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Abstract: In China, cogeneration units predominantly employ a flexible operation mechanism.
However, it is possible that this could lead to a decline in performance and an increase in energy
consumption. This paper introduces a methodology that utilizes the data mining technique to
ascertain the benchmark value section of the energy efficiency status index for cogeneration units.
The equal interval division method is utilized for the purpose of categorizing the operating conditions.
The Gaussian mixture model is utilized to ascertain the benchmark value section in relation to the
fluctuating operating conditions by estimating the probability of historical data. The methodology is
verified by utilizing historical data from a functioning cogeneration unit. The findings suggest that
the unit’s total heat consumption can be decreased by 32.5–50 kJ·(kW·h)−1 when compared to the
design-based approach.

Keywords: cogeneration units; energy efficiency state; benchmark value section; Gaussian mixture
model

1. Introduction

China has made a commitment to reach the peak of carbon dioxide emissions prior
to 2030 and attain carbon neutrality by 2060. In light of this, the Central Economic Work
Conference has emphasized the need for expedited measures to develop an action plan that
facilitates the achievement of emission peaking [1]. There is a need for intensified efforts
to enhance the restructuring of the energy composition and energy utilization within the
coal-fired power sector. According to recent data, it is projected that by the conclusion of
2022, the installed capacity of coal-fired units assembly will represent approximately 52.8%
of the overall installed capacity of power generation in China. Furthermore, the installed
capacity of cogeneration units is anticipated to exceed 46% of the installed capacity of
a coal-fired unit assembly [2]. Nevertheless, the implementation of a flexible operation
mechanism in coal-fired power units can potentially lead to a decline in performance and an
increase in energy consumption. Furthermore, optimizing the energy performance of these
units through various technical reconstruction projects has become a challenging task in the
present times [3]. Hence, the coal-fired power industry has witnessed rapid development
in the optimization of the energy performance of operating units. This optimization aims
to assess the energy efficiency status and identify any degradation in performance [4]. A
crucial aspect of identifying the state of energy efficiency involves the determination of the
benchmark value section within the energy efficiency status index.

There exist multiple methods of establishing the benchmark of variables in order
to assess the degradation of unit performance. In their study, Wang et al. [5] utilized
exergy-based methodologies to establish the benchmark state for energy consumption,
taking into account different operational boundaries. Fan et al. [6] employed sophisticated
exergy-based methods to effectively identify the modules that exhibited performance
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degradation. Lee et al. [7] proposed a comprehensive and efficient method based on
exergetic and exergoeconomic analysis. This method enables the precise identification
of malfunctioning components and the quantification of the impact caused by multiple
anomalies. Nevertheless, the utilization of the exergy-based approach presents challenges
in terms of computational complexity and its applicability in the identification of operating
conditions. The suitability of the unit operating under a flexible operation mechanism is
determined by the designed parameters [8].

Over the past few years, a significant volume of historical data has been accumulated
within the plant-level monitoring information system (SIS) of the power plant unit. These
data encompass the actual operational condition of the unit, as well as information regard-
ing equipment parameters. Consequently, these data serve as a foundation in conducting
data mining activities aimed at establishing benchmark values for energy efficiency. The
utilization of substantial quantities of data has facilitated the emergence of the data-driven
methodology for the identification of performance deterioration [9]. In recent times, a
number of data mining techniques have been employed to enhance the efficiency of power
plants, yielding favorable outcomes [10]. Xu et al. [11] introduced a data-driven approach
aimed at determining the reference values of independent variables. This methodology
enables operators to effectively minimize the heat consumption rate by accounting for
variations in key indexes. Tsoutsanis et al. [12] introduced a derivative-driven algorithm
that integrates adaptive regression analysis with the moving window methodology. The
objective of this algorithm is to predict the expected value of the performance degradation
indicator. Wang et al. [13] introduced a benchmark for the optimization of the operations
of direct air-cooled combined heat and power plants. This benchmark is founded on the
utilization of dynamic data mining technology. Zhao et al. [14] created a comprehensive
replica of the physical space in a digital environment. The objective of their research was
to uncover the reference values of controllable operating parameters related to heat con-
sumption in the context of typical load conditions. The aforementioned studies establish a
benchmark as a invariable factor in order to maximize the performance. However, when
considering the identification of the energy efficiency state, it is crucial to acknowledge that
the benchmark should be a variable section that is subject to change based on the prevailing
operating conditions, rather than a fixed value. The benchmark value section pertains
to the limits of the energy efficiency status index during periods of normal performance.
Furthermore, cogeneration units possess a distinctive operational mechanism that sets
them apart from the majority of coal-fired units, thus warranting further discussion. Based
on the aforementioned studies, it is imperative to categorize the operational parameters
and establish a benchmark value for mining activities when conducting an analysis to
optimize energy efficiency.

This study presents a methodology that utilizes the data mining technique to establish
the benchmark value section of the energy efficiency status index for cogeneration units.
The objective is to accurately identify any performance degradation in these units. The
determination of the benchmark value section is accomplished through the application of
the Gaussian mixture model (GMM), a commonly employed data-driven technique. This
entails the estimation of historical data in relation to various operational circumstances,
such as the unit load, ambient temperature, and extraction heating flow.

The present paper is structured in the following manner. The methodology proposed
to identify the state of energy efficiency is outlined in Section 2. The case study in Section 3
focuses on a subcritical cogeneration unit with a capacity of 320 MW. The findings and
analysis are presented in Section 4. Section 5 presents several conclusions.

2. Materials and Methods

The presented interval estimation method is intended to clean historical data and
detect the steady state. The presented GMM includes the classical expectation maximum
(EM) algorithm, which determines the benchmark value section.
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2.1. Description of Online Monitoring Methodology for Cogeneration Unit Efficiency

The fundamental concept underlying this online monitoring methodology is to as-
certain the benchmark value section of cogeneration units’ efficiency states for various
operating conditions. To accomplish this objective, the suggested approach is partitioned
into the subsequent four stages.

(1) Historical data cleaning and steady-state detection—The massive historical data need
to be cleaned and detected for subsequent data analysis. Therefore, a sliding window
is employed to clean the historical data and detect the steady state.

(2) Division of the operating conditions—To transform a global problem into a portion
problem, equal interval division is used for the classification of the operating conditions.

(3) Identification of the benchmark value section—Deep clustering is employed to estimate
the benchmark value section of the energy efficiency state according to the similarity.

(4) Identification of the energy efficiency state—After the benchmark value section is
identified for every operating condition, real-time data are introduced and evaluated
to investigate whether data are outside the benchmark value section. When data
outrange is detected, the efficiency state of the cogeneration unit can be evaluated
as degradation.

The flow chart of the proposed methodology is shown in Figure 1.
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Figure 1. Flow chart of the proposed methodology.

2.2. Historical Data Cleaning and Steady-State Detection

The operation state of the unit can generally be divided into the startup/shutdown
and the operation periods. Because the unit parameters will change sharply during the
startup and shutdown periods, and these periods are not long-term operating conditions,
considering the energy efficiency state of the unit is unnecessary. Therefore, historical data
cleaning is a prerequisite. In addition, excessive real-time performance will inevitably lead
to a lack of sufficient data for each performance evaluation or performance calculation to
eliminate the influence of randomness. This is not helpful in monitoring and analyzing the
energy efficiency state of the unit. Simultaneously, the energy efficiency state of the unit
exhibits a gradual change. Therefore, the necessary steady-state detection is essential.
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The unit can intuitively distinguish the startup/shutdown period and the operating
period by monitoring the changing trend of the load. Owing to the demand for stable
combustion of the boiler, generally, few units operate at 20% or below load for a long time.
Therefore, historical data cleaning can limit the unit load to clean the data. By setting a
limit to 20% of the designed load, all the data below 20% of the designed load are regarded
as the data of the startup and shutdown periods of the unit and are cleaned.

Table 1 lists the four key variables of the steady energy efficiency state based on ASME
PTC6 for the detection of the steady state [15]. The unit is operating under a steady state
when these four key variables are relatively stable.

Table 1. Four key variables of the steady energy efficiency state.

Key Variables Load (MW) Main Steam
Flow (t/h)

Heating Steam
Flow (t/h)

Condenser
Vacuum (kPa)

Range 100–320 0–1000 0–300 −92–84
Interval 10 10 10 2

Using the load as an example, the discrimination method can be described as follows:

pt = p0 + mt + δ (1)

where pt is the measured value of the load at time t, p0 is the real-time value of the load
at time t, m is the rate of change of the load, and δ is the random error of the load, which
follows a normal distribution. The difference between a steady state and unsteady state is
whether the load response rate is 0 [16].

The estimation value of m can be expressed as

∆p = pt − pt−1 = m + (δt − δt−1) (2)

where ∆p is the load difference between two adjacent times. For δt ∼ N(0, σ2), the
expectation of ∆p is m, which leads to ∆p ∼ N(m, 2σ2).

m = ∆p =
1
h

h

∑
t=1

pt − pt−1 (3)

where h is the sample size in a given time window. Then, m can be estimated by the mean
of this sample. To ensure the reliability of the estimation, the interval estimation method is
used as follows:

p{m1 < m < m2} = 1− α (4)

where m1 and m2 are two statistics at a given confidence level α. The real value of m
is probably within the confidence interval of (1− α). Consequently, in cases where the
interval does not encompass the value of 0, it is postulated that the unit load is in a state of
unsteadiness throughout the specified duration. Similarly, the method of determination for
the other three key variables is the same. When all four key variables are in a steady state,
the unit is said to be in a steady state.

2.3. Classification of the Operating Conditions Based on Equal Interval Division

Even in the steady state, boundary conditions have an impact on the operational
efficiency of the unit. To reduce the difficulty of evaluating the energy efficiency state of the
unit and isolate the influence of boundary conditions, the steady-state data are divided into
operating conditions. The two most important characteristic variables are the unit load and
ambient temperature. Extraction heating flow is another important characteristic variable
for cogeneration units when the unit is under heating conditions. In this study, the unit
load and ambient temperature were chosen for pure condensing conditions, and the unit
load and extraction heating flow were chosen for heating conditions.
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Using equal interval division for condition classification, the variation ranges of the
unit load, ambient temperature, and extraction heating flow must be identified. The
calculations based on equal interval condition division are shown in Equations (5) and (6).

C1i : (Ti, Ti + ∆T) ∩ (Pi, Pi + ∆P) (5)

C2i : (Gi, Gi + ∆G) ∩ (Pi, Pi + ∆P) (6)

s.t. Ti � Tmin, Ti + ∆T � Tmax
Pi � Pmin, Pi + ∆P� Pmax
Gi � Gmin, Gi + ∆G � Gmax

where C1i is the division of the pure condensing condition; C2i is the division of the
heating condition; Tmin and Tmax are the minimum and maximum ambient temperatures,
respectively; Pmin and Pmax are the minimum and maximum unit loads, respectively; Gmin
and Gmax are the minimum and maximum extraction heating flows, respectively; and ∆T,
∆P, and ∆G are the division intervals for the ambient temperature, unit load, and extraction
heating flow, respectively.

2.4. Benchmark Value Section Determination Using GMM

The energy efficiency state value corresponds to the minimum heat consumption
time that the unit can actually achieve under the current operating boundary conditions,
reflecting the optimal operating level of the unit. To more accurately calculate the economic
losses resulting from unit deviation and effectively identify operational and energy con-
sumption weaknesses, it is imperative to obtain the baseline value of the efficiency status
index correctly.

The GMM algorithm combines the advantages of parametric and nonparametric
estimation methods and is not limited to a specific probability density form. However, it
can approximate any continuous distribution with arbitrary accuracy if there are enough
submodels. In this study, the GMM algorithm is used to cluster the sample data under a
single operating condition based on the similarity. One or more clusters are then selected
as the benchmark sample according to the predefined selection criteria. Subsequently, the
probability density distribution is estimated to determine the benchmark value section.

The parameter estimation of the GMM algorithm utilizes the classical EM algorithm.
EM is an iterative algorithm used for the parameter estimation of probability models that
involve hidden variables. It iteratively determines the parameter values that maximize the
likelihood, whose objective function is shown in Equation (7).

L(θ) = log[
N

∏
i=1

p(X|θ)] =
N

∑
i=1

log p(X|θ)

=
N

∑
i=1

log
K

∑
k=1

ωkφk(X|θk)

(7)

where X is the variable, K is the number of the sample, ωk is the weight coefficient of the
submodel K, and φk(X|θk) is the probability density function of the kth submodel.

The physical meaning corresponding to the number of GMM algorithm submodels is
the number of unit state categories. To determine the number of submodels of the GMM
algorithm, the AIC evaluation criteria are selected. The AIC evaluation criterion is based on
the concept of entropy, which provides an evaluation method that balances the complexity
of the model and quality of the fitting data. Its definition is shown in Formula (8) as follows:

AIC = 2K− 2 ln(L) (8)

where ln(L) represents the log-likelihood function of the model. As the quantity of sub-
models is augmented, the complexity of the model also escalates. In the case of AIC,
the complexity initially diminishes and subsequently rises. The sample number when
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AIC decreases to the minimum is chosen as the optimal number of submodels for the
GMM algorithm.

The data samples under different clustering groups of the GMM algorithm are com-
pared. A group of data with the lowest average heat consumption is then selected as
the benchmark sample. Subsequently, its probability density distribution is estimated to
determine the benchmark value section of the energy efficiency state.

3. Data Preprocessing

To validate the results of the GMM model for benchmark value section determination,
a set of historical data are used. Here, the historical data are subjected to a process of
cleaning, wherein only the steady-state data are retained. The steady-state data of the
cogeneration unit should be divided into two distinct periods: the heating condition and
the pure condensation condition. Subsequently, the generalized method of the GMM model
can be employed to derive the benchmark value section for the cogeneration unit in each of
these periods.

3.1. Data Sources and Introduction

In this study, a 320 MW subcritical cogeneration unit in Hebei Province of China is
taken as the research object. The N320-16.7/537/537-type steam turbine, manufactured
by Dongfang Steam-Turbine Co., Ltd. (Deyang, China), is used. The unit underwent
retrofitting in 2015, incorporating perforated steam extraction for heating. The rated
extraction heating steam flow rate of each unit is 220 t/h, making it a representative case
study of a typical cogeneration unit.

The historical data of the unit in the Supervisory Information System (SIS) are selected
for analysis. The data are selected from January 2019 to December 2019 at a sampling
frequency of 1 min, with a total of 525,600 groups of data.

3.2. Historical Data Cleaning and Steady-State Detection

To set a limitation of 20% of the designed load, all data points below 20% of the
designed load are considered representative of the startup and shutdown periods of the
unit and are subsequently filtered out. After this process, a total of 373,131 groups of
data remain.

For the identification of steady-state conditions, the difference between four key
variables at adjacent times is used as the defining characteristic. A sliding window of
length 30 and a significance level of 0.05 are employed. Following steady-state detection,
154,526 groups of steady-state operating condition samples are retained, resulting in a
steady-state detection ratio of 29.4%. A total of 7200 groups of typical data are selected to
compare the results after steady-state detection, as shown in Figure 2.

As depicted in Figure 2, the inclusion of non-stationary data can occur if solely the
load parameter is utilized as the criterion to determine the steady state. In the context
of cogeneration units, the accurate representation of steady-state data is contingent upon
the simultaneous attainment of all four parameters in a steady-state condition. However,
the availability of such data is severely restricted, necessitating the accumulation of a
substantial volume of historical data for comprehensive analysis.

3.3. Classification of the Operating Conditions

During the heating period, the cogeneration unit operates flexibly. According to
the statistics of historical data, the variation range of the unit load is between 100 and
320 MW and the variation range of the heating flow is between 20 and 240 T/h. A total of
240 operating conditions exist after combination. The number of steady-state samples in
each operating condition is counted, and 196 effective operating conditions are obtained.
Figure 3 visually shows the sample density of the 196 operating conditions in the heating
period. During a typical year’s historical operation, the cogeneration unit most often
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operates in the operating condition range with a load in the range of 210–220 MW and a
heating flow in the range of 120–140 T/h.

Processes 2023, 11, x FOR PEER REVIEW 7 of 12 
 

 

and a significance level of 0.05 are employed. Following steady-state detection, 154,526 
groups of steady-state operating condition samples are retained, resulting in a steady-state 
detection ratio of 29.4%. A total of 7200 groups of typical data are selected to compare the 
results after steady-state detection, as shown in Figure 2. 

 
Figure 2. Collection of typical steady-state data. 

As depicted in Figure 2, the inclusion of non-stationary data can occur if solely the 
load parameter is utilized as the criterion to determine the steady state. In the context of 
cogeneration units, the accurate representation of steady-state data is contingent upon the 
simultaneous attainment of all four parameters in a steady-state condition. However, the 
availability of such data is severely restricted, necessitating the accumulation of a substan-
tial volume of historical data for comprehensive analysis. 

3.3. Classification of the Operating Conditions 
During the heating period, the cogeneration unit operates flexibly. According to the 

statistics of historical data, the variation range of the unit load is between 100 and 320 MW 
and the variation range of the heating flow is between 20 and 240 T/h. A total of 240 oper-
ating conditions exist after combination. The number of steady-state samples in each oper-
ating condition is counted, and 196 effective operating conditions are obtained. Figure 3 
visually shows the sample density of the 196 operating conditions in the heating period. 
During a typical year’s historical operation, the cogeneration unit most often operates in 
the operating condition range with a load in the range of 210–220 MW and a heating flow 
in the range of 120–140 T/h. 

Figure 2. Collection of typical steady-state data.

Processes 2023, 11, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 3. Heat map of heating conditions. 

According to the statistics of the historical data, during the pure condensation period, 
the variation range of the unit load is 100–320 MW and the variation range of the ambient 
temperature is −3–35 °C, with a total of 380 operating conditions. The number of 
steady-state samples in each operating condition is counted, and 366 effective operating 
conditions are obtained. Figure 4 visually shows the sample density of the 366 operating 
conditions in the pure condensation period. During the historical operation of the typical 
year, the cogeneration unit most often operates in the operating condition range with a 
load in the range of 150–160 MW and an ambient temperature in the range of 17–19 °C 
during the pure condensation period. 

 
Figure 4. Heat map of pure condensation condition. 

3.4. Excavation of Reference Value under Typical Operating Conditions 
Through the analysis of the historical operation data, it is evident that during the 

heating period, the most common operational scenario falls within a load range of 210–220 
MW and a heating flow range of 120–140 T/h, which is termed operating condition A. 
Consequently, the data samples falling under this operating condition are selected as an 
example to illustrate the benchmark mining process. GMM is used to cluster the samples of 
condition A, and the log-likelihood of sample points with respect to GMM is calculated. 
The optimal number of cluster samples identified under condition A is 3. Table 2 lists the 
number of samples in each of the three categories with their corresponding average heat 
consumption values. 

  

Figure 3. Heat map of heating conditions.

According to the statistics of the historical data, during the pure condensation period,
the variation range of the unit load is 100–320 MW and the variation range of the ambient
temperature is −3–35 ◦C, with a total of 380 operating conditions. The number of steady-
state samples in each operating condition is counted, and 366 effective operating conditions
are obtained. Figure 4 visually shows the sample density of the 366 operating conditions
in the pure condensation period. During the historical operation of the typical year, the
cogeneration unit most often operates in the operating condition range with a load in the
range of 150–160 MW and an ambient temperature in the range of 17–19 ◦C during the
pure condensation period.
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3.4. Excavation of Reference Value under Typical Operating Conditions

Through the analysis of the historical operation data, it is evident that during the heat-
ing period, the most common operational scenario falls within a load range of 210–220 MW
and a heating flow range of 120–140 T/h, which is termed operating condition A. Conse-
quently, the data samples falling under this operating condition are selected as an example
to illustrate the benchmark mining process. GMM is used to cluster the samples of con-
dition A, and the log-likelihood of sample points with respect to GMM is calculated. The
optimal number of cluster samples identified under condition A is 3. Table 2 lists the
number of samples in each of the three categories with their corresponding average heat
consumption values.

Table 2. GMM clustering results.

Type Sample Number Average Heat Consumption (kJ·(kW·h)−1)

1 352 7944.337
2 2280 7920.404
3 1181 7968.058

Figure 5 shows the clustering results of operating conditions based on GMM, which are
marked with different colors. To show the data distribution characteristics of the operating
condition in a three-dimensional space, three characteristic indexes of heat consumption,
load, and heating flow are selected. When addressing the challenge of energy efficiency
optimization, it is possible to further refine the benchmark sample selection by identifying
the type 2 sample with the lowest heat consumption. Subsequently, the kernel density is
estimated based on the benchmark sample to determine the benchmark value section for
each energy efficiency state characteristic index within condition A, as detailed in Table 3.

Table 3. Benchmark value section of the energy efficiency status index under working condition A.

Typical Energy Efficiency Status Index Benchmark Value Section

Average heat consumption/(kJ·(kW·h)−1) 7751–8089
High-pressure cylinder efficiency/(%) 84.7–86.5

Medium pressure cylinder efficiency/(%) 95–95.8
Condenser vacuum/kPa −91.4–88.6
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4. Results and Discussion
4.1. A Comparative Analysis of Benchmarking Approaches: Data-Based vs. Design-Based Methods

Table 4 presents a comparison of the benchmark value section of the energy efficiency
status index as determined by both the data-based method and the design-based method.
All of the data are processed under condition A. The utilization of GMM in determin-
ing benchmarks provides an interval, which contrasts with the traditional design-based
benchmark that only offers a fixed value. This enhancement significantly improves the
benchmark’s reference value for daily operational functions.

Table 4. The differences between the benchmarks generated by the two methods.

Energy Efficiency Status Index Benchmark Value Section Designed Benchmark

Average heat
consumption/(kJ·(kW·h)−1) 7851–8089 7759

High-pressure cylinder efficiency/(%) 84.7–86.5 86.3
Medium-pressure cylinder

efficiency/(%) 95–95.8 95.4

Condenser vacuum/kPa −91.4–88.6 −90.6

In most cases, the designed benchmark is better than the benchmark value section data-
mined from the actual operational historical data of the unit. If the designed benchmark
is utilized to judge the operating state of the unit, it is very likely that the unit will be
mistakenly judged as not operating in the best state, and, simultaneously, the possibility of
staff misoperation will be heightened.

Using the benchmark value section data-mined by GMM as the evaluation criteria for
the energy efficiency state of the unit aligns better with the actual situation. This approach
provides an interval within which the staff can respond. The staff members only need to
consider measures to improve the energy efficiency state of the unit when the benchmark
value does not fall inside this interval. This effectively reduces the risk of misjudgment
during unit operation.
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4.2. Industrial Application

This algorithm was programmed in Python and converted into a real-time monitoring
system. The monitoring interface is shown in Figure 6. When the unit is actually running,
the real-time target working conditions of the unit are obtained through external constraints,
followed by matching the reference range of the corresponding working conditions from
the dynamic reference working condition library. According to the deviation between the
real-time value and reference interval, the corresponding index parameters of the unit
are continuously adjusted to provide real-time monitoring and guidance for the optimal
operation of the unit. This ensures that the unit can operate safely, stably, and efficiently for a
long time. Through the actual calculation of the power plant, the overall heat consumption
of the unit can be reduced by 32.5–50 kJ·(kW·h)−1. The dynamic reference condition
library for the energy efficiency state, established through this method, holds substantial
importance in guiding efforts aimed at energy saving, emission reduction, and optimal
operation of the cogeneration unit.
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5. Conclusions

In the context of “carbon peaking and carbon neutrality”, high-carbon coal-fired units
take precedence as the primary targets for carbon reduction in the power industries. Achiev-
ing energy saving and emission reduction in these units is very important. Addressing the
challenge of obtaining an energy efficiency state benchmark for cogeneration units across
various working conditions, this study employs historical data mining to determine the
benchmark value section of the energy efficiency state index. The key conclusions drawn
from this study are as follows.

(1) Aiming at the coexistence of the steady-state and unsteady-state data of unit historical
data, a steady-state discriminant model based on the interval estimation of the load
and heating flow difference is proposed. Based on the steady-state data, the unit
heating period and pure condensation period are divided into different working
conditions. Through the GMM algorithm model, the steady-state samples under each
working condition are trained to establish reference value samples. Subsequently,
these samples are used to further estimate the probability density distribution, en-
abling the determination of the benchmark value section of the energy efficiency state.

(2) Taking a 320 MW cogeneration unit as the research object, several steps are taken to
determine the reference interval of the energy efficiency state and obtain the reference
value library under all working conditions through an interpolation method. This
methodology offers a time frame in which the personnel can provide a response.
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Staff members are only required to address measures aimed at enhancing the energy
efficiency status of the unit if the benchmark value does not fall within this range.
Furthermore, by considering the real-time operating status of the unit, the base
value working condition library is dynamically updated and adjusted, leading to
the development of a dynamic working condition library of the energy efficiency
benchmark state.

(3) The energy efficiency reference state dynamic working condition library is installed
and deployed in the unit control center. The analysis findings have the potential to
offer valuable insights and recommendations for the optimization of the operations
of the cogeneration unit under various working conditions. Additionally, the overall
heat consumption of the unit can be decreased by a range of 32.5 to 50 kJ·(kW·h)−1.
This, in turn, facilitates efficient and stable unit operation, ultimately resulting in
energy savings and emission reductions.
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