2P(i, j) (2)



Processes 2023, 11, 2982 11 of 24

The contrast reflects the intensity of the difference between the neighboring pixels in
the co-occurrence matrix. It varies between the largest and smallest values in a continuous
group of pixels. The value of contrast for a constant image is 0.

4.1.3. Homogeneity

Homogeneity =
L−1

∑
i=0

L−1

∑
j=0

P(i, j)
1 + (i− j)2 (3)

The homogeneity measures the similarity of pixel values. The range of homogeneity
varies between 0 and 1. It has the highest value when all the pixel values in an image
are alike.

4.1.4. Correlation

Correlation =
L−1

∑
i=0

L−1

∑
j=0

(ij)P(i, j)− uiuj

SiSj
(4)

where

ui =
L−1

∑
i=0

i
L−1

∑
j=0

P(i, j) (5)

uj =
L−1

∑
i=0

j
L−1

∑
j=0

P(i, j) (6)

S2
i =

L−1

∑
i=0

(i− ui)
2

L−1

∑
j=0

P(i, j) (7)

S2
j =

L−1

∑
i=0

(
j− uj

)2
L−1

∑
j=0

P(i, j) (8)

The correlation describes how closely the neighboring pixels are connected. The range
of correlation is between −1 and 1. A value of −1 specifies a perfectly negative correlation,
while a value of 1 means a perfectly positive correlation.

4.1.5. Entropy

Entropy = −
L−1

∑
i=0

L−1

∑
j=0

P(i, j)·logP(i, j) (9)

The entropy measures the overall information about an image. The entropy value is
low for an irregular co-occurrence matrix.

The main processing steps of GLCM for FMI images are described in Figure 10. First,
a raw FMI static image is converted into a grayscale image, and then a gray matrix of the
image is obtained. Afterward, the gray level co-occurrence matrix of the image is calculated.
Finally, five texture features are extracted from the GLCM.
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4.2. Random Forest (RF)

The random forest algorithm is an ensemble of decision trees that can be applied
to classification or regression tasks. The random forest algorithm adopts the bootstrap
aggregating technique (known as “bagging”). Each decision tree in the random forest
model is trained by bootstrap samples of input data, which reduces the correlation between
decision trees. The final classification result of a random forest model is decided by the
majority vote from all decision trees [40–43].

The steps for building a classification tree in the random forest model are as follows:
(1) After preprocessing the training data, n (n < N) samples are randomly selected

from input dataset N. Each decision tree is trained on a different subset of the training data.
(2) If the number of input features is M, a constant m (m << M) is assigned, and m

variables are randomly selected from M features. When a node splits, the feature with
the highest purity is selected from the m features after calculating the Gini index for each
feature. The lower the Gini index, the higher the purity of the feature. The Gini index of
feature K in dataset D is calculated as follows [44]:

Gini_index(D, k) =
V

∑
v=1

|Dv|
|D| Gini(Dv) (10)

Gini(Dv) =
n

∑
i=1

∑
i′ 6=i

pi p′i = 1−
n

∑
i=1

p2
i (11)

where V is the number of subsets based on feature K; Dv is a subset of dataset D on feature k;
|Dv| and |D| are the total numbers of samples in subset Dv and in dataset D, respectively;
Gini (Dv) is the Gini value of subset Dv; n is the number of types in dataset Dv, and p is the
proportion that type i occurs in dataset D.

(3) The decision tree is fully grown and not pruned. Node splits are typically continued
until nodes are pure (one class).

4.3. Proposed Lithofacies Classification Model

After presenting the principles of GLCM and RF, an integrated approach for lithofacies
classification is proposed. This approach utilizes GLCM to extract texture features from
FMI images and then inputs both the texture features and mineral content calculated from
the ECS log to an RF classifier. After the identification of each decision tree in the RF
classifier, the result of lithofacies classification is received (Figure 11).
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4.4. Criteria for Verifying the Model Performance

The prediction performance of the model is evaluated using four statistical quality
indicators, including precision, recall, F1-score, and accuracy. These indicator values are in
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the range [0, 1]. The higher the value, the better the model performs [45]. The indicators
are defined as follows:

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

1
F1

=
1
2

(
TP + FP

TP
+

TP + FN
TP

)
(14)

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

where TP represents the correct classifications in the positive class, TN represents the correct
classifications in the negative class, FP represents the incorrect classifications in the positive
class, and FN represents the incorrect classifications in the negative class.

4.5. Hyperparameter Tuning

The previous studies show that the complexity of the dataset directly affects the per-
formance of the machine learning models. As for the application of lithofacies classification
from well logs, the complexity of the dataset is mainly reflected in the number of fea-
tures [46]. The performance of machine learning models does not always improve with
the increase in the number of features. The number of features required for a machine
learning model is an open question. In general, simple machine learning models with
fewer features are easier to understand and interpret, and overfitting can be avoided. In
this study, considering the negative impact of a complex dataset on the accuracy of the
model, six input features were selected for lithofacies classification.

The performance of any machine learning model also highly depends on the se-
lection of the model hyperparameters [47]. The hyperparameters of the random forest
algorithm mainly consist of the number of decision trees (n_estimators), maximum features
(max_features), maximum depth of a tree (max_depth), minimum samples for a node to
split (min_sample_split), and minimum samples for leaf nodes (min_samples_leaf). Among
them, n_estimators can significantly impact the overall accuracy of the model. If the value
of n_estimators is too low, the model may suffer from underfitting, while if the value of
n_estimators is too high, the model performance cannot be significantly improved.

The best combination of hyperparameters needs to be tuned during a trial-and-error
process. Considering that the dimensionality of the training dataset is not high in this
study, a grid search CV is employed to ascertain the most promising hyperparameter
combination [48]. The grid search approach covers the entire search space and tests for
every possible combination of hyperparameters. In this study, a broad search with a
larger step size of the hyperparameter space is first performed, and then a second, more
refined search is conducted within a limited search space. For cross-validation, 10-fold
cross-validation is selected. The whole dataset is divided into 10 folds. The 10th fold is
used to test the model, and the remaining 9 folds are used for training.

The search space and step size for the considered hyperparameters are displayed
in Table 5. Since the minimum step size is adopted, the best values for max_features,
max_depth, min_samples_split, and min_samples_leaf can be obtained after the first search.
For n_estimators, its relationship with the model accuracy during the first broad search is
shown in Figure 12a. It is obvious that the model accuracy does not rise consistently with
an increase in n_estimators; instead, it begins to decrease when n_estimators is greater than
a certain value. When n_estimators is 71, the accuracy reaches the highest score of 0.941.
Considering a step size of 10, the optimal value for n_estimators should be between 60 and
80. Then, a second refined search for optimal n_estimators is performed. The search range
is narrowed down to [60, 80], and the search step size is set to 1. Figure 12b shows that
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when n_estimators is 74, the model accuracy is the highest. Thus, after the fine search, the
optimum value for n_estimators can be designated as 74.

Table 5. The first hyperparameters search result.

Hyperparameters Symbol Search Space Step Size Optimal Value

Number of decision trees to fit n_estimators [1, 100] 10 74
Maximum features max_features [1, 6] 1 3

Maximum depth of a tree max_depth [1, 10] 1 5
Maximum samples for a node to split min_sample_split [1, 5] 1 1

Minimum samples for leaf nodes min_samples_leaf [1, 5] 1 2
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4.6. Data Split Sensitivity

The impact of different data split ratios is tested. The ratio of training data to validation
data is designed from 50:50 to 90:10, with a 10% increase each time. As seen from Table 6, at
the ratio of 50:50, the model achieves the highest accuracy score on the training set, but on
the validation set and the test set, the model obtains the lowest accuracy scores, indicating
the occurrence of an overfitting problem. As the proportion of the training set increases,
the model accuracy on the training set gradually decreases, and the model accuracies on
the validation set and the test set gradually increase. When the ratio is 80:20, the accuracies
on the validation set and the test set are the highest values. Therefore, the training data
ratio of 80:20 can be regarded as the optimal split ratio for the prediction model.

Table 6. Data split sensitivity.

Data Split
Accuracy

Train Validation Test

50:50 0.94 0.70 0.68
60:40 0.93 0.70 0.67
70:30 0.91 0.71 0.68
80:20 0.89 0.74 0.73
90:10 0.88 0.70 0.69

4.7. GLCM Texture Feature Sensitivity

To assure the adaptability of extracted texture features from FMI images to the iden-
tification of shale sedimentary structures, a sensitivity analysis of five texture features is
carried out.

A total of 50 typical FMI images, 10 FMI images for each lithofacies, are chosen from
well FX184. The parameters of the GLCM are set as follows: L = 16; d = 1; θ = 0◦, 45◦, 90◦,
and 135◦. Since four types of orientations are selected, four co-occurrence matrices are
generated for each FMI image, and texture features of each FMI image are generated by
averaging texture features from four kinds of orientations.
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The visualized gray level co-occurrence matrices of the five lithofacies are exhib-
ited in Figure 13. The gray level co-occurrence matrices demonstrate different numerical
distribution characteristics for different types of lithofacies. For laminated lithofacies
(Lithofacies 1 and Lithofacies 2), the values on the diagonal of the gray level co-occurrence
matrices are lower compared with the values of layered lithofacies (Lithofacies 3 and
Lithofacies 4), whereas the values on both sides of the diagonal are higher. The mas-
sive lithofacies (Lithofacies 5) has the highest value on the diagonal of the gray level
co-occurrence matrix.
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(e) Lithofacies 5 and visualized GLCMs of (a′) Lithofacies 1, (b′) Lithofacies 2, (c′) Lithofacies 3,
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In Table 7, the distribution ranges of five texture features in the five lithofacies
can be observed. According to the statistics, for the laminated lithofacies
(Lithofacies 1 and Lithofacies 2), contrast, correlation, and entropy are higher than in the
other lithofacies, and the distribution ranges are 0.47~0.85, 0.54~0.90, and
0.67~0.95 respectively, while energy and homogeneity are lower than in the other lithofacies;
their distribution ranges are 0.01~0.23 and 0.06–0.25 respectively. For massive lithofacies,
the characteristics of the texture features are opposite to those of laminated lithofacies.
Contrast, correlation, and entropy are lower than those of the other lithofacies, and the
distribution ranges are 0.02~0.08, 0.08~0.44, and 0.03~0.28 respectively, while energy and ho-
mogeneity are higher than in the other lithofacies, with distribution ranges of 0.57~0.65 and
0.68~0.90 respectively. For the layered lithofacies (Lithofacies 3 and Lithofacies 4), the
distribution ranges of texture features are between those of the laminated lithofacies and
those of the massive lithofacies.

Table 7. Distribution ranges of texture features.

Lithofacies Type Contrast Correlation Energy Homogeneity Entropy

Lithofacies 1 0.75~0.85 0.58~0.90 0.01~0.12 0.06~0.19 0.90~0.95
Lithofacies 2 0.32~0.40 0.54~0.85 0.15~0.30 0.34~0.43 0.67~0.73
Lithofacies 3 0.47~0.70 0.18~0.70 0.07~0.23 0.20~0.25 0.72~0.87
Lithofacies 4 0.17~0.27 0.36~0.93 0.52~0.80 0.46~0.60 0.55~0.58
Lithofacies 5 0.02~0.08 0.08~0.44 0.57~0.65 0.68~0.90 0.03~0.28
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Figure 14a shows the distribution map of five texture features in five types of sedi-
mentary structures, indicating that contrast, entropy, energy, and homogeneity achieve
better distinction among the five lithofacies than correlation, with a clear distribution
range for each lithofacies. The cross plots referring to the correlation show no boundaries
between different lithofacies, and data points representing different lithofacies are mixed
together. Figure 14b shows that correlation is much more discrete than the other four
features, and the overlap zone between the lithologies is larger, especially for the lami-
nated facies and layered facies, which means that correlation is incapable of conducting
lithofacies classification.
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For further illustration, the GLCM texture feature curves calculated from the FMI
images of well FX184 at the interval of 3491.8~3500.5 m are demonstrated in Figure 15.
Four subintervals are selected for comparison. These subintervals are separately dominated
by different types of sedimentary structures.
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Figure 15. GLCM texture features of well FX184.

As shown in Figure 15, when the sedimentary structure changes from massive to lami-
nated, contrast and entropy display an increasing trend, while homogeneity demonstrates
the opposite trend. In contrast to other texture features, energy is more sensitive to the
white band on the FMI images. Correlation shows the weakest correlation with the change
in sedimentary structures, and the characteristic is consistent with it in cross plots from
Figure 14.

4.8. Feature Correlation Analysis

The relationship between five texture features from the GLCM is investigated by
calculating the Pearson correlation coefficient. The Pearson correlation coefficient reflects
the degree of linear correlation between variables, and the range of the Pearson correlation
coefficient varies between −1 and 1. The greater the absolute value, the stronger the
correlation between the variables. Figure 16 shows that the values of the Pearson correlation
coefficient between contrast, entropy, energy, and homogeneity are very high, all larger
than 0.7, implying strong linear relationships within the four texture features.
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5. Results

The input variable set consists of four texture features (contrast, entropy, homogeneity,
and energy) extracted from FMI images and two mineral contents (clay and carbonate)
calculated from ECS logs. All variables are normalized to the range of [0, 1]. Samples from
well FX184 are used for training and validating the model, and samples from well FY1 are
used for a blind test. There are 635 samples from well FX184. The samples are divided
into a training set and a validation set at a ratio of 80:20. There are 727 samples from well
FY1, and these samples are used for testing the model. The numbers of samples for the
five lithofacies are shown in Table 8.

Table 8. Numbers of samples.

Well Lithofacies 1 Lithofacies 2 Lithofacies 3 Lithofacies 4 Lithofacies 5 Total

FX184 114 172 176 129 44 635
FY1 72 233 267 104 51 727

5.1. Comparison with Other Classifiers

The classification performances of classifiers for correlated input variables are exam-
ined between the RF model and several other classifiers (KNN, NBC, SVM, and DT). The
models are trained on the initial dataset (Table 4) with default parameters. As demonstrated
in Table 9, the results indicate that the SVM model achieves the lowest accuracy value and
F1-score, followed by the NBC and KNN models. The DT model achieves better outcomes
than those of the KNN model on both validation data and test data, although it suffers from
an overfitting problem on the training set. The RF model outperforms all other classifiers,
with the highest accuracy on distinct datasets, demonstrating its advantage in prediction
with correlated input variables.

Table 9. Performance comparison of different classifiers.

Training Data Validation Data Test Data

Model Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

KNN 0.59 0.71 0.51 0.60 0.42 0.55
NBC 0.42 0.41 0.42 0.44 0.31 0.37
SVM 0.22 0.38 0.26 0.44 0.28 0.51
DT 1.00 1.00 0.54 0.58 0.50 0.59
RF 0.81 0.84 0.68 0.72 0.65 0.68

The advantage of RF can be principally explained as follows. For the random forest
classifier, node splitting is performed by calculating the relative importance scores of
variables, ranking the variables, and selecting the variables with higher importance scores
during the construction of a decision tree. Suppose there are n highly correlated variables;
the importance scores of n − 1 variables are canceled out, ensuring that only one variable
in this category is selected to participate in node splitting, thus avoiding information loss
caused by the influence of highly correlated variables.

5.2. Accuracy

The brief results of the random forest model are shown in Tables 10–12. In summary,
the average accuracies of the classifier on the training set, validation set, and test set are
0.84, 0.79, and 0.76, respectively. By comparing the F1-scores for the five lithofacies, the
model achieves the best outcome on the training set for Lithofacies 2, with an F1-score of
0.88, while the model performance for Lithofacies 3 is better than that for all other facies on
the validation set and test set, with F1-scores of 0.86 and 0.84, respectively.
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Table 10. Performance summary of the training data.

Facies Precision Recall F1-Score Support

1 0.79 0.93 0.85 91
2 0.93 0.84 0.88 132
3 0.89 0.77 0.82 141
4 0.88 0.84 0.86 108
5 0.62 0.94 0.75 36

Accuracy 0.84 508

Table 11. Performance summary of the validation data.

Facies Precision Recall F1-Score Support

1 0.78 0.78 0.78 23
2 0.88 0.73 0.79 40
3 0.93 0.80 0.86 35
4 0.63 0.81 0.71 21
5 0.57 1.00 0.73 8

Accuracy 0.79 127

Table 12. Performance summary of the test data.

Facies Precision Recall F1-Score Support

1 0.53 0.74 0.62 72
2 0.86 0.76 0.81 233
3 0.89 0.80 0.84 267
4 0.52 0.69 0.59 104
5 0.88 0.75 0.81 51

Accuracy 0.76 727

Figure 17 displays the visual comparison between core-interpreted lithofacies and
predicted lithofacies in wells FX184 and FY1. It is acceptable that the predicted lithofacies
similarly duplicate the original lithofacies stacking pattern in both wells. The detailed
model performances on the training set, validation set, and test set are illustrated in
Figures 18–20, respectively.
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6. Discussion
6.1. Misclassification Data Analysis

After comparing the core-interpreted lithofacies with the predicted lithofacies, it is
found that the probability of lithofacies misclassification becomes higher in thin layers, i.e.,
layers whose thickness lies between 0.4 m and 1 m. This can be explained by the fact that
the original lithofacies are manually determined by petroleum geologists, and frequent
changes in lithofacies in thin layers may obscure the lithofacies interfaces. In addition, the
prediction accuracy for well FY1 is not as good as that for well FX184. Test well FY1 is
located in the lower part of the central Boxing Sag. The average clay mineral content of
well FY1 is higher than that of well FX184, and more laminae are developed, which leads
to the creation of thinner layers. Therefore, misclassification involving thin layers occurs
more often in well FY1.

In addition, approximately 64% of the thin-layer misclassifications appear between
Lithofacies 1 and Lithofacies 3. The reason lies in that Lithofacies 1 and Lithofacies 3 are very
similar in terms of texture features and minerology logs, which presents a major challenge
for the prediction model. It is also discovered that the classification accuracy of Lithofacies
5 is relatively lower than those of the other facies, which is primarily attributed to the small
number of Lithofacies 5 samples. However, because the proportion of Lithofacies 5 in the
total samples is relatively small, it does not exert a great adverse impact on the overall
classification performance. In the future, with the increase in labeled lithofacies samples,
the classification accuracy of thin layers and Lithofacies 5 can be improved.

6.2. Production Prediction

Using the GLCM-RF method, data from six wells in the Boxing Sag were subjected to
lithofacies division, and the relationship between the thickness of the laminated lithofacies
and daily oil production was analyzed. All six wells were pumped for production. As
shown in Figure 21, the daily oil production exhibits a good linear relationship with the
thickness of the laminated lithofacies, which confirms previous knowledge about laminated
lithofacies. The organic-rich laminated lithofacies have various types of reservoir space
and higher horizontal permeability, and the organic matter is distributed in a network.
Therefore, it has better production capacity compared with the other lithofacies.
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According to statistics, 70% of the shale oil delivery well sections in the Boxing
Sag are identified as laminated lithofacies, of which laminated argillaceous limestone
facies accounts for 37%, laminated calcareous mudstone facies accounts for 33%, layered
argillaceous limestone facies accounts for 19%, and layered calcareous mudstone facies
accounts for 9%.
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7. Conclusions

The identification of shale lithofacies with different sedimentary structures is the key to
commercial hydrocarbon production in the Boxing Sag. However, the present classification
method based on conventional wireline logs cannot achieve the desired result. The aim
of this study was to test a practical approach to identify lithofacies with an image feature
extraction tool and a machine learning technique from advanced logs.

In the first section, lithofacies classification was carried out with the aid of integrated
data, including core, FMI images, thin sections, and SEM images. Five shale lithofacies were
classified based on sedimentary structures and mineral contents. In the target lower third
and upper fourth members of the Shahejie Formation, the lithofacies change rapidly, and
the vertical lithofacies combination is dominated by the interbed of laminated lithofacies
and layered lithofacies.

In the second section, an approach integrating the GLCM and RF to classify lithofacies
from FMI images and ECS logs was tested. The conclusions are as follows.

(1) The experiments show that the GLCM could be used to extract shale texture
features. The shale laminae exhibit horizontal textures with thickness and density changes
in the FMI images. The GLCM could characterize the texture efficiently and accurately
based on the spatial distribution of the grayscale. After sensitivity analysis of extracted
texture features from the GLCM, it was proven that four features, energy, homogeneity,
contrast, and entropy, were more capable of identifying shale sedimentary structures.

(2) To address the strong correlation between the four texture features, a comparison
between the RF and several other classifiers (KNN, NBC, SVM, and DT) showed that
the RF has the advantage of achieving higher accuracy for correlated input variables
both in principle and in practice. To further improve the predictive ability of the model,
hyperparameter optimization of the RF model was conducted, and the average accuracies
of this model on the training data, validation data, and test data were 0.84, 0.79, and 0.76,
respectively. The blind well test demonstrated that the RF model was also applicable to
uncored wells.

(3) The geostatistical inversion model established under the constraint of finely divided
lithofacies could more delicately describe the distribution characteristics of lithofacies
between wells to precisely predict the lithofacies between wells. On the basis of lithofacies
division, it was preliminarily clarified that there was a good linear relationship between
the thickness of laminated lithofacies and production capacity in shale reservoirs.
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