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Abstract: The growing presence of EVs in regional microgrids introduces increased variability and
uncertainty in the areas’ load profiles. This paper presents a novel approach for optimizing energy
and reserve minimization in a sustainable integrated microgrid with electric vehicles (EVs) by the
use of the dynamic and adjustable Manta Ray Foraging (DAMRF) algorithm. The DAMRF algorithm
harnesses the inherent flexibility of EVs as controllable loads and develops a comprehensive dispatch
model for a large-scale EV response. The model takes into account the management, operational,
and environmental costs associated with load fluctuations in the microgrid. Simulation evaluations
conducted based on a practical microgrid environment validate the effectiveness of our wind–solar
energy storage and management strategy. The results showcase significant improvements in energy
and reserve minimization, highlighting the potential advantages of integrating EVs into sustainable
microgrid systems. In addition, the DAMRF algorithm achieves lower environmental pollution
control costs (USD 8000) compared to the costs associated with the Genetic Algorithm (GA) (USD
8654.639) and PSO (USD 8579.546), emphasizing its ability to effectively control and minimize
environmental pollution. In addition, the DAMRF algorithm offers a more cost-effective solution for
managing the power grid, and the shorter solution running time of the DAMRF is almost the same
as PSO’s quicker decision-making and response times, enhancing the overall responsiveness and
adaptability of the power grid management system.

Keywords: dispatch; electric vehicle integration; flexible load; manta ray foraging optimization; microgrid

1. Introduction

Efficiently optimizing the economic dispatch and operation of microgrids is a multi-
faceted challenge, necessitating careful consideration of each microgrid’s unique character-
istics and needs when selecting the most suitable control method. The unpredictable and
fluctuating nature of EV charging and discharging patterns presents unique challenges,
requiring customized solutions to ensure the smooth integration and optimal utilization of
EVs within microgrid operations. As a result, various issues have arisen, such as capacity
limitations within the station area, overloading of distribution transformers, heightened
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losses in transmission lines and transformers, and other related concerns. Addressing these
challenges is crucial to achieving a harmonious and efficient coexistence of EVs and micro-
grids. Simultaneously, dynamic energy power generation systems have emerged in various
countries, presenting an opportunity to effectively utilize the installed energy generation
capacity, promote energy conservation, and facilitate sustainable energy development [1,2].
Notably, remarkable advancements have been made in power grid technology, particularly
in the electric vehicle industry, with the rapid progress of vehicle-to-grid (V2G) technol-
ogy [3,4]. This technology enables the interaction between electric vehicles and the grid,
opening up possibilities for economic optimization management that actively involves
both EVs and large-scale electric vehicle charging stations.

The economic dispatch of microgrids, particularly involving the participation of elec-
tric vehicles (EVs) and other power generation equipment, has become a focal point of
research in the field of microgrid control. Numerous control methods have been introduced
to optimize the economic dispatch and operation of microgrids, drawing considerable
attention from researchers [5–14]. In [5], the authors describe a study that used the tem-
poral and spatial properties of electric vehicles to create a model for orderly charging
and discharging that took into account current electricity pricing. To examine the tactical
coordination between EV power stations and microgrids, another research project built
a microgrid economic dispatch optimization model [6]. The effective utilization of elec-
tric vehicles for optimizing charging and reducing system load peaks and valleys was
demonstrated [7]. Nevertheless, certain research works have neglected the economic con-
siderations, as well as the safety and performance aspects, of microgrid management and
the active involvement of EV users [1,8]. In response, a comprehensive analysis has been
conducted to optimize the integration of electric vehicles (EVs) in microgrid operation
and management [9,10]. Furthermore, reference [11] investigates the annual operation and
benefits of EVs and vehicle-to-grid (V2G) systems within a microgrid context, illustrat-
ing diverse operational modes based on present and projected EV technological trends.
Ref. [12], a genetic algorithm is suggested to optimize the size of an island-mode microgrid
while taking many objectives into account. Finding the ideal configuration that strikes a
balance between many aspects is the goal. Ref. [13] focuses on minimizing environmental
pollutants when optimizing microgrid operation. The microgrid consists of load-responsive
storage systems and renewable energy sources (RESs). While meeting the energy demand,
the environmental impact must be kept to a minimum. Ref. [14] investigates a microgrid’s
schedule optimization with the aim of maximizing its profit. The ideal operating schedule
is determined by taking into account many elements like energy generation, storage, and
load demand.

Electric vehicle (EV) technology adoption in microgrids has drawn interest recently
because of its potential to increase flexibility and decrease environmental pollutants [15].
The design, installation, and operation of microgrids, Vehicle-to-grid (V2G) technology,
and paralleling sources to the grid can benefit significantly from adhering to established
industrial standards. These standards ensure a consistent and reliable approach across
different implementations, promoting a safer, more efficient, and interconnected energy
ecosystem. The need for additional research about and application of plug-in hybrid electric
vehicles (PHEVs) in microgrids has been emphasized in environmental reports showing the
detrimental effects of fossil-fuel-based automobiles globally [16]. However, since PHEVs
are so important to the growth of this transportation system, the problem is in designing
high-capacity, low-cost batteries for PHEVs. It is possible to lower operating costs by inte-
grating PHEVs into microgrids [17]. Utilizing the PHEVs’ energy storage capabilities allows
for the optimization of a microgrid’s overall energy management and cost effectiveness
by storing excess energy during times of low demand and discharging it during times of
peak demand. Ref. [18] focused on developing microgrid operation control algorithms for
grid-connected and isolated island modes as well as various EV access modes, with optimal
energy scheduling taking EV charging loads into account. In terms of solar and wind energy
integration, research has focused on optimizing battery energy storage control strategies
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while considering the memory effect of batteries, as well as exploring operational energy
management strategies for isolated microgrid systems with hybrid energy storage [19].
Ref. [20] highlights the integration of second-order differentiators and a rule-based energy
management strategy to achieve robust control. The use of voltage/current references
obtained through the energy management strategy contributes to enhancing control perfor-
mance. Ref. [21] addresses multiple uncertainties commonly found in microgrids, such as
limited photovoltaic generation, fluctuating market prices, and the need to control various
loads. These uncertainties pose significant challenges in managing campus energy with
multiple microgrid systems, making it a critical area of research in the current era. Ref. [22]
demonstrates the effectiveness of the proposed trajectory optimization method in reducing
energy consumption and further validates the significance of the research. Investigating the
effects of the trajectory on energy consumption adds depth to the findings and contributes
to a better understanding of the overall energy-saving potential. Ref. [22]’s introduction
of a fuzzy decision-making method further enhances the usefulness of the proposed al-
gorithm. Thus, decision-makers can use this method to obtain a solution from the Pareto
front that optimally balances the different objectives, providing valuable insights into the
trade-offs between various aspects of the hybrid microgrid systems design. However, the
existing energy management strategies discussed in the aforementioned studies do not
fully address the requirements of smart stations and economic dispatch models. Therefore,
it is important to effectively manage the microgrid’s load fluctuations, taking into account
management, operational, and environmental costs associated with the presence of EVs,
wind–solar energy storage, and overall power grid management.

This paper introduces a novel smart energy management strategy focused on minimiz-
ing the overall cost associated with energy generation within a specified time frame. The
proposed approach incorporates a Microgrid Scheduling model specifically designed for
large-scale electric vehicles (EVs). The primary objective is to optimize the storage output to
achieve the lowest possible cost by considering three key factors: operation cost (OC), load
fluctuation, and environmental pollution penalties. To address this optimization problem,
the DAMRF algorithm is employed, drawing inspiration from the foraging behavior of
manta rays. By combining movement, adaptation, and search mechanisms, the DAMRF
algorithm effectively explores the solution space and provides optimized solutions for
energy and reserve minimization in sustainable microgrid systems with EV integration. To
achieve the desired optimization, an optimal controller is developed to identify the storage
output that minimizes the total cost. The implementation of this smart energy management
strategy is expected to yield significant cost savings in energy generation and utilization.
This approach contributes to enhancing the overall efficiency and sustainability of the
system, aligning with the goals of cost reduction and environmental impact mitigation.

2. Microgrid Scheduling Model of Large-Scale EVs

Within the regional microgrid, it has been observed that certain electric vehicle (EV)
users actively respond to the dispatching information provided by the microgrid manage-
ment center [23–26]. These responsive users willingly adjust their charging and discharging
activities in accordance with the directives given by the microgrid. Conversely, there are
also users who do not adhere to the dispatching information and instead opt for a random
charging approach [27]. In Figure 1, a visual representation of the dispatching structure
within a microgrid, focusing on the interaction between the microgrid management center
and electric vehicle (EV) users. The diagram highlights the configuration and intercon-
nection of the dispatching system, showcasing the components crucial to managing the
regional response of EVs within the microgrid. This system plays a vital role in achieving
efficient energy utilization and grid stability. The sub-system parameters and their impact
on the entire microgrid are shown.



Processes 2023, 11, 2848 4 of 17

Processes 2023, 11, x FOR PEER REVIEW 4 of 17 
 

 

interconnection of the dispatching system, showcasing the components crucial to manag-

ing the regional response of EVs within the microgrid. This system plays a vital role in 

achieving efficient energy utilization and grid stability. The sub-system parameters and 

their impact on the entire microgrid are shown. 

 

Figure 1. A large-scale EV response to microgrid dispatch. Included: wind turbine, PV panel, PHEV, 

and microgrid. 

Wind turbine: Its effectiveness is influenced by various factors, such as wind speed, 

wind direction, and the turbine’s capacity. The variability of wind energy can lead to fluc-

tuations in the microgrid’s power generation, which needs to be effectively managed to 

maintain grid stability. 

The photovoltaic (PV) panel: Its performance depends on solar irradiance, tempera-

ture, and the panel’s efficiency. Solar energy can be intermi�ent, which means the mi-

crogrid’s power supply will be subject to fluctuations based on weather conditions and 

time of day. 

Plug-in hybrid electric vehicle (PHEV): It can be charged from the grid and have both 

an internal combustion engine and an electric motor. These vehicles can operate in elec-

tric-only mode, drawing power from the microgrid, or use their internal combustion en-

gines. The charging and discharging characteristics of PHEVs are essential to understand 

for effective dispatching, as they can provide energy to the grid or draw energy from it. 

The charging power of EV users is as follows:  

Charging � = ∑ C�
�

� . P������
�   (1)

where C�
� is the charging coefficient of EV user i, which indicates the willingness and abil-

ity of the user to charge their EV; P������
�  is the charging power of EVs. 

Similarly, the discharging power of EV users can be calculated as:  

Discharging� = ∑ D�
�

� . P���������
�   (2)

where D�
� is the discharging coefficient of EV user j at time t, which signifies the user’s 

willingness and ability to discharge power from their EV; P���������
�   is the discharging 

power of EVs. 

The EV’s disorderly charging model captures the scenario wherein some EV users in 

the area engage in uncoordinated or random charging behavior, without responding to 

any specific dispatching information from the microgrid management center. The disor-

derly charging model captures the uncoordinated behavior of EV users, wherein each EV 

user independently decides whether to charge based on their own internal factors or ran-

dom factors. This model provides insights into the charging pa�erns and potential impact 

of uncoordinated charging on the microgrid’s overall operation and management. 

Figure 1. A large-scale EV response to microgrid dispatch. Included: wind turbine, PV panel, PHEV,
and microgrid.

Wind turbine: Its effectiveness is influenced by various factors, such as wind speed,
wind direction, and the turbine’s capacity. The variability of wind energy can lead to
fluctuations in the microgrid’s power generation, which needs to be effectively managed to
maintain grid stability.

The photovoltaic (PV) panel: Its performance depends on solar irradiance, tempera-
ture, and the panel’s efficiency. Solar energy can be intermittent, which means the micro-
grid’s power supply will be subject to fluctuations based on weather conditions and time
of day.

Plug-in hybrid electric vehicle (PHEV): It can be charged from the grid and have
both an internal combustion engine and an electric motor. These vehicles can operate in
electric-only mode, drawing power from the microgrid, or use their internal combustion
engines. The charging and discharging characteristics of PHEVs are essential to understand
for effective dispatching, as they can provide energy to the grid or draw energy from it.

The charging power of EV users is as follows:

Chargingt = ∑i Ct
i .P

t
charge (1)

where Ct
i is the charging coefficient of EV user i, which indicates the willingness and ability

of the user to charge their EV; Pt
charge is the charging power of EVs.

Similarly, the discharging power of EV users can be calculated as:

Dischargingt = ∑j Dt
j .P

t
discharge (2)

where Dt
j is the discharging coefficient of EV user j at time t, which signifies the user’s

willingness and ability to discharge power from their EV; Pt
discharge is the discharging power

of EVs.
The EV’s disorderly charging model captures the scenario wherein some EV users in

the area engage in uncoordinated or random charging behavior, without responding to any
specific dispatching information from the microgrid management center. The disorderly
charging model captures the uncoordinated behavior of EV users, wherein each EV user
independently decides whether to charge based on their own internal factors or random
factors. This model provides insights into the charging patterns and potential impact of
uncoordinated charging on the microgrid’s overall operation and management.

We characterize the charging patterns and behaviors of these EV users. In the dis-
orderly charging model, the charging power of each EV is determined independently
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and randomly. The disorderly charging behavior of EVs can be mathematically described
as follows: {

Pt
charge,max(i) with probability pt

i
0, with probability 1 − pt

i
(3)

where Pt
charge,max(i) represents the maximum charging power that EVi can draw at time t.

The probability pt
i determines whether the EVi chooses to charge or not at time t. If pt

i is
high, the EV is more likely to charge, and if pt

i is low, the EV is less likely to be charged.
The user response scheduling charge and discharge model is designed to capture

the behavior of electric vehicle (EV) users who actively respond to the dispatching infor-
mation from the microgrid management center, engaging in coordinated charging and
discharging activities.

The user response scheduling charge and discharge model considers the total charge
and discharge power during both peak time and off time in the microgrid. The total charge
power during peak time at time t is denoted as Pt

charge−Peak, and the total discharge power
during peak time is denoted as Pt

discharge−Peak. Similarly, the total charge power during off
time is denoted as Pt

charge−Off, and the total discharge power during off time is denoted
as Pt

discharge−Off.
The total charge power during peak time at time t can be calculated as the sum of the

charging powers of all EV users during peak hours:

Pt
charge−Peak = ∑N

i=1 Pt
charge(i).I

t
peak(i) (4)

where Pt
charge(i) represents the charging power of EV user i at time t, and It

peak(i) is an
indicator function that determines whether the time t falls within the peak hours for EV
user i.

Similarly, the total discharge power during peak time at time t can be calculated as the
sum of the discharging powers of all EV users during peak hours:

Pt
discharge−Peak = ∑N

i=1 Pt
discharge(i).I

t
peak(i) (5)

The total charge power during off time at time t can be calculated as the sum of the
charging powers of all EV users during non-peak hours:

Pt
charge−Off = ∑N

i=1 Pt
charge(i).(1 − It

peak(i)) (6)

By considering the total charge and discharge power during peak time and off time, the
user response scheduling charge and discharge model allows for the effective management
and coordination of EV charging and discharging activities based on the system’s load
requirements and peak demand periods. The total discharge power during off time at
time t can be calculated as the sum of the discharging powers of all EV users during
non-peak hours:

Pt
discharge−Off = ∑N

i=1 Pt
disscharge(i).(1 − It

peak(i)) (7)

3. Proposed Method
3.1. Problem Formulation

Problem formulation represents the total cost of managing, running, and protecting the
environment for the regional microgrid, which includes all expenses related to its operation.

minF = λ1(F1 + F2) + λ2F3 (8)

where λ1 and λ2 are weighting factors, where λ1 + λ2 = 1.
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The objective function for the microgrid’s OC and the incentive cost (IC) for EVs
actively participating in grid operation and reacting to dispatch:

F1 = ∑tn
t=1 ∑n

n=1 [Cn ∗ Gnt + Mn ∗ Pn] + I ∗ (Et+ − St+) (9)

where: Mn is cost of the maintenance; Pn is output of the power generation at time t; Cn is
cost of the power generation; I is the cost of incentive EVs; Et+ represents the electricity
purchased by the microgrid management center from users at time t; St+ represents the
electricity sold by the microgrid management center to EVs at time t.

To get EVs to respond to dispatching information and utilize the capacity of their EV
power batteries, the regional microgrid control center uses incentives. These incentives
aimed at attracting EV owners to charge or discharge their vehicles in alignment with the
microgrids can be calculated using the following expression:

F2 = ∑tn
t=1[N ∗ (Phomt − Pt+) ∗ (∆thomt + ∆tt+)] (10)

where ∆thomt and ∆tt+ are the continuous time required for EV users to discharge and
charge to the regional microgrid, respectively; Pt+ is the charging price for the user; Phomt is
the on-grid price at time t; and N is the total number of EVs.

The cost calculation considers the pollutant penalty associated with the emission of
NOx, SO2, and carbon during the power generation process. The pollutant penalty costs
associated with microgrid operation can be calculated as:

F3 = ∑M
m=1[Cm × (En+ − Et+)× Pt+] (11)

where Cm is the pollutant cost per kilogram; and En+ is the emission coefficient.

3.2. Constraints

The constraints related to the economic OC of the microgrid, the IC for EVs, and the
pollutant penalty costs can be formulated as follows:

Economic OC: The constraint of the microgrid should be minimized and should not
exceed a certain threshold:

∑n(Cn × Pn) + Cincentive ≤ Cmax (12)

where Cincentive is the total IC for EVs, and Cmax is the maximum allowable economic OC.
The IC constraint for EVs should not exceed a certain limit:

Cincentive ≤ Cincentivemax (13)

where Cincentivemax is the maximum allowable IC for EVs.
The pollutant penalty cost constraint for microgrid operation should not exceed a

certain threshold:

∑m(Enm × Cm × Pn) + Egridm
× Cm × Pgrid ≤ Cpenalty_max (14)

where Enm is the emission coefficient, Egridm
is the emission coefficient from the grid, Pgrid

is the power imported from the grid, and Cpenalty_max is the maximum allowable pollutant.

3.3. Dynamic and Adjustable Manta Ray Foraging (DAMRF) Algorithm

The DAMRF algorithm utilizes a population of virtual manta rays, each representing a
potential solution to the optimization problem. These virtual manta rays move and interact
in the search space to find the optimal solution. The algorithm is dynamic and adjustable,
meaning that it adapts and adjusts its search behavior based on the problem characteristics
and current search progress. The manta ray agents explore the solution space by adjusting
their positions. They mimic the foraging behavior of manta rays, which involves searching
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for food sources in the ocean. The movement of agents is guided by mathematical equations
that control their velocity and direction. The algorithm incorporates adaptive mechanisms
to dynamically adjust parameters and adapt to changing conditions. This allows the
manta ray agents to respond to variations in load profiles, energy availability, and system
constraints. The DAMRF algorithm utilizes the following key steps to guide the movement
and behavior of manta rays, as illustrated in Figure 2:
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1. A fitness evaluation is performed: each manta ray’s fitness value is evaluated using
the objective function and any applicable constraints of the optimization problem.

2. The position of a manta ray is updated based on its current position, the positions
of other manta rays, and the movement step size:

NewPosition(t + 1) = CurrentPosition(t) + δ× MovementDirection(t) (15)

3. The movement direction of a manta ray at iteration t is calculated as a weighted
sum of three components: random exploration, attraction towards the best position, and
repulsion from nearby manta rays:

MovementDirection(t) = α× RandomExploration(t) + (1 − α)× Attraction(t)− Repulsion(t) (16)

4. A random exploration vector is generated to introduce exploration and randomness
in the movement:

RandomExploration(t) = RandomVector() (17)
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5. The attraction of a manta ray towards the best position found so far, which promotes
the exploitation of promising regions, is calculated:

Attraction(t) = β× (BestPosition − CurrentPosition(t)) (18)

6. The repulsion of a manta ray repelled from nearby manta rays within its sensing
radius, preventing crowding and encouraging diversity, is calculated:

Repulsion(t) = γ× Σ[RepulsionForce(i)] (19)

7. The repulsion force between two manta rays is determined based on their positions
and a repulsion factor:

Repul.Force(i) = Repul.Factor × (CurrentPosition(t)− Position(i))/Distance (CurrentPosition(t), Position(i)) (20)

where population size (N) is the number of manta rays in the population, representing
potential solutions; the number of iterations (T) is the maximum number of iterations
or generations that the algorithm will run; the exploration factor (α) is a parameter that
controls the balance between exploration and exploitation during the movement and
foraging behavior; the sensing radius (r) is the maximum distance within which a manta
ray can sense and interact with other manta rays in the population; the movement step size
(δ) is the distance that a manta ray can move in each iteration, influencing its exploration
and exploitation capabilities.

4. Simulation Results
4.1. Simulation Parameters Setting

In this study, a 12.66 kV test system was examined using a simulated model. As
shown in Figure 3, the system has 32 nodes and functions in a grid-tied mode. Two wind
turbines (WTs), one solar PV, two Micro-Turbines (MTs), and one fuel cell (FC) are among
the generating units used in the test system. Additionally, as indicated in Figure 4, two
fleets of plug-in electric vehicles (EVs) are integrated into the system. The power output of
renewable energy sources (RESs), market prices, load demand, the arrival and departure
timings of EVs, and the size of each EV fleet are some of the aspects of the problem that can
be uncertain. The following table shows how different distributed generation (DG) units
are spread: a photovoltaic (PV) system is established at bus 19, an FC unit is positioned at
bus 25, and WT and MT units are situated at buses 10 and 14, respectively. Two EV fleets are
assigned to buses 3 and 15 in order to accommodate the utilization of locations outside of
the test system under consideration. Figure 3 displays the distribution of consumers linked
to each system node, illustrating the connectivity and load allocation within the network.
On the other hand, Table 1 presents comprehensive statistics related to the generating units,
offering essential details and performance metrics of these power generation sources [28,29].
Figure 5 illustrates the predicted power output levels for the renewable energy sources
(RESs) and market prices, while Figure 4 depicts the load curve of the system. Notably, WT
2 has a capacity 1.2 times greater than WT 1 within the system. The assessment of electric
vehicles’ (EVs) impact on the microgrid (MG) takes into account two fleets with distinct
trip patterns. Both fleets consume the same amount of energy for their outbound and
return trips. The first fleet departs from the MG, embarking on its main journey from home
to work in the morning. Subsequently, the EVs from this fleet return to the MG on their
second journey, which originates from the workplace late at night. This intricate analysis of
EV behavior and their integration into the microgrid aids in understanding their influence
on the overall system dynamics and energy usage patterns.
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Table 1. Simulation setting parameters.

Types Power Range (KW) ST/SD (USD) Bid (kW/USD)

MT 1 and 2 100–1500 0.9408 0.44786

Fuel cell 80–1000 1.617 0.28812

PV - - 2.53232

WT 1 and 2 - - 1.05154

The second fleet begins its initial journey in the morning from a site outside the
investigated network to a location inside the system. On its subsequent evening cruise,
this armada leaves the system. It is important to note that because the grid is so small,
excursions outside the network are taken into account. Different assessments are made
of the EV fleets’ energy needs. Each EV fleet is estimated to cover about 12,000 miles
annually. Each EV also has a daily energy need of 9.3 kWh and averages 3.66 miles per
kilowatt-hour (kWh). Therefore, 7.62 kWh and 9.3 kWh of energy are required for each
fleet at each interval. The lithium-ion (Li-ion) battery was selected for this study due to
its allure and effectiveness. The Li-ion battery employed in this investigation has Whöler
curve characteristics with a = 1331 and b = −1.825. With a temporal resolution of one hour,
the system operates at its best throughout the course of one day. The amount of power to
be imported or exported from the main grid is decided by the Microgrid Central Controller
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(MGCC). When the microgrid’s load demand is low, the grid can obtain the necessary
electricity from the WT and PV units.
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4.2. Effectiveness of Proposed Model

To study the behavior of the suggested model, three cases are taken into consideration.
In the simulation, the Manta Ray Foraging (MRF) approach utilizes the following dynamic
and adjustable values: population size (N): 10; number of iterations (T): 100; exploration
factor (α): ranging from 0.1 to 0.5; sensing radius (r): ranging from 10 to 50.

Case 1: In this case, all units are taken to be committed, and the goal is to schedule
microgrid (MG) assets as efficiently as possible without including plug-in electric vehicles
(EVs). The provided methodology is statistically analyzed as shown in Table 2 along with
a thorough comparison to other approaches, taking into account the best solution (BS),
worst solution (WS), mean value, and standard deviation (std). This robust evaluation is
essential for informed decision-making, guiding the selection of the most suitable approach
for specific tasks or problems. Moreover, it provides a basis for further improvements and
refinements to enhance the methodology’s performance and applicability in real-world
situations. Furthermore, Figure 6a presents the optimal hourly schedule for various assets,
taking into account the predefined limit of 20 iterations for the analysis. Notably, the use
of Demand Response and Model Predictive Control (DAMRF) technology showcases the
remarkable effectiveness of the suggested strategy in significantly reducing the microgrid’s
operational costs. Figure 6b provides valuable insights into the decision-making process of
the Microgrid Central Controller (MGCC). It illustrates how the MGCC intelligently selects
the fuel cell (FC) to meet the prevailing load demand, resulting in a deliberate reduction of
the microturbines’ (MT) generation level. This strategic tactic is most noticeable during the
morning hours and off-peak periods when electricity demand is relatively low. By favoring
the fuel cell over the microturbine in these instances, the MGCC maximizes cost savings
and optimizes energy production efficiency. To gauge the overall electricity generation
performance of each generating unit during the scheduling period, Figure 6c is presented.
Notably, the microturbines (MT) and the fuel cell (FC) stand out as key contributors,
producing a higher output compared to the wind turbine (WT) and photovoltaic (PV)
systems. This decision to allocate more power generation responsibility to the microturbines
and the fuel cell is justified by their lower production costs, further reinforcing the success
of the suggested cost-reduction strategy.



Processes 2023, 11, 2848 11 of 17

Table 2. Case 1 operating costs.

Method
Operating Cost (USD)

BS WS Mean Std

GA 49,335.31 49,390.25 49,345.32 14.23

PSO 49,246.24 49,278.82 49,262.83 8.79

DE 49,240.32 49,270.13 49,255.97 8.19

DAMRF 49,181.65 49,192.73 49,184.00 5.04
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Case 2: in Table 3, a comprehensive set of simulation results is showcased for Case 2.
This specific scenario considers a system where plug-in electric vehicles (EVs) are not taken
into account, meaning their impact on the microgrid’s operation and power demand is not
considered in the analysis. However, the generating units within the microgrid possess
the capability to dynamically switch between an ON state, where they actively contribute
to electricity generation, and an OFF state, where they are temporarily deactivated. In
order to demonstrate the Distributed Aggregation and Multi-agent Reinforcement Learning
Framework (DAMRF) strategy’s superiority in producing lower operational expenses, the
performance of the DAMRF approach is examined and contrasted with alternative ap-
proaches. In the analysis presented in Figure 7a, it becomes evident that the implementation
of improved generating unit flexibility within this particular scenario yields remarkable
advantages for the decision-maker, leading to a considerable reduction in operating costs
compared to Case 2. This noteworthy outcome arises from the Microgrid Central Con-
troller (MGCC) adopting a cost-cutting strategy that involves selectively shutting down the
microturbine (MT) during off-peak periods, when electricity demand is relatively low. By
dynamically adjusting the operation of the microturbine (MT) based on demand patterns,
the MGCC optimizes energy production and utilization, thereby minimizing unnecessary
expenses during periods of reduced electricity consumption. This intelligent control strat-
egy ensures that the microturbine is utilized efficiently, focusing its operation primarily on
meeting peak demands and avoiding wasteful energy generation during off-peak hours.
Figure 7b complements the analysis by providing additional insights into the behavior
of the fuel cell (FC) in response to varying market conditions. It showcases the dynamic
nature of the fuel cell’s power output in relation to the hourly market tariff. The fuel cell’s
adaptability to market signals enables it to adjust its power generation output accordingly,
responding to fluctuating electricity prices and optimizing its contribution to the overall
energy supply of the microgrid.

Table 3. Case 2 Operating costs.

Method
Operating Cost (USD)

BS WS Mean Std

GA 48,891.83 48,914.50 48,917.04 15.34

PSO 48,926.26 48,946.41 48,946.27 12.12

DE 48,887.63 48,907.63 48,912.02 11.12

DAMRF 48,879.77 48,857.66 48,855.19 6.21

Case 3: in this case study, plug-in electric vehicles (EVs) are included, and the effect
they have on microgrid (MG) scheduling is investigated. EV charging and discharging
have been modelled, under the assumption that when EVs connect to or disengage from
the grid, their state of charge (SOC) is 50%. Table 4, as well as Figure 8a,b, demonstrate the
outcomes of simulating this case study. The substantial capabilities of EVs, in particular,
the vehicle-to-grid (V2G) technology, is highlighted in Figures 7a and 8b. In this technology,
EVs inject electricity into the system between hours 20 and 22 and receive energy from
the grid during the first scheduling intervals. This case study deals with the modelling of
unknowns related to EV charging and discharging, load demand, departure and arrival
timings, fleet size, cost, and power output from renewable energy sources (RESs). The
cumulative power output of the distributed generating units (DGs) is shown in Figure 8c.
The fuel cell’s (FC’s) optimum operating point in relation to the hourly market tariff is
shown in Figure 8c.
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4.3. Optimization of Model

In the first and second scenarios without EVs, using high-cost generation technologies
like the microturbine (MT) results in higher running costs. The integration of EVs and
their capabilities, as well as the use of producing units with on/off switching capability,
boost system flexibility in Case 3, in contrast, and result in a decrease in operating costs.
Figure 9 sheds light on how long each algorithm takes to solve the given case studies. It
is clear that in terms of computational speed, the suggested DAMRF method beats the
genetic algorithm (GA) and particle swarm optimization (PSO). In the first case study, the
GA and PSO need 11.96 and 10.65 s, respectively, but DAMRF needs only 6.65 s to find
the solution. Similar patterns are seen in the remaining two case studies, demonstrating
the DAMRF’s superior performance to the GA and PSO. The suggested approach also
performs effectively, with a first case study solution time of 6.65 s compared to the genetic
algorithm’s (GA’s) solving time of 11.96 s and the particle swarm optimization’s (PSO’s)
solving time of 10.65 s. In the other two case studies, where the DAMRF outperforms the
GA and PSO in terms of computational performance, similar reductions in solving time
are seen.
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After performing energy contribution calculations for DG units and considering
the cost of power for each DG unit (as presented in Table 1), we derive the optimized
energy values for three cases, as displayed in Table 5. The superior search capabilities of
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the DAMRF algorithm become evident when comparing its performance against other
algorithms. Through its ability to efficiently optimize distributed generation (DG) units
and make well-informed decisions on committing or decommitting based on economic
preferences, Case 3 emerges as the best solution to the problem, boasting the lowest reserve
at a remarkable 0.95%. Moreover, the incorporation of plug-in electric vehicles (EVs) as
mobile storage units proves to be advantageous, as they actively contribute to the system’s
smooth operation even while parked. This integration enhances the overall efficiency
and reliability of the system, further underlining the benefits of the DAMRF algorithm in
this context.

Table 5. Comparison of energy optimization for three cases.

Cases Without Optimization
Energy (kW.h) Reserve (%)

GA PSO DE DAMRF GA PSO DE DAMRF

Case 1 1968.15 1903.43 1900.00 1899.77 1897.51 0.137 0.142 0.144 0.145
Case 2 1937.96 1884.28 1887.65 1886.16 1885.86 0.111 0.107 0.108 0.111
Case 3 1923.35 1884.29 1883.33 1882.98 1880.49 0.85 0.86 0.87 0.95

5. Conclusions

The integration of a significant number of EVs into a microgrid’s responsive dispatch
model is the main topic of this paper. The integration of EVs as flexible resources within
the microgrid offers benefits such as cost optimization and load balancing, ultimately
enhancing the stability and sustainability of the power system. The economic optimiza-
tion method proposed in this study enables the effective guidance of a certain scale of
EV users to charge and discharge in a timely manner, improving the overall economics
of the microgrid and facilitating efficient load management at the regional level. The
model employs the dynamic and adjustable Manta Ray Foraging (DAMRF) algorithm
to optimize energy and reserve minimization in a sustainable microgrid with integrated
EVs. The DAMRF algorithm accounts for operational, administrative, and environmental
pollution control expenses related to load fluctuations by utilizing the controlled char-
acteristics of EVs. While the DAMRF algorithm offers potential benefits for optimizing
sustainable microgrid operations with integrated EVs, its demerits related to complexity,
parameter tuning, optimality guarantees, scalability, and real-world applicability should
be taken into account. Overall, this research contributes to the advancement of microgrid
systems and highlights the potential benefits of integrating EVs into sustainable energy
management strategies.
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