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Abstract: Additive manufacturing (AM) is gaining popularity as it can produce near-net geometries
and work with difficult-to-manufacture materials, such as stainless steel 316L. However, due to the
low surface quality of AM parts, machining and other finishing methods are required. Laser powder
bed fusion (LPBF) components can be difficult to finish as the surface roughness (Sa) can vary greatly
depending on the part’s orientation, even when using the same machining parameters. This paper
explored the effects of finishing (milling) SS 316L LPBF components in a variety of part orientations.
The effect of layer thickness (LT) variation in LPBF-made components was also studied. LPBF parts
of 30, 60, 80, and 100 µm layer thicknesses were created to analyze the effect of the LT on the final
milling process. Additionally, the effect of cutting speed during the milling process on the surface
roughness of the SS 316L LPBF component was investigated, along with the orientations and layer
thicknesses of the LPBF components. The results revealed that the machined surface undergoes
significant orientation and layer thickness changes. The investigations employed a factorial design,
and analysis of variance (ANOVA) was used to analyze the results. In addition, an artificial neural
network (ANN) model was combined with particle swarm optimization (denoted as ANN-PSO)
and the genetic algorithm (denoted as ANN-GA) to determine the optimal process conditions for
machining an SS 316L LPBF part. When milled along (Direction B) an orientation with a cutting speed
of 80 m/min, the LPBF component produced, with a layer thickness of 60 µm, achieves the lowest
surface roughness. For instance, the Sa of a milled LPBF part can be as low as 0.133 µm, compared to
7.54 µm for an as-fabricated LPBF part. The optimal surface roughness was 0.155 µm for ANN-GA
and 0.137 µm for ANN-PSO, whereas the minimal surface roughness was experimentally determined
to be 0.133 µm. Therefore, the surface quality of both hybrid algorithms has improved, making them
more efficient.

Keywords: SS 316L; additive manufacturing; laser powder bed fusion; layer thickness; surface
roughness; particle swarm optimization; genetic algorithm; artificial neural networks

1. Introduction

Stainless steel 316L has several applications in aerospace and the food industry.
Austenitic stainless steels are also widely utilized in a variety of industries [1], from
aviation to nuclear power to defense to the food industry [2] and automotive industry [3],
due to their strong resistance to corrosion in high-temperature water and oxidation [4]. The
excellent combination of mechanical strength and corrosion resistance of SS 316L has made
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it a popular material for reusable medical devices [5]. Poor machinability, however, makes
it a typical hard-to-cut material [6]. It has been more obvious in recent years that machining
operations (surface grinding, surface milling, surface turning, and surface buffing) [7]
that alter the workpiece surface and other finite element numerical procedures [8] have
a substantial impact on the surface integrity and corrosion resistance of SS 316L [9]. In
conjunction with laser powder bed fusion (LPBF), SS 316L can affordably support individ-
ualized implants or prostheses [10]. It is important to pay close attention to the surface
properties of these implants due to their communication with the human body. However,
L-PBF components are notorious for their low-quality surfaces [11]. The surface character-
istics of SS 316L components made with LPBF can be greatly improved through machining.
Accordingly, to obtain the appropriate surface quality, extensive work on the machinability
of SS 316L LPBF parts is needed.

Additive manufacturing (AM) enables the rapid production of complex-shaped items
that cannot be made using traditional machining techniques [12]. Due to these benefits,
the biomedical, aerospace, and automotive industries favor this technique [13]. Laser
powder bed fusion (LPBF) is a top AM technique for creating a pore gradient structure in
316L stainless steel [14], combining and assembling various powder materials to create
customized products [15]. These parts frequently exhibit process-induced micropores and
elevated residual stresses [16]. LPBF has great material strength, as it can be completely
melted to a 100% density, yet several problems must be solved before rapid manufacturing
can be implemented. Part orientation, layering strategy, support generation and structure,
process speed, and control facilities are the main challenges [17]. Using the heat from a
focused laser beam, powder particles are bonded to one another layer by layer, resulting
in dense, functioning objects with intricate geometries [18]. Modern medical implants,
including 316L stainless steel bone implants, are made using LPBF. LPBF has several
benefits over traditional machining; however, its poor surface quality is a drawback [18,19].
The “stair step” effect, caused by layered approximations of curves and inclined surfaces,
impacts surface quality [20]. This is a natural consequence of additive layer deposition
and manufacturing in all techniques. Thus, the industrial sector is currently using hybrid
production methods, such as AM and final machining. The surface quality and performance
of additively generated parts can be enhanced through finish machining [13].

To obtain desirable mechanical properties from LPBF-made 316L SS, several process-
ing parameters are optimized. Layer thickness affects the cooling, mass transfer, building,
and heat transfer rates [21]. An increase in (powder) layer thickness shortens production,
whereas a reduction yields denser, more precisely sized products [22]. The minimum
layer thickness (20 µm) was determined for the best material density [23]. Correct compo-
nent thickness is crucial for intended shape, performance, and characteristics [24]. This
research altered the LPBF process parameters and layer thickness to enhance the SS 316L
component’s surface roughness. Strano et al. [20] analyzed the upper surfaces of SS 316L
LPBF components at various angles in order to determine the main factors contributing to
surface roughness. These findings highlighted that layer thickness is more important than
particle size in determining surface roughness, and that step edge sharpness and partially
bound particles on top of surfaces should be considered. Souza et al. [24] investigated how
processing parameters impact LPBF steel component hardness, microstructure, porosity,
and roughness. A 400 W laser with high power improved the process energy, potentially
shortening production times and cutting costs. The optimal LPBF parameters were deter-
mined and utilized to produce a new lot of steel components to study how a part built
orientation on a substrate affects its mechanical properties. Mechanical properties were
most sensitive to component porosity. To compare production times and LPBF settings, they
conducted some basic studies. Tain et al. [25] analyzed how process parameters affected
LPBF part surface quality. Increased laser power and decreased scan rate reduced balling
and improved surface quality. Guo et al. [26] found that hatch spaces exceeding 45 µm
result in rougher surfaces, but decrease with a lower laser power or slower scan speed.
Zhang et al. [27] measured fused section surface roughness and average height drops
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on-site using digital fringe projection. Yeung et al. [28] adjusted laser power based on part
shape to improve LPBF surface quality. Although research has modified process parameters
in situ, surface roughness still requires a secondary operation, such as machining.

Finishing (typically machining) is necessary for LPBF components to attain the ap-
propriate surface quality and performance [20]; surface quality is improved during the
milling of LPBF-produced parts compared to standard parts. [29]. Furthermore, different
orientations of stainless steel 316L parts during milling have varying degrees of surface
roughness due to the influence of LPBF manufacturing [30], Surface roughness is affected
by machining and must be within acceptable limits to meet clinical standards [31]. Finish-
ing is necessary for EBM parts as well [32]; the milling process affects the surface roughness
of EBM γ-TiAl components in different ways depending on their orientation [33]; the
machinability of the EBM γ-TiAl part on a surface finish led to poor surface integrity with
coated carbide inserts compared to uncoated carbide inserts [34]. In contrast, there is
scant information available on the machining of LPBF components. The work of Kaynak
and Kitay [13] focused on using a variety of feed rates and cutting speeds to achieve a
dry finish in the machining of SS 316L parts produced via additive manufacturing. The
surface roughness of the SS 316L LPBF component was found to have decreased by as
much as 88% after finishing machining. It also had a major impact on the LPBF components’
microstructure and microhardness, resulting in finer grains and a strain-hardened layer
on the surface and inside of the part. Finish machining also dramatically reduced the
surface and subsurface porosity density in comparison to an as-fabricated part. Secondary
machining characteristics were analyzed for both wrought and SS 316L LPBF by Polishetty
et al. [35] so that the desired surface and shape could be attained. They wrapped up by
making the point that wrought components are easier to machine than SS 316L LPBF
ones. Farooq et al. [36] examined the effects of cutting speed, depth of cut, and feed rate
regarding the surface roughness and tool life for the SS 316L LPBF component throughout
the turning process. The tool life improvement objectives were met at a rate of 100%, while
the surface roughness objectives were met at a rate of 98.95%. Struzikiewicz et al. [37]
reported data on the total cutting force, maximum temperature, and surface roughness
for the turned SS 316L LPBF part. Using the Taguchi technique, they devised statistical
analysis for the test findings. Their results showed that the feed rate has a major impact
on the cutting force values, that the cutting speed and feed rate have a major impact on
the surface roughness, and that the feed rate and cutting speed have a major impact on the
maximum average temperature.

Some studies have shown that the 3D printing layer orientations considerably affect
the final visual appearance of the additively manufactured parts. Milling of the Ti6Al4V [38]
and γ-TiAl EBM [33] components and turning of the Ti6Al4V EBM [39] components are
examples where the effects of layer orientations have been studied and published. It
has been found through investigations that the same machining parameters can produce
varying degrees of surface roughness depending on the orientation of the EBM component
being machined [40]. Heat treatment helped reduce the effect of part orientation on EBM
Ti6Al4V components [41]. Another investigation [30] examined the impact on milling
orientations of changing the layer thickness during the LPBF manufacturing of SS 316L
components. However, no study has been found as of yet that optimizes the effects of layer
orientation on finishing the LPBF component.

In order to improve the surface quality of an additively manufactured product dur-
ing the milling process, it is always advantageous to understand the impact of varying
the input process parameters. For printed products to have a high-quality surface, the
milling process needs highly experienced operators; it is also costly and requires signifi-
cant trial and error. Thus, the purpose of this study was to find the optimal combination
of milling process settings considering part orientation and layer thickness for printed
products. ANNs are excellent tools for manufacturing processes with complicated and
nonlinear relationships between the input and output variables. ANNs have been useful
for modeling [42], analyzing, optimizing [43], and predicting engineering problems, such
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as manufacturing [44], welding [45,46], and 3D printing processes [47]. Giri et al. [48]
developed an ANN to predict the surface roughness, tensile strength, and build time of
polylactic acid (PLA) produced via fused deposition modeling (FDM). The optimization
results indicated that their ANN can predict experimental data with a correlation coefficient
of R = 0.99837, 0.9981, and 0.9984, respectively, for surface roughness, tensile strength, and
build time, and with root mean square error values of 0.241, 0.5543, and 0.578 for the three
outputs. Shirmohammadi et al. [49] investigated the impact of various process conditions
in FDM 3D printing on the surface roughness of printed parts. They used two different
methods, including the response surface methodology (RSM) and a hybrid algorithm that
combined an ANN and the PSO algorithm. The results of their optimization demonstrated
that both the RSM and the hybrid algorithm are capable of accurately estimating the opti-
mal parameters, with a relative error of less than 10%. Soler et al. [50] constructed an ANN
to estimate the surface roughness of Ti6Al4V alloy specimens produced via selective laser
melting (SLM) after finishing through blasting and electropolishing methods. The optimal
result was achieved using a sequential combination of two optimization techniques. First,
the GA was applied to find the best blasting and electropolishing parameters; then, this
initial optimization was used as a starting point for a nonlinear optimization method. The
optimization algorithm provided the parameters to be implemented to minimize surface
roughness by approximately 60%. Saad et al. [51] introduced the effect of various process
conditions on the surface roughness of printed parts produced via FDM 3D printing. Two
optimization methods were used to minimize the surface roughness, namely the RSM
and a hybrid algorithm that combined an ANN and the symbiotic organism search (SOS),
referred to as ANN–SOS. The optimization results indicated that ANN-SOS achieved a
minimal surface roughness of roughly 2.011 µm, 12.36% better than the RSM approach.

According to the findings of these investigations, it is not possible to foresee how
LPBF methods will affect the machinability of the material, and each LPBF process will
have its own distinct effect on the additively created components. As a result, more work
needs to be put into analyzing how different LPBF methods affect material machinability.
One of the most critical machinability techniques in LPBF is the use of alternative part
orientations. Few researchers have attempted to address the challenge of milling AM
components while taking part orientations into account. The purpose of this study was to
identify how changing the part orientation (direction), layer thickness, and cutting speed
during milling affects the surface roughness of LPBF SS 316L parts. In addition, an ANN
with GA and PSO was used to optimize the impact of the LPBF process on the machinability
of SS 316L, leading to a better-machined surface.

2. Methodology
2.1. Material Details

The LPBF technique was used to create an SS 316L component with a size of
10 × 10 × 10 mm3. Layer thicknesses (LTs) were varied across the four samples that
were created. The SS 316L powder (Maher, Sheffield, UK) had spherical grains that ranged
in size from 15 to 45 µm. Table 1 displays the elements that compose the 316L SS powder.
The LPBF machine used was a Renishaw UK AM250 type from Gloucester, UK, which
utilized a laser-pulsed beam with a power output of 200 W. The unit had a build volume ca-
pacity of 250 × 250 × 300 mm3 and a laser beam diameter of 70 × 5 µm. When performing
LPBF, the scan approach employed was called “Meander”, and it involved a layer-by-layer
rotation of 67 degrees in the scan direction [52]. The build platform was preheated to
170 ◦C, in accordance with the manufacturer-recommended standard build procedure, and
all builds were fabricated under an Argon atmosphere with an oxygen level below 0.1%.
The LPBF’s actual manufactured component is displayed in Figure 1. Table 2 contains the
LPBF parameters that were chosen based on previous investigations [30,52]. To examine
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the effect of layer thickness alone on machining, the energy density was held constant by
varying the exposure time in accordance with Equation (1):

Energy density = (laser power)/(hatching distance × scan speed × layer thickness). (1)

Table 1. Powdered stainless steel 316L chemistry [30,52].

Element Cr Ni Mo Mn Si Cu N O P C

Wt. (%) 17.50–18.00 12.50–13.00 2.25–2.50 ≤2.00 ≤0.75 ≤0.50 ≤0.10 ≤0.10 ≤0.025 ≤0.030
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Table 2. LPBF manufacturing process parameters for SS 316L [30,52].

LPBF Parameter Value

Energy density 50 J/mm3

Point distance 70 µm
Hatching distance 120 µm

Laser power 200 W
Layer thickness 30, 60, 80, 100 µm

Equation (2) can be used to compute the scan speed from the values of point distance
(PD), exposure time (ET), and jump speed (JS):

Scan speed (SS) = PD/(ET + PD/JS) (2)

where JS is the speed of the galvanometer mirror as it moves from point to point, which
was maintained at 5000 mm/s. Consequently, the scan speed will vary as the ET for each
layer thickness varies. For layer thicknesses of 30, 60, 80, and 100 µm, the scan speed was
1093, 564, 402, and 327 mm/s, respectively. Additional information included exposure
times of 30, 60, 80, and 100 s for 30, 60, 80, and 100 µm, respectively.
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Table 3 shows how the top, side faces, and relative porosity of the as-fabricated
parts vary with the layer thickness. While improvements have been made, there are still
numerous cases where the surface roughness ratings are excessive. Yasa and Kruth [18]
found comparable values of surface roughness. In order to obtain the desired surface
finishing on LPBF parts, a secondary procedure is necessary. In this paper, traditional
vertical milling was chosen as a supplementary operation to improve surface smoothness.
Depending on the desired result, the LPBF part can be machined with a layer thickness of
30, 60, 80, or 100 µm.

Table 3. The relative porosity and surface roughness of the as-fabricated components for varying
layer thicknesses.

LT30 LT60 LT80 LT100

Side face (µm) 11.58 7.54 8.28 9.41
Top side (µm) 12.37 6.05 9.63 23.09

Relative porosity (%) 4.87 0.97 1.53 3.94

2.2. Milling Options and Measurement Setups

In order to obtain the best possible surface roughness while milling LPBF parts, it is
crucial that the 3D-printed part is correctly oriented with respect to the tool feed direction
(TFD). Tool feed across the layer (Direction A), tool feed parallel to the planes of the layers
(Direction B), and tool feed in a layer plane (Direction C) are the three possible machining
directions for the LPBF component. The three potential TFD viewing angles are depicted
schematically in Figure 2. Figure 3a depicts the tooling and workpiece holding fixture. The
cutting tool’s geometric dimensions and properties are depicted in Figure 3b. Direction A,
Direction B, and Direction C are shown on an actual LPBF component in Figure 3c. In the first
stage of milling the samples, a 50 mm/min feed rate, 80 m/min of cutting speed, 6 mm of
tool diameter, and 0.4 mm of cutting depth were used. The purpose of this process was to
prepare the LPBF components for finishing by removing their uneven and rough surfaces.
In order to determine how LPBF component orientation affected milling quality, work was
carried out utilizing the process parameters listed in Table 4. Table 4 lists the typical process
parameters for milling SS 316L, which agree with results from similar investigations [30,53–55].
The milling tests were carried out on a three-axis numerically controlled machine (Ecoline
DMC 635 V from DMG Mori in Oelde, Germany) that is capable of speeds of up to 24 m per
minute in feed and 1 micrometer in positioning resolution. A 6 mm diameter solid carbide
end mill was employed for the job. The roughness of a surface, denoted by the Sa value,
was examined as a response. Using a 3D optical profilometer (Germany’s Contour GT-K
is manufactured by Bruker in Berlin, Germany), the Sa of the machined components was
measured. A scanning area of 2.2 mm × 1.7 mm was employed. An optical profilometer
utilizes white light interferometry to determine the 3D surface parameter (Sa). The Vision
64 program converts detailed scans into precise 3D representations. Later, the software
computed the 3D roughness parameter in accordance with ISO 25178-2 [30,56]. According
to Equation (3), the Sa parameter is the average height across a certain area. [57]:

Sa =
1
A

∫ ∫
A

A|z(x, y)|dxdy (3)

where A is the area being sampled, and z(x, y) represents the number of measurement sites.
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Table 4. The parameters for milling the LPBF component.

Parameter Values

Cutting speed, (V) m/min 80, 120
Feed rate, (f) mm/min 50
Depth of cut, (d) mm 0.4

Radial depth of cut, (dR) mm 2.4
Tool feed direction, (TFD) Direction A, Direction B, and Direction C
Layer thickness, (LT) µm 30, 60, 80, 100

After milling, in the center of the milled zone along the feed direction, five portions of
2.2 mm and 1.7 mm were scanned for each of the three orientations (Direction A, Direction
B, and Direction C). The roughness of the surface was determined by taking the mean of
five readings obtained in each direction.
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2.3. Artificial Neural Networks

The artificial neural network (ANN) is commonly used as a predictive model for
estimating output values based on various input factors. The paradigm of human minds
learning from experience serves as inspiration for ANNs. ANNs consist of multiple layers,
each containing a specific number of neurons. In the context of fully connected ANNs, it
has been observed that every neuron inside a given layer receives input signals from all
neurons in the preceding layers. There are three different types of layers. The input layer
(i) consists of neurons responsible for receiving the initial data (x) and transmitting it to
the neurons in the hidden layers (ii) for subsequent processing. These signals transmit
information to the neurons in the output layer (iii), which ultimately generates the output
value (y) [58,59]. Each neuron possesses weights (w) and a bias (b), which are modified
during the process of training, as well as a transfer function.

In general, the numerical values of these weights are determined through the iterative
training of ANNs with the objective of minimizing the loss function that measures the
difference between the predicted values and actual output values. Back propagation, a
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widely utilized method for weight optimization, implements the chain rule to iteratively
compute gradients for each layer [60]. Following the completion of training, ANNs have
the capability to generate outputs through utilizing the values of the hidden inputs. The
structure of an ANN typically contains four important subcomponents, which are the
number of “hidden layers”, the number of “neurons” in each layer, the “activation function”,
and the “loss estimation function”. Figure 4 shows a visual representation of the ANN.
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The calculation of the network’s performance and the accuracy of the predictions
involves using the root mean square error (RMSE), a statistical measure that quantifies
the significant gap between the experimental and predicted values. The RMSE can be
expressed as:

RMSE =

√
∑n

i=1
(
yi,Pred − yi,Exp

)2

n
(4)

where n represents the total number of data points, and yi,Exp and yi,Pred denote the
experimental and predicted values of experiment i, respectively (i = {1, 2, 3,. . ., n}, n > 0).
The RMSE cannot accurately measure error variables, such as the mean error. However,
it provides the benefit of penalizing models that make highly incorrect estimations in
specific assessments, as it assesses the squared values of the errors rather than the errors
themselves. Thus, it is argued that the RMSE is a more suitable metric than the mean error
in this research. This is because a prediction of surface roughness that significantly deviates
from the actual value may result in the manufacturing of a component that fails to meet the
end user’s requirements [61].

The network’s learning rate was set to values that generated the best correlation
coefficient (R2) for the ANN. The constructed model’s fitness can also be expressed via the
R2 value, which can be formulated as follows:

R2 = 1− ∑n
i=1(xi − yi)

2

∑n
i=1(xi − xmean)

2 (5)

where xi and yi denote the target and estimated values for the ith data point, respectively,
and xmean represents the mean xi values.

When designing an ANN, identifying the number of neurons in the hidden layer is an
essential step [62,63]. On the one hand, a few neurons in the hidden layer may influence
the convergence rate of the network. A large number of neurons can lead to a complex
network structure, an increase in training frequency, model overfitting, and a reduction in
generalization [64]. Thus, the determination of the number of neurons in the hidden layer
is achieved through the method of trial and error, with the objective of minimizing the gap
between the values obtained from experimentation and those predicted using the model.
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2.4. Hybrid Neural Network Algorithm with PSO and the GA

ANN represents one of the most common models for estimating outputs for a range
of input factors. Despite the fact that ANNs have the ability to track the complicated and
nonlinear relationship between the independent input and output variables, they have con-
straints, such as slow learning. Consequently, the application of optimization algorithms,
including meta-heuristic algorithms, can substantially enhance the performance of ANNs.
Numerous researchers currently integrate ANNs with the GA [64–66], PSO [49,67–70], and
modified bat-inspired algorithm (MBA) [71] to find the optimal fitness values for single-
or multi-objective optimization problems. In this study, ANN-PSO and ANN-GA hybrid
algorithms were applied to find the optimal 3D printing process parameter composition.

2.4.1. Genetic Algorithm

Darvin [72] developed the GA based on the theory of evolution and the concept of
survival of the fittest. This algorithm creates a random initial population of chromosomes
and then optimizes it through a series of operations. Typically, chromosomes are expressed
as integer strings. Several procedures, such as reproduction, cross-breeding, and mutation,
as well as the solution from the previous population, are used to generate a new population
and determine the best possible solution. On the basis of the fitness function, the best
chromosomes are preserved during reproduction for the next population. Crossover
between two parent strings creates offspring (new solutions) by rearranging genes or the
segments of chromosomes. The mutation is a method for increasing population diversity
through the random modification of portions of a solution. The motivating conviction is
that the incoming population will be superior to the outgoing population. New solutions
(offspring) are generated through selecting solutions based on their fitness function. The
aforementioned process is iterated until the specific termination condition has been satisfied.
Researchers could refer to the articles published by the authors of [73,74] for more details.
The general pseudocode of the GA is shown in Algorithm 1.

Algorithm 1: General pseudocode of the GA.

Begin
j = 1 and MaxIt; /* j is an integer value, j > 0, and MaxIt is the maximum integer number
of iterations*/
Initial_Population P(j);
Calculate P(j);

while j < MaxIt do
P’(j) = Selection_Parent P(j);
Crossover P’(j);
Mutate P’(j);
Calculate P’(j);
P(j + 1) = Replace (P(j), P’(j));
j = j + 1;

end while
end begin

The function “Initial_Population” is used to generate the initial population of candidate
solutions, denoted as P. The function “calculate” is used to find the fitness value of each
solution in P. The Selection_Parent function generates its successor P’(j) using a selection
technique. Next, the processes of recombination and mutation are sequentially employed to
achieve diversity in populations. The “calculate” function is responsible for evaluating the
fitness of every individual in the population P’(j) in order to determine the most suitable
survivors. The aforementioned procedure is executed for a certain number of iterations,
denoted as MaxIt.
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2.4.2. Particle Swarm Optimization

The PSO technique was first proposed by Kennedy and Eberhart [75]. Particles in PSO
move through the problem space by adhering to the best-moving particles at any given
time. Each particle in the problem space maintains track of its point location, assisting in
locating the current optimal solution. Following each repetition, particles are evaluated
using a fitness function. PSO can arrive at a point of convergence more rapidly than other
optimization methods. Calculating the optimal value requires the use of a few parameters.
The PSO’s efficiency can be improved through reducing the number of particles [76]. The
general pseudocode of the PSO is illustrated in Algorithm 2.

Algorithm 2: General pseudocode of the PSO.

Begin
k = 1;

Initial_Swarm
for i = 1: S do /* S is the number of particles in the swarm */

Randomly initialize the position the velocity of particle i;
Initialize the best known position of particle i: pi ← xi;

if f (pi) < f (Ψ) then
Modify the best-known position of the swarm: Ψ← pi;

end if
end for
while k < MaxIt do

for each particle i = 1: S do
for each dimension j = 1: n do

Generate random numbers: r1, r2 ~ U(0, 1);
Modify the velocity of particle i according to
vi,d ← w vi,d + c1 r1 (pi,d − xi,d) + c1 r1 (Ψ d − xi,d);

end for
Modify the position of particle i: xi ← xi + vi;
if f (xi) < f (pi) then

Modify the best-known position of the particle: pi ← xi;
if f (pi) < f (Ψ) then

Modify the best-known position of the swarm: Ψ← pi;
end if

end if
k = k + 1;
end for

end while
end begin

The notations xi, vi, and pi, represent the position, velocity, and best-known position
of particle i, respectively. Ψ denotes the swarm’s best-known position. The parameter
denoted as “w” represents the inertia weight. The variables r1 and r2 are random numbers
that are uniformly distributed in the interval (0, 1). c1 and c2 are commonly referred to as
the cognitive coefficient and social coefficient, respectively.

3. Results and Discussions

Two replications of experimental surface roughness data are shown in Table 5.
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Table 5. Experimental results for surface roughness (Sa).

No. Direction Layer Thickness (µm) Cutting Speed
(m/min)

Surface Roughness
(µm)

1 A 80 80 0.304
2 C 100 80 0.204
3 A 60 120 0.362
4 B 100 120 0.237
5 A 100 80 0.146
6 B 100 120 0.222
7 C 30 120 0.349
8 C 80 80 0.176
9 B 30 80 0.14

10 C 80 120 0.296
11 B 80 80 0.188
12 B 30 80 0.147
13 B 60 80 0.141
14 A 100 120 0.263
15 A 30 120 0.264
16 B 60 120 0.328
17 C 100 80 0.183
18 C 60 120 0.334
19 C 80 120 0.302
20 A 100 120 0.27
21 C 60 80 0.167
22 A 80 120 0.333
23 A 30 80 0.2
24 A 60 80 0.154
25 B 60 80 0.133
26 B 80 120 0.383
27 A 60 120 0.337
28 B 60 120 0.346
29 C 30 80 0.172
30 B 100 80 0.251
31 C 80 80 0.173
32 C 30 120 0.346
33 A 100 80 0.149
34 B 30 120 0.323
35 B 80 80 0.191
36 C 60 120 0.315
37 B 80 120 0.347
38 C 30 80 0.171
39 B 100 80 0.211
40 A 80 80 0.204
41 A 30 120 0.264
42 A 60 80 0.162
43 A 30 80 0.174
44 C 60 80 0.166
45 C 100 120 0.2
46 A 80 120 0.282
47 C 100 120 0.185
48 B 30 120 0.344

3.1. ANOVA Results

The final ANOVA findings for surface roughness (Sa) are shown in Table 6. The
ANOVA backward elimination method was used to get rid of the insignificant factors. We
first considered all of the model’s parameters (direction, layer thickness (LT), and cutting
speed (V)) and used backwards to eliminate the one with the highest p-value. After fitting
the new (p-1) variable model, we dropped the variable with the highest p-value. This
process persisted until a stopping condition was met. For example, we could have stopped
when all the remaining variables had a p-value of less than 0.05 and the used criterion was
the adjusted R2. The R-squared, adjusted R-squared, and predicted R-squared values from
Table 6 were used to assess the fit of the model. Their closeness to one indicated that the
model is adequate. Furthermore, according to Table 6, variable V had a significant impact
on surface roughness. Interaction between the LT and V variables occurred next, followed
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by direction, LT, and V. Notably, the cutting speed, layer thickness, and direction all play a
role in deciding what milling technique to use when working with SS 316L LPBF.

Table 6. Analysis of variance for Sa.

Source DF Adj SS Adj MS F-Value p-Value

Model 7 0.212360 0.030337 18.89 0.000
Direction 1 0.000284 0.000284 0.18 0.676

LT 1 0.002491 0.002491 1.55 0.220
V 1 0.188084 0.188084 117.10 0.000

Direction * LT 1 0.003679 0.003679 2.29 0.138
Direction * V 1 0.000205 0.000205 0.13 0.723

LT * V 1 0.019560 0.019560 12.18 0.001
Direction * LT * V 1 0.007834 0.007834 4.88 0.033

R-sq = 83.44% R-sq(adj) = 80.54% R-sq(pred) = 76.15%

3.2. Optimization of the ANN

This study aimed to develop hybrid algorithms, namely ANN-PSO and ANN-GA,
for the optimization of input process settings in the milling process of an additively man-
ufactured part. MATLAB software (MATLAB R2022b.) was used for developing these
algorithms with the objective of minimizing surface roughness. The ANN-GA [77] and
ANN-PSO [78] Matlab codes were used to obtain the optimal results. For training the ANN,
48 datasets were utilized. Randomly, these 48 datasets were split into 70% training datasets,
15% test datasets, and 15% validation datasets. The ANN results were then implemented in
a calculation of the trained network’s function for the RMSE and the correlation coefficient
(R2). The following subsections describe the tuning parameters and training optimization.

3.2.1. Tuning Parameters of the ANN-GA and ANN-PSO Models

Several metaheuristics, such as the GA and PSO, apply some form of stochastic opti-
mization, which means that the solution found depends on the generated random variables.
Therefore, random selection of the ANN-GA and ANN-PSO parameters yields diverse
results, and the optimal solution may vary when using the same set of parameters, pro-
gramming techniques, and computational resources. The tuning parameters were the most
important factor in determining the efficiency of the ANN-GA and ANN-PSO algorithms.
Consequently, the Taguchi technique was used in this study to find the best combination
of parameters for the ANN-PSO and ANN-GA and achieve an optimal solution with
minimal randomness.

The initial stage in training with an ANN is the selection of an optimal network
structure. Identifying the best configuration of the neural network involves choosing the
components of the ANN. These components include selecting the appropriate number of
hidden layers and neurons within these layers, as well as identifying the most suitable
activation functions and training procedures. In this study, three activation functions,
specifically tan-sigmoid, logistic, and purelin, were assessed to identify the optimal network
architecture. Additionally, two training algorithms, notably Newton-like and Levenberg–
Marquardt, were compared to establish the most effective approach for training the network.
Experimental results indicated that the tan-sigmoid function and the purelin function are
the most effective activation functions for the middle layers. In addition, the Levenberg–
Marquardt algorithm is widely regarded as the most effective learning algorithm.

The GA and PSO parameters, each at five levels, were selected and listed in Table 7
based on the literature and available computational resources. As shown in Table 7, the
ANN-GA and ANN-PSO algorithms each contain six and five parameters, respectively, each
with five levels. To find the optimal combination of ANN-PSO and ANN-GA parameters,
it was necessary to conduct full factorial experiments. The total number of runs were
calculated using an easy formula: experiments or runs = LP, where L represents the set
of settings or levels, and P denotes the number of parameters. Therefore, full factorial
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experiments, i.e., 56 and 55 or 15,625 and 3125, were performed for the ANN-PSO and
ANN-GA. Nevertheless, the L25 orthogonal array table in the Taguchi method is beneficial
when determining the ANN-GA and ANN-PSO parameters through 25 experiments and
achieving an optimal solution with minimal randomness.

Table 7. GA and PSO parameters.

Algorithm Parameter
Level

1 2 3 4 5

ANN-PSO

No. of ANN hidden layers 6 7 8 9 10
No. of particles 10 20 30 40 50
Inertia weight 0.1 0.2 0.3 0.7 0.9

Personal learning coefficient 0.5 1 1.5 2 2.5
Global learning coefficient 0.5 1 1.5 2 2.5

No. of iterations 100 150 200 250 300

ANN-GA

No. of hidden layers 6 7 8 9 10
Population size 50 60 70 80 90

Crossover percentage 0.2 0.3 0.4 0.5 0.6
Mutation percentage 0.5 0.6 0.7 0.8 0.9

No. of iterations 100 150 200 250 300

Figures 5 and 6 illustrate the S/N values of the GA and PSO factors at each level, with
the smallest S/N value representing the best level of the GA and PSO parameters. The best
ANN-GA parameter setting was 10, 10, 0.1, 1, 0.5, and 150 for the No. of ANN hidden layers,
No. of particles, inertia weight, personal learning coefficient, global learning coefficient,
and the No. of iterations, respectively. In addition, the best ANN-PSO parameter setting
was 8, 50, 0.2, 0.5, and 100 for the number of hidden layers, population size, crossover
percentage, mutation percentage, and the number of iterations, respectively.
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3.2.2. Training Optimization of the ANN-GA and ANN-PSO Models

By considering the best parameter settings for the ANN-GA and ANN-PSO algorithms
shown in Section 3.2.1, the ANN was trained using 48 datasets of three input process
parameters, such as the direction, layer thickness (µm), and cutting speed (m/min), and
output responses, including the surface roughness (µm). The experimental data shown in
Table 8 were used to check the performance of the ANN. The performance of these hybrid
algorithms was measured using the relative percentage deviation (RPD) of the RMSE.
Using the following RPD formulation, the hybrid ANN-PSO and ANN-GA algorithms
were evaluated as follows:

RPD =

∣∣∣∣ (Pred(i, j)− Exp(i))
Exp(i)

∣∣∣∣ (6)

where Pred(i, j) is the predicted value obtained via hybrid algorithm j (j = ANN-GA and
ANN-PSO) on experiment i, and Exp(i) is the value of experiment i.

Table 8 presents the actual data and data obtained via the ANN-PSO and ANN-GA
algorithms to evaluate the performance of the trained ANN. The average RPD was 5.491%
for the ANN-GA algorithm, while for the ANN-PSO, the average RPD was 5.605%. The
comparison between these values is depicted in chart format in Figures 7 and 8.

As illustrated in Table 9, the t-test was used to test and compare the RPD values
obtained using the ANN-PSO and ANN-GA algorithms. This table presents the error
mean, the standard deviation, the standard error mean, the T-value, and the p-value. The
statistical analysis conducted in this study demonstrated that the p-value associated with
the comparison of the mean RPD ANN-GA and the mean RPD ANN-PSO is 0.918, as shown
in Table 9. This p-value indicates that there is no statistically significant difference between
the means of these two algorithms. Based on the optimization results, it has been observed
that both the hybrid ANN-GA and ANN-PSO algorithms are capable of estimating optimal
parameters with a relative percent difference (RPD) of less than 10%. Moreover, we can see



Processes 2023, 11, 2892 16 of 24

that the average RPD of the ANN-PSO algorithm was greater than that of the ANN-GA
algorithm; therefore, the ANN-GA algorithm outperforms the ANN-PSO algorithm.

Table 8. Actual and predicted outputs.

Experiment
No. Actual Value

ANN-PSO
Predicted

Value

ANN-GA
Predicted

Value

ANN-PSO
RPD

ANN-GA
RPD

1 0.304 0.212 0.230 0.302 0.244
2 0.204 0.177 0.211 0.132 0.032
3 0.362 0.331 0.339 0.086 0.063
4 0.237 0.237 0.239 0.000 0.009
5 0.146 0.157 0.152 0.073 0.043
6 0.222 0.237 0.239 0.067 0.077
7 0.349 0.355 0.348 0.016 0.004
8 0.176 0.180 0.169 0.021 0.039
9 0.14 0.151 0.158 0.079 0.126
10 0.296 0.289 0.306 0.024 0.033
11 0.188 0.175 0.195 0.070 0.037
12 0.147 0.151 0.158 0.027 0.073
13 0.141 0.137 0.155 0.030 0.096
14 0.263 0.263 0.268 0.000 0.021
15 0.264 0.265 0.269 0.003 0.019
16 0.328 0.348 0.349 0.062 0.064
17 0.183 0.177 0.211 0.032 0.150
18 0.334 0.324 0.317 0.029 0.051
19 0.302 0.289 0.306 0.044 0.012
20 0.27 0.263 0.268 0.026 0.006
21 0.167 0.176 0.154 0.056 0.078
22 0.333 0.326 0.304 0.021 0.088
23 0.2 0.183 0.181 0.087 0.097
24 0.154 0.188 0.166 0.219 0.076
25 0.133 0.137 0.155 0.028 0.162
26 0.383 0.353 0.361 0.077 0.059
27 0.337 0.331 0.339 0.018 0.007
28 0.346 0.348 0.349 0.006 0.009
29 0.172 0.170 0.170 0.012 0.013
30 0.251 0.239 0.226 0.049 0.100
31 0.173 0.180 0.169 0.039 0.023
32 0.346 0.355 0.348 0.025 0.005
33 0.149 0.157 0.152 0.052 0.022
34 0.323 0.329 0.321 0.018 0.005
35 0.191 0.175 0.195 0.084 0.021
36 0.315 0.324 0.317 0.030 0.006
37 0.347 0.353 0.361 0.018 0.039
38 0.171 0.170 0.170 0.006 0.007
39 0.211 0.239 0.226 0.131 0.070
40 0.204 0.212 0.230 0.040 0.127
41 0.264 0.265 0.269 0.003 0.019
42 0.162 0.188 0.166 0.159 0.023
43 0.174 0.183 0.181 0.049 0.039
44 0.166 0.176 0.154 0.062 0.072
45 0.2 0.191 0.180 0.046 0.102
46 0.282 0.326 0.304 0.156 0.077
47 0.185 0.191 0.180 0.032 0.029
48 0.344 0.329 0.321 0.044 0.066



Processes 2023, 11, 2892 17 of 24

Processes 2023, 11, x FOR PEER REVIEW 17 of 25 
 

 

34 0.323 0.329 0.321 0.018 0.005 
35 0.191 0.175 0.195 0.084 0.021 
36 0.315 0.324 0.317 0.030 0.006 
37 0.347 0.353 0.361 0.018 0.039 
38 0.171 0.170 0.170 0.006 0.007 
39 0.211 0.239 0.226 0.131 0.070 
40 0.204 0.212 0.230 0.040 0.127 
41 0.264 0.265 0.269 0.003 0.019 
42 0.162 0.188 0.166 0.159 0.023 
43 0.174 0.183 0.181 0.049 0.039 
44 0.166 0.176 0.154 0.062 0.072 
45 0.2 0.191 0.180 0.046 0.102 
46 0.282 0.326 0.304 0.156 0.077 
47 0.185 0.191 0.180 0.032 0.029 
48 0.344 0.329 0.321 0.044 0.066 

 
Figure 7. Comparison between the actual and predicted values. 

454035302520151051

0.40

0.35

0.30

0.25

0.20

0.15

0.10

Experiment

Su
rf

ac
e 

ro
ug

hn
es

s 
(µ

m
)

Actual Surface Roughness
Surface Roughness ANN-GA
Surface Roughness ANN-PSO

Figure 7. Comparison between the actual and predicted values.

Processes 2023, 11, x FOR PEER REVIEW 18 of 25 
 

 

 
Figure 8. Comparison of the RPD GA and RPD PSO. 

As illustrated in Table 9, the t-test was used to test and compare the RPD values ob-
tained using the ANN-PSO and ANN-GA algorithms. This table presents the error mean, 
the standard deviation, the standard error mean, the T-value, and the p-value. The statis-
tical analysis conducted in this study demonstrated that the p-value associated with the 
comparison of the mean RPD ANN-GA and the mean RPD ANN-PSO is 0.918, as shown 
in Table 9. This p-value indicates that there is no statistically significant difference between 
the means of these two algorithms. Based on the optimization results, it has been observed 
that both the hybrid ANN-GA and ANN-PSO algorithms are capable of estimating opti-
mal parameters with a relative percent difference (RPD) of less than 10%. Moreover, we 
can see that the average RPD of the ANN-PSO algorithm was greater than that of the 
ANN-GA algorithm; therefore, the ANN-GA algorithm outperforms the ANN-PSO algo-
rithm. 

Table 9. Two-sample t-test for RPD ANN-GA vs. RPD ANN-PSO. 

 N Mean StDev SE Mean T-Value p-Value 
RPD ANN-GA 48 0.05491 0.04929 0.0071 −0.10 0.918 
RPD ANN-PSO 48 0.0560 0.0583 0.0084   

To compare the effectiveness and goodness of fit of the ANN-GA and ANN-PSO al-
gorithms, a hypothesis test was performed, and the results are presented in Table 10. The 
ANOVA test was used for analyzing the means. The p-value observed in the ANOVA table 
exceeds the significance level of 0.05, indicating that there is no significant evidence to 
reject the null hypothesis. Consequently, we cannot conclude that there are notable differ-
ences between the data obtained from experiments and the data predicted using the ANN-
GA and ANN-PSO algorithms. From a modeling perspective, both hybrid algorithms 
have a statistically sufficient goodness of fit. Therefore, it can be concluded that the ANN-
GA and ANN-PSO algorithms are better at estimating and optimizing the surface rough-
ness of a milling process for an additively manufactured part. 

Table 10. ANOVA for testing the goodness of fit of the ANN-GA and ANN-PSO algorithms. 

 N Mean StDev Individual 95% CI for Mean F-Value p-Value 
Actual 48 0.2404 0.07672 (0.2181, 0.2627) 0.00 0.999 

RPD PSORPD GA

0.075

0.070

0.065

0.060

0.055

0.050

0.045

0.040

R
PD

Interval Plot of RPD GA, RPD PSO
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

Figure 8. Comparison of the RPD GA and RPD PSO.

Table 9. Two-sample t-test for RPD ANN-GA vs. RPD ANN-PSO.

N Mean StDev SE Mean T-Value p-Value

RPD ANN-GA 48 0.05491 0.04929 0.0071 −0.10 0.918
RPD ANN-PSO 48 0.0560 0.0583 0.0084

To compare the effectiveness and goodness of fit of the ANN-GA and ANN-PSO
algorithms, a hypothesis test was performed, and the results are presented in Table 10. The
ANOVA test was used for analyzing the means. The p-value observed in the ANOVA table
exceeds the significance level of 0.05, indicating that there is no significant evidence to reject
the null hypothesis. Consequently, we cannot conclude that there are notable differences
between the data obtained from experiments and the data predicted using the ANN-GA
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and ANN-PSO algorithms. From a modeling perspective, both hybrid algorithms have a
statistically sufficient goodness of fit. Therefore, it can be concluded that the ANN-GA and
ANN-PSO algorithms are better at estimating and optimizing the surface roughness of a
milling process for an additively manufactured part.

Table 10. ANOVA for testing the goodness of fit of the ANN-GA and ANN-PSO algorithms.

N Mean StDev Individual 95% CI for Mean F-Value p-Value

Actual 48 0.2404 0.07672 (0.2181, 0.2627) 0.00 0.999
Predicted ANN-GA 48 0.24007 0.07307 (0.2188, 0.2613)
Predicted ANN-PSO 48 0.23976 0.07363 (0.2184, 0.2611)

Figure 9 illustrates a regression analysis of the data, highlighting the linear coefficient
of correlation (R) during the training, testing, and validation stages. Based on the results
presented in Figure 9, it is obvious that the Levenberg–Marquardt algorithm yielded the
highest R value (0.97333) when applied to the whole data. As a result, the ANN generated
empty circles in contrast to the target values, while dashed lines represent the ideal linear
approximation. The closeness of the fitted line to the midpoint shows that the neural
network was able to estimate surface roughness values using different input process
parameters in the milling process of an additively made component. Throughout the
training process, the data achieved its highest level of optimization at the seventh iteration.
At this point, the validation sample’s RMSE started to increase. Consequently, the training
epochs were immediately terminated. This observation is depicted in Figure 10, which
displays the plot of the RMSE. During epoch 3, the highest level of validation performance
achieved was 5.2522 × 10−4.
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The ANN-PSO parameters were chosen as the number of hidden layers: 9, population
size: 90, crossover percentage: 0.4, mutation percentage: 0.5, and stopping criteria: 150 iter-
ations. Based on the experimental matrix, the minimal surface roughness was 0.133 µm
when the input process parameters were attained as face B, 60 µm layer thickness, and
80 m/min cutting speed, while the optimization result considering the previous ANN-PSO
parameters was 0.137 µm. As a consequence, the ANN-PSO algorithm improved the sur-
face quality. Figure 11 illustrates the improvement in surface quality of the components
achieved through the implementation of optimization methods.
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4. Conclusions

This study investigates the effect of input process settings on the milling process of a
part produced via additive manufacturing. In this investigation, a total of 48 experiments
were designed after the identification of the range of input process parameters. This study
aimed to explore the impact of input parameters, namely the direction, layer thickness
(µm), and cutting speed (m/min), on the surface roughness (µm) of components using a
full factorial design.

The main objective of this study was to find the optimal settings for obtaining the
highest possible surface quality. In order to optimize the milling process conditions of a
component manufactured via additive manufacturing, a comprehensive approach was
developed. This approach involves the utilization of a full factorial design, as well as the
integration of hybrid algorithms that combine neural networks with genetic algorithms
and particle swarm optimization. Consequently, the experimental matrix was subsequently
consolidated to the training process in order to identify the most optimal combination of
input parameters through the utilization of hybrid algorithms. The optimal parameters for
model validation have been systematically collected and analyzed.

Based on the experimental data, it can be seen that the minimum surface roughness
achieved was 0.133 µm. Further optimization techniques were applied, resulting in surface
roughness values of 0.155 µm for the ANN-GA approach and 0.137 µm for the ANN-PSO.
Consequently, both ANN-GA and ANN-PSO have improved surface quality, and they
are more effective in this regard. Hence, the use of meta-heuristic algorithms optimizes
the performance of the milling process parameters of an additively manufactured part.
Finally, Figure 11 illustrates the improvement in surface quality of the components achieved
through the implementation of optimization techniques.
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