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Abstract: The paper considers the model predictive current control (MPCC) of an induction motor
(IM) drive and evaluates five IM models of different complexities—from conventional to magnetic
saturation, iron losses, and stray-load losses—for the MPCC design. The validity of each considered
IM model and the corresponding MPCC algorithm is evaluated by comparison of the following
performance metrics: the total harmonic distortion of the stator current, the average switching
frequency, the rotor flux magnitude error, the rotor flux angle error, and the product of the first
two metrics. The metrics’ values are determined in wide ranges of the rotor speed (0.1–1 p.u.)
and load torque (0–1 p.u.) through simulations performed in the MATLAB Simulink environment.
The obtained results allow us to identify the IM model that offers the best tradeoff between the
practicability and accuracy. Furthermore, a control effort penalization (CEP) is suggested to reduce
the average switching frequency and, hence, the power converter losses. This involves constraining
the simultaneous switching to a maximum of two branches of the three-phase power converter,
as well as inclusion of the weighted switching penalization term in the cost function. Finally, the
performance—both steady-state and dynamic—of the proposed MPCC system with CEP is compared
with that of the analogous field-oriented controlled (FOC) IM drive. The inverter switching frequency
is reduced more than twice by including the frequency-dependent iron-loss resistance in the MPCC.
It is additionally reduced by implementing the proposed CEP strategy without sacrificing many other
performance metrics, thus achieving a performance comparable to the FOC IM drive.

Keywords: model predictive control; induction motor; iron losses; stray-load losses; magnetic
saturation; dynamic model; field-oriented control; voltage source inverter

1. Introduction

With the recent developments in electromobility, the control of motor drives has
gained increased relevance and importance despite being one of the most traditional
electrical engineering topics. In high-performance induction motor (IM) drives, two control
strategies are dominating the market, namely field-oriented control (FOC) [1] and direct
torque control (DTC) [2]. FOC ensures decoupled control of the IM torque and flux, as in
the direct current (DC) machine, and typically implies a cascaded structure with the use
of proportional-integral (PI) controllers and pulse-width modulation (PWM), leading to
a good steady-state and dynamic performance. DTC is characterized by a simpler structure
since it does not require current control nor the PWM stage. Instead, it directly imposes
the most appropriate voltage vector selected from a predefined look-up table, resulting
in a faster dynamic response. On the downside, a poor low-speed operation, variable
switching frequency (due to the application of hysteresis controllers), and high torque
ripples are associated with this type of control.

Until the early 2000s, model predictive control (MPC) systems—a sophisticated con-
trol technique that was first established in the process industry in the 1970s [3]—did not
receive much attention in power electronics. This was mostly due to a lack of powerful
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computing resources. However, the availability of microprocessors, digital signal proces-
sors (DSPs), and field-programmable gate arrays (FPGAs) with enhanced computational
capabilities at reduced costs has reignited the power electronics community’s interest in
MPC technologies, ranging from low- to high-power applications [4–7] and resulting in
an exponential growth in the number of annual publications [8]. The appeal of the MPC
lies in its intuitiveness, simple implementation for nonlinear problems, flexibility, and
high performance. Particularly, the direct MPC (DMPC) (also known as the finite control set
MPC) has been favored in the power electronics community due to its design simplicity
and the possibility to include system constraints [5]. The indirect MPC (also known as the
continuous MPC), on the other hand, offers constant switching frequencies and is gaining
attention, especially for grid-tie converters, but it requires a PWM modulator [9,10]. In
DMPC, the future behavior of the system is predicted based on the corresponding model
and a finite number of switch positions, whereas the optimal position is found through
minimization of the cost function and directly applied to the converter, thus eliminating
an intermediate PWM stage. Two major subtypes of DMPC can be identified in IM drive
applications, namely model predictive torque control (MPTC) [11,12] and model predictive
current control (MPCC) [13]. The experimental comparison of these methods was carried
in [14,15], where it was concluded that the MPCC method has lower computational time,
fewer tuned parameters, lower current distortion, and higher robustness to stator resistance
variations. The MPTC method, on the other hand, has lower torque ripples and higher
robustness to magnetizing inductance variations. Other than that, both methods provide
very good and similar performances.

MPC techniques, by definition, rely on the model of the system under control. There-
fore, it is susceptible to mismatches between the system behavior predicted by its model
and the behavior of the actual system. This involves both discrepancies in the system
parameters’ values as well as in the accounted phenomena. There are many different IM
model variants in the literature but the most common is the conventional IM model [16],
which is also most often used for the MPCC. The conventional IM model assumes, among
other things, a magnetic circuit that is linear, electrically non-conductive, and lossless.
Hence, it does not account for the magnetic saturation, the iron losses, or the stray-load
losses (SLLs). However, efforts have been made to include some of these phenomena in
MPC-related studies.

In [17], a loss minimization strategy based on the IM model with included iron losses
and magnetic saturation was considered as part of the MPTC-based system, in which
a combination of the DMPC and the dead-beat method was used. The iron-loss resistance
was represented as either a constant or frequency-dependent parameter, whereas the mag-
netizing inductance was modeled as a function of the magnetizing current. Still, these
phenomena were not considered in the MPTC algorithm, but only in the loss-minimization
algorithm. In [18], a model predictive control of α-β components of the stator flux vector
was proposed. Again, iron losses were considered for loss minimization through rotor flux
reference adjustment, but they were neglected in the MPC algorithm, whereas magnetic
saturation was not at all considered. A variant of the MPTC system with three PI controllers
was considered in [19] for speed sensorless IM control. Both the speed observer and loss
minimization algorithm included a frequency-dependent iron-loss resistance. Magnetic
saturation was, however, neglected, which may be considered justified given the fact that
MPTC is not much sensitive to magnetizing inductance variations. Another MPTC-based
system including iron losses was considered in [20]. Although the loss minimization al-
gorithm accounted for the iron losses, they were neglected in the MPC algorithm, as well
as magnetic saturation. In [21], both magnetic saturation and iron losses were considered.
A time varying iron-loss resistance was modeled as a function of the magnetizing flux
and its time derivative. A cost function was used by which an optimal pair of rotor flux
vectors is sought and applied using the corresponding reference voltage vectors in the
given switching period—each in its corresponding share. However, this was implemented
in the context of indirect MPC. An MPC variant in which the cost function contains the
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absolute differences of the rotor speed and flux was proposed in [22]. An optimized genetic
algorithm (GA) was used for online estimation of IM parameters, including the iron-loss
resistance and magnetizing inductance, utilized by MPC. In [23], loss minimization based
on the IM model was considered, but both the iron losses and magnetic saturation were
neglected in the MPC algorithm. This was the study preceding [20], so similar consider-
ations apply. Lastly, in [24], the model predictive power control (MPPC) was considered
for a doubly fed induction generator, combined with a model-based loss minimization.
However, iron losses were neglected in the MPC algorithm and magnetic saturation was
not even considered in the paper.

In all of the above-mentioned studies that consider iron losses, the corresponding
resistance is placed in parallel to the magnetizing inductance within the IM equivalent
circuit. This increases the number of differential equations used to describe the IM behavior
and, thus, implies a higher computational cost. In contrast, by placing the iron-loss
resistance in parallel to the stator inductance, as proposed in [25], the number of differential
equations stays the same as in the conventional IM model. The same goal is achieved by
conveniently placing the SLL resistance in series with the stator resistance, as proposed
in [26], instead of placing it in parallel with the leakage inductances. Still, neither of
these two studies considered magnetic saturation. In addition, the SLLs are neglected
in [25], whereas in [26], the iron-loss resistance is placed in parallel to the magnetizing
inductance. In [27], a dynamic IM model was proposed that combines the favorable features
of the models from [25,26], and additionally includes magnetic saturation and variable
stray-load and iron losses. Its validity was experimentally verified by using four IMs of
different efficiency classes and rotor cage material. Due to its accuracy, compactness, and
simplicity, this model was later used in [28–31] for the control detuning analysis, estimation
of the winding resistances and rotor speed, and loss minimization of field-oriented and
sliding-mode controlled induction machines.

In this study, the IM model proposed in [27] is utilized for the MPC design and
performance analysis of the considered MPCC-based system. Some of the contributions are
derived directly from this as follows:

• The proposed control algorithm is the first algorithm from the MPC group that is
based on the IM model from [27]. This simplifies the corresponding equations greatly
compared to similar advanced IM models while not sacrificing the accuracy too
much. In general, a simpler model leads to a simpler control algorithm and a less
expensive implementation.

• The proposed control algorithm is the first MPC algorithm that allows for inclusion of
the IM magnetic saturation, iron losses, and SLLs. A more accurate model leads to
a more accurate prediction of controlled variables and, hence, better control.

• The proposed control algorithm is the first algorithm from the MPCC group that
includes any of the mentioned IM phenomena.

• The proposed control algorithm allows us to partially include the mentioned IM
phenomena so different algorithms can be applied for different applications. The
transition between the algorithms is straightforward and could be implemented online
if required.

The objectives set in this study can be identified as follows:

• The level of the IM model’s complexity that ensures both a practical and sufficiently
accurate control algorithm is to be determined. This requires evaluating the necessity
of accounting the mentioned phenomena as well as the way they should be accounted,
all based on the selected performance metrices.

• After the IM model suitable for the selected application is identified, the impact of
control effort penalization (CEP) on the performance metrices is to be evaluated.

• The steady-state and dynamic performance of the final proposed MPCC algorithm is
to be evaluated against the industry-standard FOC method and the existing competing
MPC algorithms.
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The paper is structured as follows: Section 2 introduces the utilized dynamic IM model
including the magnetic saturation, iron losses, and SLLs. In Section 3, an overview of the
control system under consideration is given, including the MPCC algorithm and the FOC
counterpart. The proposed model predictive controller is presented and elaborated in
detail in Section 4, and simulation results are presented and discussed in Section 5. Finally,
Section 6 concludes the paper.

2. Induction Machine Modeling

The space-vector equivalent circuit of the considered dynamic IM model is shown in
Figure 1a, where the magnetic saturation is included through variable magnetizing induc-
tance Lm, whereas the SLLs and the iron losses are included through variable resistances
Rsll and Rm, respectively. Due to the suggested convenient placement of these resistances
within the equivalent circuit, the differential order of the simpler, conventional IM model
is retained, thus restraining the inevitable rise in computational cost, e.g., as opposed to
the configuration in which Rm is placed in parallel with Lm [26,32,33] or that in which Rsll
is placed in parallel with the leakage inductances Lsl and/or Lrl [32,34,35]. In this way,
a balance is struck between the model’s practicability and accuracy.
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Through the application of the Thevenin transform to the area enclosed by the red
rectangle in Figure 1a, the resulting equivalent circuit (Figure 1b) takes a compact form of
the well-known conventional IM model (Figure 1c).

The space-vector equations of the conventional IM model in Figure 1c in the syn-
chronously rotating reference frame (ωe) are given as follows:

vs = Rsis +
dψs
dt

+ jωeψs (1)

0 = Rrir +
dψr
dt

+ j(ωe −ωr)ψr (2)

ψs = (Lm + Lsl)is + Lmir = Lsis + Lmir (3)

ψr = (Lm + Lrl)ir + Lmis = Lrir + Lmis (4)

Te =
3
2

p
Lm

Lr
Im

{
is

¯
ψr

}
= T + J

dωr

dt
+ Bωr (5)

where vs is the stator phase voltage space vector; Rs and Rr are the stator and rotor
resistances, respectively; is and ir are the stator and rotor current space vectors, respectively;
ψs and ψr are the stator and rotor flux linkage space vectors, respectively;ωe andωr are
the stator angular frequency and rotor angular speed, respectively; Lm, Ls, and Lr are the
magnetizing, stator, and rotor inductances, respectively; Te and T are the electromagnetic
and load torque, respectively; p is the number of pole pairs; the line above the symbol
denotes complex conjugation; J is the moment of inertia; and B is the viscous friction
coefficient (B = 0 in this study).

Note that (1)–(5) are also valid for the IM model presented in Figure 1a,b, provided
that Rs, vs, and is are, respectively, substituted by

RsT =
Rm(Rs + Rsll)

Rs + Rsll + Rm
(6)

vsT = vs
Rm

Rs + Rsll + Rm
(7)

isT = is
Rs + Rsll + Rm

Rm
− vs

Rm
(8)

The space-vector equations of the IM model shown in Figure 1a are provided in
Appendix A. It is observed in (6)–(8) that by setting Rsll = 0 and Rm → inf., it follows
RsT = Rs, vsT = vs, and isT = is.

2.1. Iron Loss Modeling

IM’s iron losses are commonly separated into hysteresis and eddy-current losses, with
the latter being typically dominant at frequencies of the order of a few kHz [36,37]. Since
model predictive control of IMs is, like field-oriented control, based on the corresponding
fundamental space-vector equations, with the fundamental frequency typically being of
the order of a few tens of Hz, eddy-current losses are neglected in this study to simplify the
analysis. Additionally, since Rsll is, in Figure 1a, connected in series with Rs, it contributes
to the no-load losses, so the Rm value determined from the standard no-load test needs to
be adjusted accordingly when this model is utilized, as explained in [27]. Evidently, this is
not the case if the SLLs are neglected (i.e., Rsll = 0). In both cases, the iron-loss resistance
can be represented as a function of the stator angular frequency and flux magnitude
as follows [27]:
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Rm(ωe,ψs) = Rm−rated
6π2

Kh(ψs)
· ωe

ωe−rated
(9)

where Rm-rated is the Rm value at rated frequency and magnetization (for the considered
IM, Rm-rated = 1258.3 Ω for accounted SLLs, and Rm-rated = 1012.3 Ω for neglected SLLs),
ωe-rated denotes the rated stator angular frequency, and Kh (ψs) is the stator flux-dependent
hysteresis loss coefficient (given in Appendix B), whose value differs depending on whether
the SLLs are accounted or not [27].

Figure 2 shows the iron-loss resistance characteristics of the 4-pole, 1.5 kW squirrel-
cage IM considered in this study, both for accounted and neglected SLLs [28].
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Rated values of the considered IM are summarized in Table 1. Note that this IM was
one of the four IMs used in [27] for experimental validation of the model in Figure 1a.

Table 1. Rated values of the tested IM.

P n ψr PFe Psll Rs Rr Lsl = Lrl J

1.5 kW 1390 rpm 0.864 Wb 123.0 W 70.7 W 4.811 Ω 3.154 Ω 0.017 H 0.003 kgm2

2.2. Stray-Load Loss Modeling

SLLs are the portion of the IM’s total losses not accounted for by the sum of friction
and windage losses, stator and rotor winding losses, and iron losses. The corresponding
resistance can be derived from the measurement data obtained from no-load and variable-
load tests carried at different supply frequencies and stator flux magnitudes, as explained
in [27]. Ultimately, the following formula describing the SLL resistance can be derived:

Rsll(ωe,ψs) = Rsll−rated ·
ωe

ωe−rated
· ψs
ψs−rated

(10)

where ψs-rated is the rated stator flux magnitude and Rsll-rated is the Rsll value at a rated
frequency and magnetization (for the considered IM, Rsll-rated = 1.8751 Ω).

Figure 3 shows the SLL resistance of the considered IM as being linearly dependent
on both the stator flux and frequency [28].
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2.3. Magnetic Saturation Modeling

The magnetizing inductance dependency on the normalized stator flux magnitude
can be derived from the standard no-load test. In the non-saturated region, Lm is typically
assumed to be constant—denoted by the dashed line in Figure 4—whereas in the saturated
region, the obtained measurement points are approximated by a fitting curve—denoted by
the solid line in Figure 4 [28].
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It is important to note that the IM model shown in Figure 1a can be easily adapted to
obtain models of different complexities. For example, by setting Lm = const., Rsll = 0, and Rm
→ ∞, the conventional IM model is obtained; magnetic saturation can be accounted for by
setting Lm = f (ψs/ψs-rated); by setting Rsll 6= 0, the model including the SLLs is obtained, etc.
This fact is exploited in Section 5.1 to determine the recommended IM model’s complexity
for the proposed MPCC-based system.

Note here that the term “complexity” in this study primarily refers to the computa-
tional complexity of the IM model, which then has its repercussions on the computational
complexity of the control algorithm based on that model. On the one hand, it implies the
number of accounted phenomena present in the real IM, whereas on the other hand, it
depends on the placement of the corresponding parameters within the equivalent circuit
since it can affect the differential order of the model (a higher order implies a more complex
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model). This placement must be physically sound but also allow a certain degree of free-
dom (e.g., Rm may be placed in parallel with Lm, or in series with Lm, or in parallel with Ls,
as in Figure 1a). The complexity also depends on whether these parameters are represented
as constant (less complex) or as variable (more complex), with the value depending on one
or more variables. Lastly, this dependency can be linear (less complex) or described by
mathematical functions of a higher order (more complex).

As already suggested, some assumptions were made in all the considered IM models to
keep them computationally reasonable. These include the assumption of constant winding
resistances, which in the real IM vary with respect to both the temperature and frequency
(i.e., skin effect). Then, there is the assumption of constant leakage inductances, which are
known to be flux-dependent, as well as the assumption of their even distribution between
the stator and rotor side, which may not be the case in the real IM. Lastly, there are the
already-mentioned assumptions of negligible eddy-current iron losses and shaft friction.

3. Control System Overview

In the proposed control system, the three-phase IM is supplied via the voltage source
inverter (VSI), whose insulated-gate bipolar transistor (IGBT) switches are controlled by
means of the DMPC. The proposed system’s configuration is shown in Figure 5a, whereas
the corresponding control algorithm, developed in the synchronously rotating d-q reference
frame, is shown in Figure 5b (reference variables are marked with *). The MPCC algorithm
in Figure 5b shares certain similarities with the indirect rotor-field-oriented (IRFO) control
algorithm, shown in Figure 5c. For example, in both cases, the magnitude of the rotor flux
space vector is assumed to be equal to its reference value; the reference d-axis component
of the stator current is obtained by dividing the rotor flux reference with the magnetizing
inductance, whereas the reference electromagnetic torque is obtained at the output of the
rotor speed PI controller; the angle of the rotor flux space vector is used for the inverse
Park transformation of the stator currents/voltages; both systems require measurement of
the stator currents and rotor speed.

On the other hand, the proposed MPCC algorithm, as opposed to the IRFO, does
not require two additional PI controllers for control of the d- and q-axis components of
the stator current, which simplifies the system design significantly. Instead, the control of
the stator phase currents is implemented within the MPC’s cost function, as explained in
Section 4. Also, the proposed system does not require an intermediate modulation stage to
control the VSI’s switches, nor does it require decoupling of the d- and q-axis components
of the stator voltage. The decoupling terms are defined as follows:

vsTd−dec = i∗sTqωeσLs (11)

vsTq−dec = i∗sTdωe

(
σLs +

L2
m

Lr

)
(12)

where σ = 1 − Lm
2/(Ls · Lr) is the total leakage factor.

Note in Figure 5b,c that the Lm, Rm, and Rsll values are expressed as a function of
the rotor flux reference instead of the stator flux magnitude for the reasons explained in
Section 5.1. Similarly, the Rm and Rsll values are expressed as a function of the rotor speed
instead of the stator angular frequency.
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Figure 5. Considered IM control system: (a) system configuration and VSI voltage vectors,
(b) proposed MPC algorithm, and (c) IRFO control algorithm.

4. Proposed Model Predictive Current Controller

By applying the forward Euler method to the equations of the IM model shown in
Figure 1a (Appendix A), withωe = 0, the discrete-time next-step prediction of the current
isT from (8) can be obtained as follows (for the conventional IM model→ isT = is, vsT = vs,
and RsT = Rs) [38]:

isT(k + 1) =
(

1− Ts

τσ(k)

)
· isT(k) +

Ts

τσ(k)Rσ(k)
·
[

kr(k) ·
(

1
τr(k)

− jωr(k)
)
·ψr(k) + vsT(k)

]
(13)

where Ts is the MPC sampling period, τσ = σ · Ls/Rσ, Rσ = RsT + Rr · kr
2, kr = Lm/Lr,

and τr = Lr/Rr.
Note in (13) that the parameters τσ, Rσ, kr, and τr are reevaluated in each time step,

which allows Lm, Rm, and Rsll to be modeled as non-constant parameters. This equation
is solved for all eight possible switching combinations of the VSI, which, in turn, requires
measurement of the stator current and the rotor angular speed, along with the rotor flux
vector calculation (obtained from (A2) and (A4) and by applying the backward Euler
discretization) as follows:
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ψr(k) = ψr(k− 1) ·
(

1− Ts

τr(k)
+ jωr(k) · Ts

)
+ isT(k) ·

Lm(k)Ts

τr(k)
(14)

From (14), the rotor flux angle required for the inverse Park transformation of the
reference stator currents can be obtained as

θr(k) = arctg
Im(ψr(k))
Re(ψr(k))

(15)

In the field of power electronics, most MPC cost functions utilize the sum of the absolute
values of the predicted tracking error components (i.e., the `1-norm) because of the related
computational simplicity [13,39–43]. However, as it was shown in [8,44], this may lead to
closed-loop instability and performance deterioration. On the other hand, using the sum of
squares of the tracking error components (i.e., the `2-norm) guarantees closed-loop stability,
good tracking performance, and low distortions, especially when CEP is also implemented.
Due to this reason, the proposed MPCC utilizes the `2-norm cost function as follows:

g = (i∗sTα(k)− isTα(k + 1))2 +
(

i∗sTβ(k)− isTβ(k + 1)
)2

(16)

where isα(k + 1) and isβ(k + 1) are the stationary α-β components of the predicted stator
current space vector isT(k + 1); note that, for simplicity, the reference currents from the
(k + 1)-th step are approximated by those from the k-th step.

Furthermore, most direct MPCs reported in the literature consider a one-step predic-
tion horizon and exclude the CEP, which then resembles deadbeat control [45]. However,
deadbeat controllers are known to be sensitive to model mismatches and parameter un-
certainties. In addition, the switching frequency is, in this case, limited only by the MPC
sampling period as fsw < 1/(2Ts). It was shown in [8] that under such conditions, the
DMPC does not outperform conventional PWM methods in terms of current distortions.
To ensure a desirable steady-state performance, a high sampling-to-switching frequency
ratio is required. This may be achieved by reducing the switching frequency through
penalization of the control effort. In this study, the CEP is implemented by constraining
simultaneous switching to two VSI branches (fsw < 1/(3Ts))—by means of the parameter
hsw included in the cost function—and by including the weighted switching penalization
term λsw· nsw in the cost function as follows:

g =
(
i∗sTα(k)− isTα(k + 1)

)2
+

(
i∗sTβ(k)− isTβ(k + 1)

)2
+ hsw + λsw · nsw

nsw = |Sa(k)− Sa(k− 1)|+ |Sb(k)− Sb(k− 1)|+ |Sc(k)− Sc(k− 1)|
if nsw = 3, hsw = 1010; else hsw = 0

(17)

where nsw equals the number of VSI branches with simultaneous switching and λsw is the
adjustable weighting factor.

The flowchart of the proposed DMPC algorithm is presented in Figure 6.
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5. Results and Discussion

An extensive simulation analysis is first carried out in the MATLAB Simulink envi-
ronment using several MPC algorithms based on IM models of different complexities to
determine the best overall candidate for the proposed MPCC system. The MPC algorithm
based on thus selected IM model is then utilized for the assessment of the impact of the
CEP on the system’s performance. Finally, the steady-state and dynamic performance of
the proposed MPCC system is compared to that of the IRFO system (Figure 5c). In all
simulations, a variable-step solver (ode45, Dormand-Prince) with the maximum step size
set to 1 µs was used for simulating the IM and the VSI. Other solver parameters were set to
default values.

Besides the assumptions related to the IM parameters, discussed in Section 2, other
assumptions made in the simulation model include the following:

• Both DC-link voltage and load torque are assumed constant.
• The inverter switches are assumed ideal.
• Feedback signals do not contain noise, offset, or gain error.
• There is no electromagnetic interference (EMI).
• There is no delay in application of the command (switching) signal.

5.1. MPCC Performance with Different IM Models

The IM models which are in this subsection considered for the MPC design are all
somewhat simplified versions of the IM model in Figure 1a, starting from the simplest to
the more complex ones. They differ with respect to the parameter settings as follows:

(a) Lm = Lm-nonsat, Rsll = 0, and Rm → ∞
(b) Lm = f (ψr

*), Rsll = 0, and Rm → ∞
(c) Lm = f (ψr

*), Rsll = 0, and Rm = Rm-rated
(d) Lm = f (ψr

*), Rsll = 0, and Rm = f (ωr)
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(e) Lm = f (ψr
*), Rsll = f (ωr, ψr

*), and Rm = f (ωr, ψr
*)

The model variant a is, in fact, the conventional IM model shown in Figure 1c, in
which the magnetic saturation, the iron losses, and the SLLs are entirely ignored. The
magnetizing inductance is set equal to the corresponding non-saturated value, as in [17,23],
the SLL resistance is set to zero, and the iron-loss resistance is set to 1010 Ω for practical
reasons. The model variant b includes the magnetic saturation, as is the case with all
the remaining variants c-e. One may notice, however, that the magnetizing inductance’s
dependency on the (normalized) stator flux magnitude (Figure 4) is here approximated by
the dependency on the (normalized) rotor flux reference (i.e., ψs/ψs-rated → ψr

*/ψr-rated).
This is because ψr

* is readily available in the control algorithm, whereas ψs would have
to be additionally calculated, thus increasing the MPC’s computational burden. It is
assumed that ψs/ψs-rated ≈ ψr

*/ψr-rated. The model variant c additionally includes the iron
losses by means of the constant iron-loss resistance whose value corresponds to the rated
operating conditions. In the model variant d, the iron-loss resistance is assumed to be
proportional to the rotor speed as Rm = Rm-rated · ωr/ωr-rated. Again, one may notice that
in Section 2.1, Rm was defined as being proportional to the (normalized) stator angular
frequency, whereas here, the (normalized) angular rotor speed ωr is utilized instead for
practical reasons (i.e., ωe/ωe-rated → ωr/ωr-rated). This is because ωr is readily available in
the control algorithm, whereasωe would have to be additionally calculated, andωe/ωe-rated
≈ ωr/ωr-rated holds true in normal operation. Lastly, in the most elaborate model variant e,
Rm, and Rsll are linearly dependent on both the rotor flux reference and angular rotor speed
in a way similar to that described by (9) and (10), but with the following substitutions
applied: ψs/ψs-rated → ψr

*/ψr-rated andωe/ωe-rated → ωr/ωr-rated.
The IM model presented in Figure 1a is taken as the reference model in this study

and is utilized to simulate the actual induction machine (i.e., the one outside of the MPC
algorithm). The sampling period for the MPC was set to Ts = 20 µs (fsw-max = 25 kHz),
whereas the sampling period for the rest of the control algorithm was set to Ts1 = 1 ms
to reduce the computational burden while not sacrificing much the performance. The
DC-link voltage was in all simulations set to 520 V. The rotor flux reference was set to
the corresponding rated value (ψr

* = ψr-rated). Consequently, in all the considered model
variants except for the variant a, the Lm value in the MPC algorithm was, in fact, constant
and equal to 0.2991 H (i.e., the value corresponding to the rated stator flux in Figure 4).
Hence, the model variant b is in this particular case equivalent to the conventional IM
model in which the Lm value is fixed at the corresponding rated value. At the same time, the
Lm value in the IM model outside of the MPC algorithm may differ depending on the actual
magnetizing conditions (i.e., the difference between the reference and actual rotor flux). In
general, the closer the rotor flux reference corresponds to the actual rotor flux magnitude,
the closer the Lm value in the MPC algorithm corresponds to the actual Lm value, which
depends on the accuracy of the IM model utilized for the MPC. The dependency of the Lm
(as well as the Rm) value on the IM operating flux would have been more pronounced in the
case of variable rotor flux reference (e.g., in flux-weakening operation above rated speed or
in certain IM loss-minimization strategies), but such analysis falls out of the scope of this
study. In any case, the MPC algorithm in Figure 5b allows us to consider such variations
if required.

First, the cost function defined in (16) is utilized and the steady-state values of the
following performance metrics are considered: the total harmonic distortion of the stator
current THDI (related with the stator current error and IM harmonic losses), the average
switching frequency fsw-avg (related with the control effort and power converter losses), the
rotor flux magnitude error ∆ψr (i.e., the ratio of the actual and the reference magnitude of
the rotor flux vector), the rotor flux angle error ∆θr (i.e., the angular misalignment between
the actual and the reference rotor flux vector), and the product THDI · fsw-avg. These are all
presented in Figures 7–11 as a function of the normalized load torque and rotor speed in the
form of 3D surface plots. Note, however, that the plots obtained for the model variant e are
very similar to those obtained for the variant d, so only the corresponding median and mean



Processes 2023, 11, 2917 13 of 25

values are provided in the brackets in Figures 7d, 8d, 9d, 10d and 11d for comparison (the
corresponding 3D surface plots are provided as supplementary .tif files). This similarity is
also evident from the results given in Table 2.
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Table 2. Percentage shares of the operating points within given margins of the performance metrics.

IM Model THDI
(≤5%)

fsw-avg
(≤10 kHz)

∆ψr
(1 ± 0.02 p.u.)

∆θr
(0 ± 2 deg.)

a 10.91% 11.82% 4.55% 20.91%
b 14.55% 19.09% 67.27% 30.00%
c 56.36% 29.09% 72.73% 50.91%
d 80.00% 100.00% 90.00% 52.73%
e 91.82% 78.18% 92.73% 72.73%

Each of the plots in Figures 7–11 comprise 110 operating points, encompassing base
regions of rotor speed and load torque. Table 2 shows the percentage shares of the operating
points that are within the given margins of the considered performance metrics.

It is evident from the presented plots and numerical results that inclusion of the
magnetic saturation in the MPC model as in the model variant b significantly reduces
the rotor flux magnitude error, whereas its contribution to the improvement of the other
considered performance metrics is more modest, but also worth noting.

The inclusion of iron losses, as in the model variant c, contributes the most to the
reduction in the THD of the stator currents and, thus, to the reduction in the IM harmonic
losses, but it also improves all the other considered performance metrics, resulting in
a considerable reduction in the product THDI · fsw-avg.

By setting the iron-loss resistance as proportional to the rotor speed, as in the model
variant d, all the considered performance metrics are additionally enhanced, especially in
the low-speed/low-torque regions. In low-torque IM operation, the share of the iron losses
becomes more pronounced due to the reduction in both the winding losses and the SLLs, so
it becomes increasingly important to take them into account. Similarly, in the model variant
c, as opposed to the model variant d, the Rm value is significantly overestimated (i.e., the
iron losses are underestimated) in the low-speed operating region because the Rm-rated value
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is determined for the rated frequency of 50 Hz. The model variant d enables a more accurate
prediction of the stator currents in this region and, thus, better selection of the optimal
voltage vector. Consequently, with the model variant d, the average switching frequency is
decreased by more than two times, with the highest corresponding value reaching only
8.35 kHz, as compared to 23.65 kHz previously obtained for the model variant c. This
inevitably reduces the converter losses. In addition to that, 80% of the considered operating
points satisfy the criterion THDI ≤ ±5%. Note also that even though the median and mean
values of the rotor flux angular error are slightly greater than those obtained for the model
variant c, the corresponding range is reduced by half. The largest overall decrease was
recorded in the product THDI · fsw-avg, with the corresponding mean value decreased more
than tenfold.

The implementation of the most elaborate model variant e somewhat noticeably
reduces the stator currents’ THD and the rotor flux angular error. However, this is achieved
at the cost of an increase in the average switching frequency, so the product THDI · fsw-avg
is only marginally reduced (fsw-avg does not surpass 12 kHz at any point). Given the
rather modest improvements in the performance metrics due to the application of the
model variant e, it seems difficult to justify using this IM model for the MPCC design
considering the increased computational cost and more complicated procedure of obtaining
model parameters.

Summed up, the IM model variant d, i.e., the one including the magnetic saturation
and rotor speed-dependent iron-loss resistance, is recommended for the proposed MPCC.
Anything more complex than that does not result in substantial performance improvements
while implying a more complex process of determining model parameters and increased
computational burden, whereas less complex IM model variants result in considerable
performance degradation. Hence, the recommended model variant is utilized for the
remaining analysis.

5.2. Impact of Control Effort Penalization

As explained in Section 4, the control effort in this study is penalized in two ways: by
constraining the number of simultaneous switching transitions to a maximum of two VSI
branches (fsw-max = 16.67 kHz) and by introducing the weighted switching penalization
term in the cost function. To evaluate its impact, the weighting factor λsw in this study is
set to 0.05. This value could have been further optimized, e.g., through minimization of the
product THDI · fsw-avg, but such analysis falls out of the scope of this study. The simulation
parameters, the MPC code, and the simulation model segments in MATLAB-Simulink of
the MPCC system based on the IM model variant d and including the CEP are all provided
as supplementary .pdf files.

The obtained results are presented in Figure 12 and in Table 3. Note that the median
and mean values in the brackets in Figure 12 refer to the results obtained without the CEP.

It is evident from the above results that the average switching frequency can be further
considerably reduced by implementing the CEP, while not sacrificing too much the other
considered performance metrics. In fact, only the share of the operating points that meets
the condition THDI ≤ 5% has decreased by about 10%. This may seem significant, but if
the THDI margin had been set only 1% higher, the share would be equal to 80% in both
cases—with and without the CEP. As for the rotor flux magnitude and angle errors, the
corresponding plots given in Figure 12c,d, respectively, are practically indistinguishable.
It is also interesting to note that the achieved reduction in the product THDI · fsw-avg is
approximately the same as it was due to the application of the most elaborate IM model
in Section 5.1. It is also possible that this performance metric could be further reduced by
optimizing λsw.
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Table 3. Percentage shares of the operating points within given margins of the considered perfor-
mance metrics—CEP with λsw = 0.05.

IM Model THDI
(≤5%)

fsw-avg
(≤5 kHz)

∆ψr
(1 ± 0.02 p.u.)

∆θr
(0 ± 2 deg.)

d 80.00% 20.00% 90.00% 52.73%
d + CEP 70.91% 100.00% 89.09% 52.73%

5.3. MPCC vs. IRFO Performance Comparison

In this section, the performance of the proposed MPCC-based system (Figure 5b)
is compared to that of the IRFO-based system (Figure 5c). As already explained, these
two systems share many similarities up to the point of acquiring the reference stator
currents, but they fundamentally differ in how these currents are further handled to
eventually obtain the switching signals for the VSI. One of the differences is that the IRFO
system uses a sinusoidal PWM modulator with a fixed switching frequency, whereas in the
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case of the MPCC system, the switching frequency varies. To enable as fair a comparison as
possible, the switching frequency of the PWM modulator was adjusted for each considered
operating point and set equal to the average switching frequency of the MPCC algorithm
(Figure 12b). The same parameter values were used for the speed PI controller in both
systems, and these were tuned through a trial-and-error procedure. In both systems, the
sampling period Ts1 = 1 ms was used for the part dedicated to acquiring the reference
stator currents and calculation of IM model parameters. The rest of the MPCC algorithm,
including the model predictive controller and the inverse Park transformation of the stator
currents, was executed with the sampling period Ts = 20 µs, which gives a sampling
frequency ratio of 50. However, according to [46], for cascade speed control systems,
such is the IRFO, and for switching frequencies below 30 kHz, the sampling frequency
of the speed control loop should be 2–10 times lower than the main sampling frequency.
Therefore, in the considered IRFO algorithm, the main sampling frequency was reduced
to 10 kHz to achieve a sampling frequency ratio of 10, which is the recommended value
closest to the ratio implemented for the MPCC. In the case of the IRFO algorithm, this
part of the algorithm includes two internal (current) control loops, with the respective PI
controllers and the decoupling and inverse Park transformation of the stator voltages. The
current PI controllers’ parameters were tuned according to the procedure described in
Appendix C [47]. Both control algorithms are designed based on the equations of the IM
model variant d, described in Section 5.1. The CEP was additionally implemented in the
case of the MPCC, as explained in Section 4, with λsw set to 0.05 as in Section 5.1.

The reference speed and load variations during the simulation are summarized in
Table 4, whereas the obtained dynamic responses are presented in Figure 13. The rotor flux
reference was set to ψr

* = ψr-rated, whereas the DC-link voltage was set to 520 V. The stator
current THD values are additionally provided in Table 5.

It is fair to say that both considered algorithms provide very similar performances
with the selected controller settings. The proposed MPCC algorithm in most cases (except
for the initial run up) ensures a slightly smaller overshoot in the rotor speed. This is
particularly evident at t = 0.5 s when the speed reference signal was increased in a step
manner from 0.5 to 1.0 p.u., resulting in an overshoot reduction from 23% to only 8%.
The IRFO algorithm, on the other hand, ensures a slightly smaller settling time in most
cases, whereas the rise time is almost identical. As for the torque response, the MPCC
algorithm ensures lower ripple at higher rotor speeds, regardless of the load (t = 0.5–2 s),
but it also induces higher ripple at reduced rotor speeds in combination with high loads
(t = 2.5–3 s). Lower overshoots accompanied with fewer oscillations are observed in the
rotor flux response when the MPCC is used. On the other hand, the actual rotor flux
magnitude corresponds better to its reference value under rated load and speed conditions
when the IRFO is applied (t = 1–1.5 s). Lastly, at higher rotor speeds, the stator current
THD values are considerably lower for the proposed MPCC algorithm, regardless of the
load (t = 0.5–2 s), which results in lower harmonic losses of the IM. However, as the rotor
speed decreases below half the rated value, the IRFO algorithm gets increasingly better in
this regard, compared to the proposed MPCC algorithm (t = 2–4 s).

Table 4. Reference rotor speed and load torque variations during simulation.

t [s] 0–0.5 0.5–1 1–1.5 1.5–2 2–2.5 2.5–3 3–3.5 3.5–4

ωr
* [p.u.] 0.5 1.0 1.0 1.0 0.25 0.25 0.25 –0.25

T [p.u.] 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0
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Figure 13. Dynamic responses recorded for the proposed MPCC algorithm and the IRFO algorithm:
(a) rotor speed, (b) electromagnetic torque, (c) rotor flux magnitude, and (d) stator phase current
(phase a).

Table 5. Stator current THD values obtained for the proposed MPCC-based system and the
IRFO system.

t [s] 0–0.5 0.5–1 1–1.5 1.5–2 2–2.5 2.5–3 3–3.5 3.5–4

THD [%] (MPCC) 9.15 5.65 3.13 5.67 20.79 12.72 19.69 19.69
THD [%] (IRFO) 8.56 8.89 8.13 9.03 11.99 6.62 12.12 12.12

To evaluate the computational cost of the considered control algorithms, the corre-
sponding execution times (ETs) were determined for the previously described simulation
by using the tic toc routine in the MATLAB Simulink (R2022b). For each of the considered
algorithms, the average ET value obtained for ten consecutively executed simulations
was determined. In addition to the obtained ET values, the results presented in Table 6
include percentage differences in the ET values of the MPCC-based models compared to
the IRFO-based model. The letters a–e in the MPCC algorithm labels in Table 6 denote the
utilized IM model variant. For this analysis, a PC with the following characteristics was
used: Intel(R) Core(TM) i9-12900, 2.40 GHz, 16.0 GB DDR5.

Table 6. Simulation execution times of the considered control algorithms.

Control
Algorithm IRFO MPCC-a MPCC-b MPCC-c MPCC-d MPCC-e MPCC-d

+ CEP

ET [s] 16.14 15.74 15.75 15.84 15.90 15.93 16.36
∆ET [%] - –2.83 –2.42 –1.86 –1.49 –1.30 +1.36
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Regardless of the utilized IM model variant, the application of the MPCC algorithm
decreases the ET value by a few percentage points compared to the IRFO algorithm. The
lowest ET was expectedly recorded for the MPCC based on the simplest IM model (MPCC-
a), whereas only a minor gradual increase in the ET value was recorded when more complex
MPCC algorithms were utilized. It is only when the CEP is additionally implemented
(MPCC-d + CEP) that the MPCC algorithm results in a slightly higher ET value compared
the IRFO algorithm.

5.4. Performance Comparison with the Existing Competing MPC Algorithms

The only two MPC algorithms from the literature that include IM magnetic saturation
and iron losses and are, hence, to some extent comparable to the one proposed here are
those proposed in [21,22].

The IM model considered in [21] involves a computationally more complex repre-
sentation of the iron-loss resistance and IM inductances; namely, the iron-loss resistance
is represented as a function of the magnetizing flux magnitude and its time derivative,
whereas the magnetizing inductance and the stator and rotor leakage inductances—both
static and dynamic—are represented as a function of the magnetizing and leakage flux mag-
nitudes. A PWM modulator is additionally required in [21] to ensure constant switching
frequencies, whereas the cost function includes absolute errors in the predicted rotor flux
space-vector components, so it does not fall into the MPCC group. In addition, as already
mentioned, the utilized `1-norm does not guarantee closed-loop stability The simulation
responses obtained for a 4-pole 2.2 kW IM are very similar to those obtained for the pro-
posed MPCC in terms of the observed speed and torque transients and steady-state errors
in the rotor flux magnitude. However, a lack of available data (e.g., switching frequency,
overshoots, settling times, ripple, THD, etc.) prevents a better comparison.

The cost function considered in [22] includes the absolute differences (i.e., `1-norm) of
the rotor speed and flux, whereas the IM parameters, including the iron-loss resistance and
the magnetizing inductance, are updated online by using an optimized GA. This in itself
contributes to a non-negligible increase in computational complexity. The experimental
validation involved a 4-pole 1.5 kW IM, but it only included dynamic responses of the elec-
tromagnetic torque, rotor speed, and stator phase current to speed reference step-changes
from 1 p.u. to 0.5 p.u. and back, all recorded for the rated load and unspecified rotor
flux reference. The speed response is notably slower with larger overshoots compared to
that in Figure 13, but the torque overshoots seem to be smaller. Again, a lack of available
data (e.g., control system diagram, rotor flux reference value, switching frequency, sam-
pling period, THD, ripple, etc.) and a very limited number of presented results prevents
a better comparison.

5.5. Practical Considerations and Challenges

Many of the practical considerations and challenges are related to the assumptions
made in the simulation model and in the IM model itself, so they are to be dealt with in
future studies. Some examples are given below.

The impact of the measurement noise on MPC is addressed in very few studies [48,49].
Given the fact that the MPCC performance largely depends on the quality of the measured
current and speed signals, this issue should not be overlooked and some kind of filtering
with delay compensation might be necessary to achieve satisfactory performance.

The fact that the MPC controller takes a certain amount of time to calculate the output
command signal for the k-th step inevitably introduces delay in the signal propagation. The
amount of delay depends on the control algorithm’s computational complexity (e.g., length
of the prediction horizon, total number of possible switching combinations, complexity
of the IM model, etc.). There are other causes of delay, such as the D-A conversion,
the IGBT driver circuit, the IGBT/diode pair itself (i.e., impossibility of instantaneous
current commutation), the dead time, etc. Since all these delays typically sum up to a few
microseconds, they could be easily compensated by utilizing the stator current prediction
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for the k + 2 step instead of the k + 1 step for all possible switching states and by applying
the optimal solution at the start of the next sampling period, provided that the sampling
period is large enough.

The offset in the measured stator currents, which constitute periodic AC signals, could
be detected and eliminated online by utilizing the fact that the corresponding mean value
calculated for a certain integer number of periods must equal zero. Of course, this requires
knowledge of the fundamental frequency and accurate zero-crossing detection.

The EMI noise represents a challenging problem where power converter switching
and parasitic capacitances/inductances are involved. It causes signal distortion and may
potentially lead to device malfunction, especially at higher switching frequencies. It can
be suppressed by filtering (e.g., low-pass filters and/or common-mode chokes), shielding,
and grounding.

The winding resistances are known to vary with both the temperature and frequency
(i.e., skin effect). This variation could be assessed online by means of measurement
(e.g., sensors installed in the windings) or through application of an observer (e.g., model-
reference-adaptive system) and compensated through online correction of the resistance
values in the control algorithm.

The MPCC sampling period utilized in this study falls within the typical range of
a few tens of microseconds. Hence, it is expected that the proposed algorithm could be
executed in real-time by using an affordable digital signal processor, especially considering
the one-step prediction horizon, but this assumption is yet to be tested.

6. Conclusions

In this paper, several MPCC strategies based on IM models of different complexity
levels have been presented and discussed. To our best knowledge, the MPC considered in
this study is the only one that allows for inclusion of the IM magnetic saturation, iron losses,
and SLLs, whereas it can be easily adapted to include only some of these phenomena. In
addition, it is the only MPCC algorithm that includes any of these phenomena. It is also
the first MPC algorithm based on the IM model in which the iron-loss resistance is placed
in parallel to the stator inductance, instead of being placed in parallel to the magnetizing
inductance. This simplifies the corresponding equations greatly, while not sacrificing much
the accuracy.

Based on the extensive simulation analysis, the IM model including the magnetic
saturation and rotor speed-dependent iron-loss resistance proved to be the best candidate
for the MPCC design, providing the best tradeoff between the practicability and accuracy.
The implementation of more complex IM models would imply a more complex process
of parameter determination and increased computational costs, while not resulting in
a substantially better performance. On the other hand, the implementation of simpler
IM models would result in considerable performance degradation, the most important of
which is the increase in the stator currents’ THD (i.e., IM harmonic losses) and the average
switching frequency (i.e., power converter losses). In addition, by penalizing the control
effort in the proposed manner, the average switching frequency can be further reduced
(i.e., more than twice with the utilized λsw value), while not sacrificing too many other
performance metrics. Compared to the IRFO control, the proposed MPCC with the CEP
provides better overall dynamic performance, as well as lower torque ripples and stator
current THD at rotor speeds above half the rated.

In the future, an experimental validation of the proposed method is to be carried out
with special consideration for the CEP optimization and the effects of the measurement
noise and signal delay. In addition, the impact of the IM winding resistances’ variations is
to be evaluated. A similar analysis is to be performed for varying IM magnetization levels
(e.g., flux weakening or loss minimization) and for the MPTC-based IM drive.
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the CEP are provided for the purpose of reproducibility of the results. Figure S1: 3D surface plot of
the stator current THD for the IM model variant e; Figure S2: 3D surface plot of the average switching
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Appendix A

The space-vector equations of the IM model shown in Figure 1a are obtained by
substituting (6)–(8) into (1)–(5) and are given as follows (ΣR = Rs + Rsll + Rm):

vs = is(Rs + Rsll) +
dψs
dt

+ jωeψ (A1)

0 = Rrir +
dψr
dt

+ j(ωe −ωr)ψr (A2)

ψs =
Ls

Rm
(isΣR− vs) + Lmir (A3)

ψr = Lrir +
Lm

Rm
(isΣR− vs) (A4)

Te =
3
2

p
Lm

Lr
Im

{
isT

¯
ψr

}
=

3
2

p
Lm

Lr
Im

{(
isΣR− vs

Rm

)¯
ψr

}
(A5)

Appendix B

The polynomial equations describing the hysteresis loss coefficient Kh (for accounted
SLLs) and magnetizing inductance Lm (in the saturated region) are given as follows:

Kh = −9.1403
|ψs|2

ψ2
s,rated

− 10.6306
|ψs|

ψs,rated
+ 78.0902 (A6)

Lm = 0.3457
|ψs|3

ψ3
s,rated

− 1.4156
|ψs|2

ψ2
s,rated

+ 1.2905
|ψs|

ψs,rated
+ 0.0785 (A7)

https://www.mdpi.com/article/10.3390/pr11102917/s1
https://www.mdpi.com/article/10.3390/pr11102917/s1
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Appendix C

The current PI controllers’ parameters were tuned according to the following pro-
cedure. First, the corresponding angular sampling frequency is chosen—in this case,
ω = 2π·10 kHz = 62,831.85 rad/s. According to the Nyquist stability criterion, the asymp-
totic stability is reached for the following closed-loop system bandwidth:

αc =
ωs

6
(A8)

The recommended closed-loop system bandwidth is

αc <
ωs

10
(A9)

which gives the phase and gain margins of 36◦ and 1.7, respectively (in this case,
αc < 6283.185 rad/s).

For the first-order closed-loop system, by which the current control loops are approxi-
mated, the rise time is defined as

trc =
ln 9
αc

(A10)

where αc equals the inverse value of the corresponding time constant.
From (A9) and (A10), it follows:

trc >
10 · ln 9
ωs

(A11)

which yields trc > 0.35 ms in the considered case.
The desired trc value in this study is set to 1.5 ms, which, in turn, yields αc = 1464.82 rad/s.
In the last step, by applying the direct synthesis method [47], the current PI controllers’

gains are obtained as follows:
kpc = αcL
kic = αcR

(A12)

where L = Lsl + Lrl and R = RsT-rated + Rr
Note that RsT-rated in (A12) is obtained from (6) by setting Rm = Rm-rated and Rsll = 0

(SLLs are neglected since only the IM model variant d is considered in Section 5.3).
The described procedure resulted in the following values of the current PI controllers’

gains: kpc = 50 and kic = 11641.
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