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Abstract: In recent years, rapid industrialization has driven higher energy demand, depleting fossil-
fuel reserves and causing excessive emissions. China’s “dual carbon” strategy aims to balance
development and sustainability. This study optimizes microgrid efficiency with a tiered carbon-
priced economy. A Stackelberg game establishes microgrid-user equilibrium, solved iteratively with
a multi-population algorithm (MPGA). Comparative analysis can be obtained without considering
demand response scenarios, and the optimization cost of microgrid operation considering price-based
demand response scenarios was reduced by 5%; that is 668.95 yuan. In addition, the cost of electricity
purchase was decreased by 23.8%, or 778.6 yuan. The model promotes user-driven energy use,
elevating economic and system benefits, and therefore, the scheduling expectation of “peak shaving
and valley filling” is effectively realized.

Keywords: energy; MPGA; stackelberg game; tiered carbon-priced economy

1. Introduction

With the rapid development of modern industry, the contradiction between energy
consumption and the environment has become increasingly prominent, and the large
emission of greenhouse gases has led to a more severe ecological environment and more
serious global warming: according to the BP World Energy Statistical Yearbook 2022 [1],
global primary energy consumption in 2021 showed a rebound trend, an increase of nearly
6%. This significantly reversed the sharp decline in energy consumption due to lockdowns
in many countries around the world in 2020. Therefore, all countries are seeking energy
transformation, and any successful and long-lasting energy transformation cannot be
separated from the three elements: safety, burden, and low-carbon. Therefore, countries
have formulated corresponding emission reduction targets, focusing on policy incentives
and government economic investment as the main body to achieve excessive excess of
traditional energy to low-carbon energy. In the daily production and consumption process
led by electricity as a high-quality energy source, according to the theoretical guidance of
“high energy, high energy, low energy and low-use, temperature-oriented, step use”, the
three-energy coupling of electricity–heat–gas are explored and improved energy conversion.
The new way of rate, especially the utilization of thermal energy, has achieved results in the
energy terminal. As a large country of energy use, China strives to achieve carbon peaks by
2030 and achieve carbon neutralization by 2060 [2]. In order to achieve the ambitions and
commitments of decarburization and achieve promise, China must establish a relatively
sound energy system, with the development of clean energy as the guide, and take the first
step in the transformation of China’s energy industry structure [3].

In recent years, many scholars have conducted a lot of research on the optimization
of the comprehensive energy system. Zhou Nan and others introduced the time-sharing
pricing strategy into the optimization scheduling of energy storage to maximize the annual
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profit and utilization rate of photovoltaic systems [4]. Li Xiulei et al. established a general
model for energy storage and demand response optimization planning, and analyzed
the impact of energy storage and demand response on goals in operational strategies.
The end of the energy cycle in demand response is usually thermal energy, so the main
coupling method is the electrical thermal component, and the load type mainly exists
in the form of temperature-controlled loads. However, due to its inherent limitations,
thermal energy is often strongly influenced by external weather factors and has a delay
effect. Therefore, through research on modeling, optimization, and control of electrical
thermal coupling components, its impact on power system stability can be reduced [5].
Wang Dan et al. provided an energy-saving design for temperature-controlled loads in
buildings, while considering the limitations of user comfort to determine the operating
method of the power plant, and established the optimal allocation model for energy-saving
power plants [6]. Wang Chengshan et al. used a simplified equivalent thermodynamic
model with first-order parameters and a state control model to smooth out renewable
energy in microgrids by replacing energy storage technology with demand side and load
response technology [7]. Tang Xiaoting et al. constructed a mathematical model that
includes input and output energy balance constraints of energy hubs, system capacity
constraints, and energy storage efficiency constraints of renewable energy generation
technology [8]. Heiskanin et al. Proposed the Energy System Analysis Environmental
Assessment Framework (EAFESA) [9]. This framework can minimize the shortcomings
of the two models and maximize the combination of the two models to analyze the no
climatic environmental impacts of energy scenarios based on the life cycle. Wu Yong et al.
established a multi-objective optimization model for comprehensive planning of various
energy storage capacities with the goal of minimizing economic costs and network carbon
emissions, but did not consider the impact of different energy storage components on the
system [10]. Zhang Xizheng searched algorithm (GSA) and particle swarm optimization
(PSO) algorithm by combining gravitational, a hybrid modified GSA-PSO (MGSA-PSO)
scheme is proposed to optimize the load dispatch of the microgrid containing electric
vehicles. The load dispatch optimization are implemented and analyzed, including the
unordered charging strategy, the ordered charging–discharging strategy, and the ordered
charging–discharging strategy with distributed generations [11]. Zhang Feng et al. applied
a robust ALO optimizer (ALO) algorithm for MPP tracking of solar photovoltaic system,
designed the charge controller of the energy storage system, and designed the DC–AC
converter to match the frequency of RES with the frequency of DG [12].

In summary, due to the continuous improvement of energy coupling in microgrids and
the continuous reform of the electricity market, the mathematical models of equipment in
microgrids have increased, and operation scheduling strategies have become more complex.
Traditional control methods for loads need to be reformed. In addition, in the context of
huge carbon emissions, carbon reduction and environmental benefits cannot be achieved
in parallel. Therefore, this article conducts reasonable scheduling of devices in microgrids,
seeks more reasonable and economical device matching methods, introduces a demand
response mechanism, constructs a low-carbon economic optimization model for microgrids
with tiered carbon prices, and establishes a Stackelberg game model to control user load,
achieving the goal of “peak shaving and valley filling”, which is of great significance for
the overall energy utilization of microgrids.

Considering the multi-energy micro-network planning process under the carbon trad-
ing mechanism, there are many stakeholders during energy transactions: the distribution
network–microcyllar network and user side. In order to meet the demands of various
interests at the same time, the main game framework was introduced. At the same time,
because there is an energy interaction between the distribution network and the microcon-
trollers, the relationship between the energy demand response and the user’s side has the
relationship between the micro grid and the user. That is to say, on the upper layer of the
main game, the microblogs are maximized to the system’s efforts to maximize the effort of
the system according to the price signal given by the distribution network. To participate
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in the scheduling for the goal, and to obtain a balanced solution, micro-network response
strategies through price demand can guide users to participate in micro-network schedul-
ing can achieve energy transition. As the main body of energy use, the spontaneous use of
the electricity price incentive signal transfer period or cut load based on the spontaneous
operator’s electricity price incentive signal can be used to achieve the goal of peak-cutting
the valley of the load of the microblog.

Therefore, this article proposes a multi-energy microfinance low-carbon tone consider-
ing the main game, and the establishment of the overall micro-power grid.

This article does the following:

1. A low-carbon economic optimization model of microgrid with tiered carbon price
was constructed. The carbon emissions involved in the operation of each equipment
are finally traded through the carbon trading market, and the sensitivity analysis of
the system is carried out by adjusting the ladder carbon trading parameters.

2. A Stackelberg game model with microgrid as the main body of the game and user
response as the follower of the game was established, which further improved the
level of load participation in the energy system and proved the existence of equilib-
rium solutions in the game. The model is iteratively solved by a variety of group
algorithms, and immigration operators and artificial selection operators are added
to the traditional genetic algorithm to prevent all individuals in the population from
tending to the same state and stop evolution, and at the same time increase the
memory population and improve the model calculation efficiency.

2. Optimization Model of Micro-Grid Low-Carbon Economy with Ladder
Carbon Price
2.1. Stepped Carbon Trading Model

Carbon emission quota trading can limit the amount of carbon emissions according to
specific emission industries. At the same time, the real-time price of the carbon market is
determined by the carbon trading market, and the carbon emission quota is managed in a
reasonable and efficient way [13].

2.1.1. Calculation Model of Carbon Emissions

The main carbon sources in microgrid are power consumption process, heat generation
and power generation process of cogeneration unit, gas-fired boiler, and coal-fired unit.
Because the coal-fired units are equipped with carbon capture power plants, it can help the
microgrid consume part of CO2. Therefore, when calculating the actual carbon emissions,
the CO2 absorbed by the carbon capture equipment needs to be removed. The total carbon
emission model of microgrid is shown in Formula (1), and the total amount of gas purchased
is shown in Formula (2).

Eall = λe
T
∑

t=1
Pe,buy + λg

T
∑

t=1
Pg,buy + QPGU

CO2
−

T
∑

t=1
QCCS

CO2
(1)

Pg,buy = Pg,CHP + Pg,GB (2)

Pe,buy, Pg,buy are purchase electricity and gas, λe, λg are carbon emission coefficients
of electricity-consuming equipment and gas-consuming equipment, QPGU

CO2
is emissions

for coal-fired power plants CO2 quantity, and QCCS
CO2

is the amount of carbon capture
equipment CO2.

2.1.2. Carbon Decentralization Quota Model

The initial allocation of carbon emission rights in this paper mainly includes electricity
purchase quota, cogeneration unit quota, gas boiler quota, and coal-fired power plant
quota. The carbon emission quota model for power purchase in microgrid is shown in
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Formula (3), and the model synthesis of cogeneration unit, gas boiler, and coal-fired power
plant is shown in Formula (4).

Ee = εe
T
∑

t=1
Pe,buy (3)

Ex = εx · Px (4)

εe, εx are carbon emission quotas for unit electric power and unit power consumed by
different equipment.

2.1.3. Stepped Carbon Trading Model

Based on the above carbon emission model and carbon emission rights allocation
model, a ladder carbon trading model is established, and a plurality of carbon emission
rights purchase intervals are set in the ladder carbon trading mechanism. The initial carbon
emission quota allocated by the system is removed from the total carbon emission, and the
mathematical Formula is shown in Formula (5). At the same time, pricing with different
gradients is carried out according to the net carbon emission of the system in different
charging intervals, when the net carbon emission is less than a given interval length. In
the internal time, only the transaction amount at the base price of carbon trading is paid.
When the price is higher than a given interval length, the price in each step interval is fixed.
Every step increase, the carbon trading price increases exponentially, the carbon emission
right purchase ratio increases, and the corresponding price will also increase. According to
this trading model, the mathematical model Formula of ladder carbon trading as shown in
Formula (6) is obtained.

E = Eall − Ee −
N
∑
i

Ex (5)

CCO2 =


c · E, E ≤ l
c · (1 + λ)(E− l) + cl, l ≤ E ≤ 2l
c · (1 + 2λ)(E− 2l) + c(2 + λ)l, 2l ≤ E ≤ 3l
c · (1 + 3λ)(E− 3l) + c(3 + 3λ)l, 3l ≤ E ≤ 4l
c · (1 + 4λ)(E− 4l) + c(4 + 6λ)l, E ≥ 4l

(6)

CCO2 is carbon transaction costs, E is carbon emission of the system, i is equipment
selection, including cogeneration units, gas-fired boilers and coal-fired power plants, N is
the total number of device, λ is the price growth rate, l is the interval length, c is the base
price of carbon trading.

2.2. Microgrid Low-Carbon Economic Optimization Model with Step Carbon Price

Based on the established carbon trading mechanism, a low-carbon optimization model
of microgrid with ladder carbon trading mechanism is proposed. The model considers
the lowest comprehensive operating cost of the whole microgrid from the economic level,
implements the initial carbon emission quota form from the environmental level, and
comprehensively considers the operating cost, system power consumption cost, gas con-
sumption cost, and carbon trading cost of the whole system exceeding the carbon emission
quota. The electric balance, thermal balance, gas balance and hydrogen balance in the over-
all operation of the system are taken as equality constraints, and the climbing constraints
and output upper limit constraints of each device are taken as inequality constraints, so as
to improve the economy and low carbon of the microgrid [14].

2.2.1. Objective Function

The overall objective function of microgrid not only minimizes the fuel cost and the
cost of purchasing electricity and gas, but also supplements the environmental problems
according to the carbon trading mechanism. Among them, the carbon transaction cost is the
ladder carbon price cost considering exceeding the carbon emission quota. On the premise
of ensuring the safety and reliability of the whole microgrid system, the environmental
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factors are quantified, and the output degree of each micro-source is optimized according
to the load change, so as to obtain the minimum comprehensive cost of the system.

minF = min
T
∑

t=1

(
CPGU + Ce, buy + Cg, buy + CCO2

)
(7)

F is the minimum operate cost of the system, CPGU is fuel costs, Ce, buy is the cost of
electricity purchase, Cg, buy is gas purchase cost, and CCO2 is carbon transaction costs.

a. Fuel cost

Cpgu = ap2
PGU + bpPGU + c (8)

b. Energy purchase cost

Ce, buy + Cg, buy = ce∑T
t=1 Pe, buy + cg∑T

t=1 Pg, buy (9)

Pe, buy is the total power consumption of the system, Pg, buy is the total gas consumption
of the system, ce is real-time electricity prices, cg is real-time gas price, and T takes 24 h.

2.2.2. System Operation Constraints

According to the law of conservation of energy, when the microgrid is running as
a whole, the output energy of each form should always be equal to the input energy of
each form to maintain the system operation. At the same time, the output energy of each
equipment is kept within the rated power and cannot exceed the specified maximum output,
so the related mathematical Formulas of balance constraint and imbalance constraint in the
system are integrated, respectively.

The equality constraints are as follows:

a. Electric power balance

On the premise of ignoring the network loss, the discharge of wind power, cogener-
ation units, and power storage equipment, the purchase of electricity from the superior
power grid and the overall output of hydrogen fuel cells are equal to the sum of the electric
power consumed by the electric load and the charging of power storage equipment, as
shown in Formula (10).

PWT(t) + PCHP(t) + PSB, dis(t) + Pe, buy(t) + PHFC, e(t) = Pload(t) + PSB, chr(t) (10)

PWT(t) is output power for wind energy, PCHP(t) is output power for electric energy
of cogeneration unit, PSB, dis(t) is the discharge power for electric storage device, PHFC, e(t)
is electricity production of hydrogen fuel cell, Pload(t) is the electrical load, and PSB, chr(t)
is charging the power storage equipment.

b. Thermal power balance

The input heat of the system is equal to the output heat; that is, the sum of the
exothermic power of cogeneration unit, gas boiler, and heat storage equipment is equal to
the thermal power consumed by heat storage equipment and heat load.

PHFC, h(t) + HCHP(t) + HGB(t) + HTS, dis(t) = HTS, chr(t) + HLoad(t) (11)

HCHP(t) the thermal energy output power of the cogeneration unit, HGB(t) is the heat
generation of gas boilers, HTS, dis(t) is released for the heat storage device, HTS, chr(t) is the
heat release of heat storage equipment, and HLoad(t) is the heat load.

c. Natural gas power balance
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Similarly, the output of natural gas is equal to the input, that is, the sum of gas purchase,
gas storage tank, gas release, and gas conversion technology output is equal to the gas load,
gas storage tank, gas storage, cogeneration unit, and gas boiler gas consumption.

Gbuy(t) + GES, dis(t) + GMR(t) = Gload + GES, chr(t) + GCHP(t) + GGB(t) (12)

Gbuy(t) is the amount of gas purchased, GES, dis(t) is the amount of gas vented by the
gas receiver, GMR(t) is the amount of CH4 dioxide produced by methanation of electricity-
to-gas technology, Gload is gas load, GES, chr(t) is the gas storage capacity of the gas storage
equipment, GCHP(t) is the air consumption of the cogeneration unit, and GGB(t) is the
amount of natural gas consumed by the gas boiler unit.

d. Hydrogen power balance

Because the two steps of electro-gas conversion technology in microgrid are modeled
separately and equipped with hydrogen storage tank and hydrogen fuel cell, hydrogen
energy balance is added.

PEL, H2(t) + PHS, dis(t) = PH2, MR(t) + PH2, HFC(t) + PHS, chr(t) (13)

PEL, H2(t) is the hydrogen production capacity of the electrolytic cell in the first step
of converting electricity to gas, PHS, dis(t) is the hydrogen storage capacity of the hydrogen
storage device, PH2, MR is the hydrogen consumption of methanation reaction, PH2, HFC is
the hydrogen consumption of the hydrogen fuel cell, PHS, chr(t) is amount of hydrogen
released for hydrogen storage equipment.

Inequality constraints are as follows:

a. Coal-fired units

During the operation of coal-fired units, it is necessary to ensure that the output is
within the allowable range, that is, to ensure the output constraint.

Pmin
PGU ≤ PPGU ≤ Pmax

PGU (14)

Pmax
PGU and Pmin

PGU are the upper and lower limits of the output of coal-fired units.
The output adjustment of coal-fired units should be within the allowable range, that

is, climbing constraint.
∆Pmin

PGU ≤ ∆PPGU ≤ ∆Pmax
PGU (15)

∆Pmin
PGU ≤ ∆PPGU ≤ ∆Pmax

PGU (16)

∆Pmax
PGU is the maximum upward climb power of the coal-fired unit, ∆Pmin

PGU is the
maximum downward climb power of the coal-fired unit, ∆PPGU is the amount of power
change, PPGU(t) is the power of the coal-fired unit at the time of t, PPGU(t− 1) is the power
of the coal-fired unit at the time of t − 1.

b. Cogeneration unit

Because the cogeneration unit meets both the electric load and the heat load, it needs
to meet both the electric output constraint and the heat output constraint.

Pmin
CHP, e ≤ PCHP, e ≤ Pmax

CHP, e (17)

Hmin
CHP, h ≤ HCHP, h ≤ Hmax

CHP, h (18)

Pmax
CHP, e and Pmin

CHP, e are the upper and low limits of the electric output of the cogen-
eration unit, Hmin

CHP, h and Hmax
CHP, h are the upper and lower limits of thermal output of

cogeneration unit.
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Climbing constraints are shown in Formulas (19) and (20).

∆Pmin
convert, e ≤ ∆Pconvert, e ≤ ∆Pmax

convert, e (19)

∆Pconvert, e = Pconvert, e(t)− Pconvert, e(t− 1) (20)

∆Pmax
convert, e is the maximum upward climb power of that cogeneration unit, ∆Pmin

convert, e
is the maximum downward climb power of the cogeneration unit, ∆Pconvert, e is the amount
of power change under the pure condensation condition, Pconvert, e(t) is the electrical power
of the cogeneration unit after the t time conversion, Pconvert, e(t− 1) is the electrical power
of the cogeneration unit after the t − 1 time conversion.

c. Electro-gas conversion technology

The electrolyzer and methanation reaction should meet the hydrogen production
output constraint and the CH4 output constraint, respectively.

Pmin
EL, H2

≤ PEL, H2 ≤ Pmax
EL, H2

(21)

Gmin
MR ≤ GMR ≤ Gmax

MR (22)

Pmax
EL, H2

and Pmin
EL, H2

are the upper and lower limits of hydrogen production by the
electrolyzer, Gmax

MR and Gmin
MR are the upper and lower limits of the CH4 quantity obtained by

the reaction.
Climbing constraints are shown in Formulas (23)–(26).

∆Pmin
EL, H2

≤ ∆PEL, H2 ≤ ∆Pmax
EL, H2

(23)

∆PEL, H2 = PEL, H2(t)− PEL, H2(t− 1) (24)

∆Gmin
MR ≤ ∆GMR ≤ ∆Gmax

MR (25)

∆GMR = GMR(t)− GMR(t− 1) (26)

∆Pmax
EL, H2

and ∆Gmax
MR is the maximum upward climb power of that electrolytic cell

and methanation reaction, ∆Pmin
EL, H2

and ∆Gmin
MR are the electrolyzer and methanation reac-

tion large downward climb power, ∆PEL, H2 and ∆GMR are the amount of power change,
PEL, H2(t) and GMR(t) are the power of the electrolyzer and methanation reaction at the
time of t, PEL, H2(t− 1) and GMR(t− 1) are the power of the electrolyzer and methanation
reaction at the time of t − 1.

d. Gas-fired boiler unit

The output constraint and climbing constraint of gas-fired boilers are similar to those
of coal-fired units, as shown in Formulas (27)–(29).

Hmin
GB ≤ HGB ≤ Hmax

GB (27)

∆Hmin
GB ≤ ∆HGB ≤ ∆Hmax

GB (28)

∆HGB = HGB(t)− HGB(t− 1) (29)

Hmax
GB and Hmin

GB are the upper and lower limits of gas boiler output, ∆Hmin
GB is the

maximum upward climbing power of the gas boiler, ∆Hmin
GB is the maximum downward

climbing power of the gas boiler, ∆HGB is the amount of power change, HGB(t) is the gas
boiler power at the time of t, HGB(t− 1) is the gas boiler power at the time of t.

e. Hydrogen fuel cell
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Similarly, the output constraints and climbing constraints of hydrogen fuel cells are
shown in Formulas (30)–(32).

Pmin
HFC, e ≤ PHFC, e ≤ Pmax

HFC, e (30)

∆Pmin
HFC, e ≤ ∆PHFC, e ≤ ∆Pmax

HFC, e (31)

∆PHFC, e = PHFC, e(t)− PHFC, e(t− 1) (32)

Pmax
HFC, e and Pmin

HFC, e are the upper and lower limits of hydrogen fuel cell output,
∆Pmax

HFC, e is the maximum upward climb power of the hydrogen fuel cell, ∆Pmin
HFC, e is the

minimum upward climb power of the hydrogen fuel cell, ∆PHFC, e is the amount of power
change, PHFC, e(t) is the hydrogen fuel cell power at the time of t, PHFC, e(t− 1) is the
hydrogen fuel cell power at the time of t − 1.

3. Game Theory Basis

Gaming theory refers to the influence of the individual income of each participant
in the case of the interdependence and interdependence of the participants. Therefore,
because the income of all parties in the game receives the influence of multiple parties, each
participant is considered to make rational judgments. Through the information obtained by
themselves, they will give their strategies in real time to the overall feedback. The complete
game consists of three basic elements:

3.1. Participants

Participants refer to the subjects that can Formulate strategies and make rational
judgments in the overall game. Among them, the collection mathematics represents the
participants (33).

N = {1, 2, 3, . . . , n} (33)

3.2. Strategy Set

Strategy is an important factor in the overall game. Participants have changed different
strategies by collecting information, that is, the methods and means of maximizing their
own interests to achieve their own interests. The number of strategies can be selected
by themselves. Because the game is the mutual impact of the main body Formulation
strategy, the sequence of the strategy Formulation has a huge impact on the results of
the game. Among them, all participants Formulated the strategy collection mathematics
indication (34).

S = {S1, S2, S3, . . . Sn} (34)

3.3. Effectiveness

The effect refers to the benefits that the participating entities of each game are after
the game. Among them, benefits can be positive income or negative benefits, that is,
the maximum benefits to obtain. The goal of the participants is to maximize the benefit
by adjusting the strategy, and the benefit collection mathematical representation of the
participants is shown in the math indication (35).

u = {u1, u2, u3, . . . un} (35)

After determining the basic three elements of the game, the establishment of a complete
game is completed.

3.4. Stackelberg Game

Because the microgrid and the user side consider the price-based demand response,
that is, there is no relevant agreement between the participants, users spontaneously change
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their energy consumption habits. Participants constantly adjust their own strategies to
maximize their own interests during the scheduling process. There is still an obvious
decision-making sequence between the microgrid and the client, with the microgrid acting
first as the leader and the client following up as the follower. Among them, the leader
first makes the appropriate decision, occupying the position of priority decision, and the
follower makes the decision after receiving the signal from the leader. That is, microgrid
is the leader to adjust the real-time price of distribution network, and the client is the
follower to respond to the real-time price proposed by microgrid. This game type is called
Stackelberg game. Stackelberg game is divided into dynamic non-cooperative game, also
known as Stackelberg game. The model problems solved by the Stackelberg game mainly
have the following characteristics [15]:

(1) There is no agreement among the participants, and they make their own decisions.
(2) The decision of each participant has an impact on the benefits of other participants.
(3) Because of the different market positions, there is a decision-making order among

the participants. The leader first makes appropriate decisions according to the target
benefit, and the followers make decisions on their own goals after receiving the
leader’s decision-making signal. There is a restrictive relationship between them.

(4) The final decision-making scheme of each participant needs the unanimous consent
of all participants.

The mathematical definition model of Stackelberg game is as follows:
Let the leader’s strategy set is X, the follower’s strategy set is Y, the leader’s utility

function is f : X×Y → R , the utility function of the follower is g : X×Y → R .
As a dynamic game, leaders send out decision signals xn ∈ X, followers make deci-

sions according to the leader’s strategy, and the set of followers’ balance points is A(x).
Therefore, the mechanism mapping is generated: X → A(Y) . When the next leader makes
a decision, in order to maximize their own interests at all times, they will consider the
follower scheme, and the overall game optimization goal is max f (x, y). Let (x∗, y∗) be the
equilibrium point of the game, then the equilibrium condition is shown in Formula (4) [16].{

max
x∈X

f (x∗, y∗(x∗))

g(x∗, y∗) ≥ g(x∗, y)
(36)

4. Multi-Energy Microgrid Model Based on Stackelberg Game
4.1. The Demand Response Type

For the classification of electric energy demand response, the response method is
mainly used as a differentiation method, both of which require a contract with the energy
supply company, one is the price-based demand response, including time-of-use electricity
price, real-time electricity price and peak electricity price. Compared with the incentive
type, the price type has a lower degree of change in the user’s energy habits, and only needs
to make voluntary adjustments to the price signal. The incentive-type response is to adjust
the energy-using behavior strictly according to the load reduction calculation method
and response time signed in the contract, and carry out the corresponding compensation
mechanism for the adjusted energy-using behavior or impose corresponding fines for the
part that does not meet the response requirements. Compared with the two corresponding
methods, the current user acceptance of price-based demand response is higher, and the
project implementation scope is wider, and this paper mainly studies price-based electricity
price in the subsequent microgrid-user game stage.

The relationship model between electricity and electricity price is mainly divided into:
electricity price elasticity matrix, user psychology model, exponential function fitting model,
and statistical principle model [17]. Among them, the elasticity matrix of electricity and
electricity prices is described as the change in electricity demand caused by the change in
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electricity price, and the elastic coefficient of electricity price is defined, and the calculation
Formula is shown in Formula (37).

ε = ∆Pe
Pe

Ce
∆Ce

(37)

In the Formula, ∆Pe is the amount of electricity increase, and ∆Ce is the increase in
electricity price.

The electricity price response mechanism is divided into single period and multi-
period, that is, fixed ladder electricity price and real-time electricity price, due to the
peak and valley hours and price of the ladder electricity price is fixed, users will only
change energy demand in a certain period, and real-time electricity price will prompt users
to change energy consumption behavior according to different time periods. Therefore,
a multi-period response mechanism is introduced, in which the multi-period elasticity
coefficient is divided into the self-elasticity coefficient of the user response in the current
period and the cross-elasticity coefficient of the user response behavior in other periods,
and the mathematical model of the self-elasticity coefficient and cross-elasticity coefficient
obtained according to the above definition is shown in Formulas (38) and (39).

εii =
∆Pi
Pi

Ci
∆Ci

(38)

εij =
∆Pi
Pi

Cj
∆Cj

(39)

In the Formula, εii is the self-elastic coefficient and εij is the cross-elastic coefficient. i
is the ith dispatch period and j is the jth dispatch period.

According to the definition of the above elasticity coefficient and the mathemati-
cal model, the user price response model of the overall period is obtained as shown in
Formula (40) and the electricity price elasticity matrix as shown in Formula (41)

∆C1
C1

∆C2
C2
...

∆Cn
Cn

 = E


∆P1
P1

∆P2
P2
...

∆Pn
Pn

 (40)

E =


ε11 ε12 · · · ε1n
ε21 ε22 . . . ε2n
...

...
. . .

...
εn1 εn2 . . . εnn

 (41)

∆Cn is the change in electricity price at n moments after the demand response, ∆Pn
is the load change at n times after the demand response, Pn is the load before the n
time response.

4.2. Microgrid-User Stackelberg Game Structure

As the leader in the Stackelberg game, microgrids generate revenue by developing
pricing strategies different from those of distribution networks, selling electricity to users
at different energy purchase prices [18,19]. Users, as followers in the Stackelberg game
relationship, formulate a decision plan to reduce the cost of electricity purchase, that is,
increase the amount of load transfer to reduce the cost of electricity purchase, and achieve
the maximization of the follower’s benefits, that is, the maximum value of the follower’s
objective function, as shown in Formula (51). Then, the scheme obtained by changing
the load transfer amount is transmitted to the microgrid, which makes the next optimal
decision based on the user’s response results. At this point, the output plan of the microgrid
may not match the user’s demand, thereby reducing the maximum profit of the microgrid.
Therefore, at this point, the microgrid will redesign its output plan and energy prices to
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achieve the highest return on the microgrid, which is the maximum value of the leader’s
objective function, as shown in Formula (42). The Stackelberg game structure of microgrids
is shown in Figure 1.
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4.3. Microgrid Revenue Model

As the leader in the game, microgrid should achieve the optimal scheduling strategy
of microgrid operation as a whole [20,21], set the price of electricity sales within 24 h
in combination with the load change given by the user, realize the highest income, and
construct the optimal operation income scheduling model of components of microgrid as
a whole.

4.3.1. Objective Function

S is the minimum operating cost of the system in the game model, Ces, buy is the cost
of purchasing electricity from the superior power grid in the game model, Ceu, sell is the
electricity price income sold by microgrid to users, Cgs, buy is the cost of buying gas, CCO2, s
is that transaction cost of carbon in the game model, ees, buy is the unit price of selling
electricity for the distribution network, eeu, sell is the amount of electricity purchased for
the microgrid, Pes, buy is the electricity purchased by the user sold by the microgrid, Puser is
the amount of power after the user responds.

minS = min
T
∑

t=1

(
Ces, buy − Ceu, sell + Cgs, buy + CCO2, s

)
(42)

Ces, buy = ees, buyPes, buy (43)

Ceu, sell = eeu, sell Puser (44)

4.3.2. Constraints

Due to the introduction of the demand response mechanism, the upper and lower
limits of the microgrid’s power purchase from the distribution network and the upper and
lower limits of the microgrid’s selling price to users are increased, in which the power
balance is shown in Formula (47). Thermal power balance, natural gas power balance,
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and hydrogen power balance are shown in the Formulas (12)–(14). The operating models,
contribution models, and climbing models of thermoelectric units are as follows (17)–(20).
The two-stage operation model, the power model, and the climbing model of the electrical
rotation technology are as follows (21)–(26). The power boiler crew and the climbing
models are shown in the Formulas (27)–(29), respectively. Hydrogen fuel cell operation
models, contribution models, and climbing models are shown in the Formulas (30)–(32).

Pmin
es, buy ≤ Pes, buy ≤ Pmax

es, buy (45)

emin
eu, sell ≤ eeu, sell ≤ emax

eu, sell (46)

Pmin
es, buy and Pmax

es, buy are the upper and lower limits of the amount of electricity that the

microgrid purchases from the distribution network, emax
eu, sell and emin

eu, sell are the upper and
lower limits of electricity price sold by microgrid to users.

PWT(t) + PCHP(t) + PSB, dis(t) + Pe, buy(t) + PHFC, e = Puser(t) + PSB, chr(t) (47)

PWT(t) is output power for wind energy, PCHP(t) is output power for electric en-
ergy of cogeneration unit, PSB, dis(t) is discharge power for that electric storage device,
PHFC, e(t) is electricity production of hydrogen fuel cell, PSB, chr(t) is charging the power
storage equipment.

Due to the introduction of price-based demand response, the relevant constraints of
demand response should be increased. First, it is required that the total amount of load in
the whole dispatching period remains unchanged, as shown in Formulas (48) and (49). At
the same time, in order to achieve the ultimate goal of demand response, it is necessary to
control the load of each step in the scheduling between the upper and lower limits of the
load value before response, as shown in Formula (50).

∑T
t=1 ∆Puser, t = 0 (48)

∆Puser, t = P0
user, t − Puser, t (49){

Pmax
user,t ≤ P0,max

user,t
Pmin

user,t ≥ P0,min
user,t

(50)

∆Puser, t is the change in user electricity consumption before and after demand re-
sponse, P0

user, t is the electricity consumption of users before demand response, P0, max
user, t and

P0, min
user, t are the upper and lower limits of the demand response preload value, Pmax

user, t and
Pmin

user, t are the upper and lower limits of the demand response afterload value.

4.4. User Benefit Model

User benefit refers to the reasonable adjustment of required energy according to its
own demand for electricity and energy price in the process of demand response [22]. In
this paper, the user satisfaction model is introduced to constrain the load variation. While
considering the microgrid to guide users to adjust their own energy consumption period,
the satisfaction of power consumption mode and expenditure satisfaction are used as
constraints to participate in dispatching.

4.4.1. Objective Function

As a follower of the game, the user responds after the price signal is given by the
microgrid. Considering the user’s power consumption income and cost, the goal is to
maximize the user’s benefit, and the objective function is shown in Formula (51).

maxU = CUE − Ceu, sell (51)
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CUE = αlog(1 + Puser, t) (52)

U is that maximum benefit of user in the game model, CUE is the benefit of users, α is
energy preference coefficient for users.

4.4.2. Constraints

a. Satisfaction with electricity consumption mode

Before the introduction of electricity price demand response, users’ electricity con-
sumption periods were mainly selected according to their own preferences, and at this time,
users’ satisfaction with electricity consumption methods was the highest [23]. However,
after the introduction of electricity price demand response, the user changes his own elec-
tricity preference to reduce electricity expenditure by responding to the price signal given
by the microgrid. The mathematical model is shown in Formula (53) and the satisfaction
constraint is shown in Formula (54).

M = 1− ∑T
t=1|∆Puser,t |
∑T

t=1 P0
user,t

(53)

M ≥ Mmin (54)

Mmin is the lower limit of user’s satisfaction with electricity consumption.

b. Expenditure satisfaction

After the price-based demand response is implemented in the microgrid, users will
adjust according to the real-time electricity price to ensure that the electricity expenditure
will not have a great impact [24]. Therefore, expenditure satisfaction is usually used to
measure the change in user expenditure. The mathematical model is shown in Formula (55),
and the satisfaction constraint is shown in Formula (56).

N = 1 +
∑T

t=1(e0
eu,sell P

0
user,t−eeu,sell Puser,t)

eeu,sell Puser,t
(55)

N ≥ Nmin (56)

In the Formula, e0
eu, sell is the unit price of electricity sales for microgrid before demand

response, P0
user is power consumption of users before demand response. Nmin is the lower

limit of user spend satisfaction.

4.5. Establishment and Proof of Microgrid-Client Stackelberg Game

As shown in Figure 2, the microgrid and the user constitute a dynamic non-cooperative
game, and the game relationship constitutes a Stackelberg game Formula as shown in
Formula (57).

G = {(MGO ∪USER); ΦMGO; ΨUSER; SMGO; UUSER} (57)

Formula (52) contains three elements of the game: participants, strategy sets, and utility.

1. Game participants: participants in the game of microgrid and users as the main slave,
expressed in the form of set as follows (MGO ∪USER).

2. Strategy set: The microgrid is the leader in the Stackelberg game and the optimization
strategy is Formulated first, and the electricity price strategy proposed by the micro-
grid to the user is represented by the set ΦMGO. The set of load adjustment strategies
made by the user is represented by set ΨUSER.

3. Utility: The cost set of the microgrid is represented by set SMGO, and the benefit set of
users is represented by UUSER. the cost collection of microgrid.
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When the follower in the game responds to the leader’s strategy, and the leader
accepts the response, it shows that the upper and lower game as a whole has reached the
equilibrium condition [24]. That is, when the user responds to the electricity price strategy
proposed by the microgrid according to the optimized operation scheme, and the microgrid
accepts the response strategy, the microgrid-user reaches the equilibrium condition. Make
Φ∗MGO a vector set representing all optimal strategies of a microgrid, and Ψ∗USER a vector set
representing all the response strategies of the client. To reach the Stackelberg equilibrium
condition, Formula (58) must be satisfied.

SMGO
(
Φ∗MGO, Ψ∗USER

)
≥ SMGS

(
Φx, Φ∗n−x, Ψ∗USER

)
UUSER

(
Φ∗MGO, Ψ∗USER

)
≥ UUSER

(
Φ∗MGO, Ψy, Ψ∗n−y

)
∀Φx ∈ ΦMGO
∀Ψy ∈ ΨUSER

(58)

Φx is the optimal operation scheme of the microgrid, Ψy is the optimal response scheme
of the user terminal, Φ∗n−x is yeah, except Φx other strategies than, Ψ∗n−y yeah, and except
Ψy other strategies outside.

In the equilibrium state of Stackelberg game, neither party can obtain greater benefits
by unilaterally proposing new strategies, and it is necessary to verify the existence and
uniqueness of the equilibrium solution before solving it. The theorems for verifying the
existence of the equilibrium solution are as follows:

1. The decision schemes of leaders and followers are all non-empty bounded convex sets;
2. After the top leaders make decisions, the followers have corresponding unique solutions;
3. After the lower followers respond, the leader has a unique solution.
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Compared with the above definitions, the existence and uniqueness of Stackelberg
equilibrium solution of microgrid-user Stackelberg game model established in this chapter
are proved:

1. As shown in Formulas (46) and (50), the policy set ΦMGO and ΨUSER are non-null
bounded convex set;

2. As shown in Formulas (52)–(54), each term in SMGO is a linear or constant function
with respect to Pes, buy or Puser, then SMGO is a concave function with respect to Pes, buy
and Puser.

3. As shown in Formulas (51) and (52), UUSER is a continuous function with respect to
Pes, buy and Puser.

5. The Solution Method of Game Model Based on Multi-Population
Genetic Algorithm

The previous chapter analyzed the energy flow relationship between devices in the
microgrid and the optimization functions of various game entities, and established a
Stackelberg game model for the microgrid user. As the function to be solved is a large-scale
linear programming problem, compared to other algorithms, using multiple population
genetic algorithms can effectively reduce the complexity of the solution and improve the
efficiency of the solution.

Genetic Algorithm (GA) is an adaptive global optimization probability search algo-
rithm proposed by Professor Holland in the United States in 1975 that simulates the genetic
evolution of biological organisms in nature. Organisms evolve through heredity, variation,
and natural selection, and genetic algorithms are inspired by Darwin’s theory of natural se-
lection. The solution of the example corresponds to the chromosomes in the genetic process,
and the set of all chromosomes is a population, and the individuals are eliminated between
the populations according to the principle of “natural selection, survival of the fittest”,
and the selection between individuals in the corresponding population is in programming.
Starting from the initialization of the population, the interval judgment of the fitness func-
tion is carried out for each generation of the population, and according to the designed
fitness ratio, the appropriate strategy is selected to select the excellent individuals of the
current population, and the selected excellent individuals are crossed and mutated to form
a new population. Analogous to the evolution process of species, generation-by-generation,
continuously enhancing the fitness of the population until the optimal solution is output
after the desired conditions are completed. Since the genetic algorithm does not rely on
gradient calculation, it has strong robustness and global optimization ability [24,25].

Multi-population genetic algorithm divides a single population into multi-threaded
populations and adds immigration operators. In the evolution process of different popula-
tions, the migration operator introduces the optimal individuals to other populations every
certain number of iterations, which realizes the information exchange between different
populations and the balance of global and local search performance. Secondly, the elite
population is established, and each generation of evolution selects the best individuals of
other populations to join the elite population and save them through artificial selection
operators, and no genetic operation is carried out to ensure that the best individuals are
not destroyed, so all the optimal solutions produced by each evolution can be completely
preserved [26–29]. The simplified process of improvement is shown in Figure 3.

The solution process for the whole game system is as follows:

(1) Initializing the operation parameters of the microgrid and the load data of the user
terminal, and sending the electricity price strategy drawn up by the microgrid to the
lower layer;

(2) Converting the maximum energy consumption benefit of the user terminal into a
negative cost, feeding back according to the pricing signal of the microgrid, and
feeding back the load signal to the upper-level dispatching;

(3) The microgrid solves the objective function through the feedback signal;
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(4) Judging whether the game equilibrium solution is reached, and if so, outputting the
result; otherwise, return to (2) to continue scheduling.
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6. Example Analysis
6.1. Basic Data

The reaction parameters of each equipment are shown in Table 1. The electricity price
and natural gas price are shown in Figure 3, but considering the price-based user demand
response, the initial tiered price is adopted as shown in Figure 4, and the new demand
response parameter data are shown in Table 2 [30]. The typical electricity load, heat load,
and gas load curves of the multi energy microgrid, as well as the predicted output power
of wind power generation, are shown in Figure 5. Peak and valley time of use electricity
prices are used for billing, with low peak periods ranging from 23.00 to 7.00, flat peak
periods ranging from 8.00 to 11.00 and 15.00 to 18.00. Daytime peak periods are reached
from 12.00 to 14.00, and nighttime peak periods are reached from 19.00 to 22.00.

Table 1. Operating parameters of each device.

Equipment Value Efficiency/Carbon Emissions Quota Value

Carbon capture power plant contribution range/kw·h [0, 200] ηCHP 0.92
The range of thermal power union crew/kw·h [0, 300] ηEL 0.88

Thermoelectrician Unit is a thermal power ratio 1.8 ηMR 0.6
The range of electrolytic tank equipment/kw·h [0, 500] ηHFC 0.85

Methane reaction force range/kw·h [0, 250] εe 0.798
Hydrogen fuel cell contribution range/kw·h [0, 250] εh 0.985

Table 2. Demand Response Related Parameters.

Parameter Name Value Parameter Name Value

Mmin 0.9 εii −0.2
Nmin 0.9 εij 0.033



Processes 2023, 11, 2820 17 of 26

Processes 2023, 11, x FOR PEER REVIEW  17 of 27 
 

 

heat  load, and gas  load curves of  the multi energy microgrid, as well as  the predicted 

output power of wind power generation, are shown in Figure 5. Peak and valley time of 

use electricity prices are used  for billing, with  low peak periods ranging  from 23.00  to 

7.00, flat peak periods ranging from 8.00 to 11.00 and 15.00 to 18.00. Daytime peak peri‐

ods are reached from 12.00 to 14.00, and nighttime peak periods are reached from 19.00 

to 22.00. 

Table 1. Operating parameters of each device. 

Equipment  Value 
Efficiency/Carbon Emis‐

sions Quota 
Value 

Carbon capture power plant 

contribution range/kw∙h 
[0, 200]  𝜂   0.92 

The range of thermal power 

union crew/kw∙h 
[0, 300]  𝜂   0.88 

Thermoelectrician Unit is a 

thermal power ratio 
1.8  𝜂   0.6 

The range of electrolytic tank 

equipment/kw∙h 
[0, 500]  𝜂   0.85 

Methane reaction force 

range/kw∙h 
[0, 250]  𝜀   0.798 

Hydrogen fuel cell contribution 

range/kw∙h 
[0, 250]  𝜀ℎ  0.985 

 

Figure 4. Initial electricity price. 
Figure 4. Initial electricity price.

Processes 2023, 11, x FOR PEER REVIEW  18 of 27 
 

 

 

Figure 5. Typical daily electricity, heat, gas load forecasting, and wind power output forecasting. 

Table 2. Demand Response Related Parameters. 

Parameter Name  Value  Parameter Name  Value 

𝑀   0.9  𝜀   − 0.2 
𝑁   0.9  𝜀   0.033 

6.2. Game Equilibrium Results 

The lowest comprehensive cost of the microgrid is 11,667.044709 yuan, which takes 

692.513986  s. Comparing Figure 6a with Figure 6b,  the game process between  the mi‐

crogrid  and  the user  terminal  can be  analyzed. When  the number of  iterations  is  1–8 

times, the results of  the game between microgrid and user do not change, and  the mi‐

crogrid has  the  lowest  return and  the highest user benefit. When  the number of  itera‐

tions is between 8 and 14, the revenue of microgrid gradually  increases, and the corre‐

sponding user income gradually decreases. At a time of 15–20 iterations, both microgrid 

and user benefits remain the same. When the number of iterations is between 21 and 24, 

the  revenue  of microgrid  increases  significantly,  and  the  corresponding  user  revenue 

decreases sharply. When  the number of  iterations  is between 25 and 30,  the microgrid 

revenue and user revenue once again enter a stable state. 

 

Figure 6. Game equilibrium comparison. (a) Microgrid revenue iteration. (b) User revenue itera‐

tion. 

Figure 5. Typical daily electricity, heat, gas load forecasting, and wind power output forecasting.

6.2. Game Equilibrium Results

The lowest comprehensive cost of the microgrid is 11,667.044709 yuan, which takes
692.513986 s. Comparing Figure 6a with Figure 6b, the game process between the microgrid
and the user terminal can be analyzed. When the number of iterations is 1–8 times, the
results of the game between microgrid and user do not change, and the microgrid has the
lowest return and the highest user benefit. When the number of iterations is between 8
and 14, the revenue of microgrid gradually increases, and the corresponding user income
gradually decreases. At a time of 15–20 iterations, both microgrid and user benefits remain
the same. When the number of iterations is between 21 and 24, the revenue of microgrid
increases significantly, and the corresponding user revenue decreases sharply. When the
number of iterations is between 25 and 30, the microgrid revenue and user revenue once
again enter a stable state.



Processes 2023, 11, 2820 18 of 26

Processes 2023, 11, x FOR PEER REVIEW  18 of 27 
 

 

 

Figure 5. Typical daily electricity, heat, gas load forecasting, and wind power output forecasting. 

Table 2. Demand Response Related Parameters. 

Parameter Name  Value  Parameter Name  Value 

𝑀   0.9  𝜀   − 0.2 
𝑁   0.9  𝜀   0.033 

6.2. Game Equilibrium Results 

The lowest comprehensive cost of the microgrid is 11,667.044709 yuan, which takes 

692.513986  s. Comparing Figure 6a with Figure 6b,  the game process between  the mi‐

crogrid  and  the user  terminal  can be  analyzed. When  the number of  iterations  is  1–8 

times, the results of  the game between microgrid and user do not change, and  the mi‐

crogrid has  the  lowest  return and  the highest user benefit. When  the number of  itera‐

tions is between 8 and 14, the revenue of microgrid gradually  increases, and the corre‐

sponding user income gradually decreases. At a time of 15–20 iterations, both microgrid 

and user benefits remain the same. When the number of iterations is between 21 and 24, 

the  revenue  of microgrid  increases  significantly,  and  the  corresponding  user  revenue 

decreases sharply. When  the number of  iterations  is between 25 and 30,  the microgrid 

revenue and user revenue once again enter a stable state. 

 

Figure 6. Game equilibrium comparison. (a) Microgrid revenue iteration. (b) User revenue itera‐

tion. 

Figure 6. Game equilibrium comparison. (a) Microgrid revenue iteration. (b) User revenue iteration.

The electricity sales plan of microgrid to users obtained by game solution is shown
in Figure 7, and the load after the price-based demand response of the user is shown
in Figure 8. According to Figure 7, it can be seen that the purchase price of microgrid
is lower than the transaction price between microgrid and users at any time, which is
the result of microgrid’s game in order to encourage users to respond and achieve the
optimal overall economic dispatching level. The price signal sent by the microgrid between
12:30–18:00 and 0:00–1:00 and 2:00–5:00 at the peak time of electricity prices continues to
be low, encouraging users to adjust the load during this period. According to Figure 8, it
can be seen that after the introduction of price-based demand response, the user’s load
curve has changed greatly, and the load has been transferred according to the real-time
price adjustment given by the microgrid.

In order to verify the optimization effect of the proposed multi-group optimization
method on the model, the multi-group optimization algorithm (MPGA) is compared with
particle swarm optimization (PSO) and standard genetic algorithm (GA), and the results
are shown in Figure 9.
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As shown in Table 3, the total cost of microgrid obtained by MPGA algorithm is 11,
667.04 yuan, which reaches convergence in 31 times. The total cost of PSO algorithm is 12,
306.7 yuan, which reaches convergence in 74 times. The total cost of GA algorithm is 13,
368.8 yuan, which reaches convergence in 87 times. It is proved that the convergence speed
and one-day expenditure cost of MPGA algorithm are the best, and the optimal solution is
due to other algorithms.

Table 3. Comparison of optimization results of different algorithms.

Algorithm Micro-Net Total
Cost/RMB

Number of
Iterations

MPGA 11,667.04 31
PSO 12,306.73 74
GA 13,368.85 87
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6.3. Optimization of Operation Results

In order to further analyze the impact of price-based demand response on the system,
two comparison scenarios are set up. The carbon transaction cost, carbon emission, electric-
ity purchase cost, gas purchase cost, and total cost of microgrid in different scenarios are
shown in Table 4.

Table 4. Optimization results for different scenarios.

Parameter Consider Demand Response Ignore Demand Response

Carbon emission/kg 4857.90 4733.93
Carbon trading cost/RMB 2303.95 2261.96
Power purchase cost/RMB 3268.39 4046.99

Gas purchase cost/RMB 6094.70 6027.04
Total cost/RMB 11,667.04 12,335.99

As shown in Table 3, compared with not considering demand response, in the scenario
of considering demand response, the gas purchase cost has slightly increased, while the
initial carbon emissions of natural gas related equipment are low, so the carbon emissions
and carbon transaction costs have increased. However, based on a low-carbon model
with a tiered carbon trading mechanism, the cost of electricity and total costs significantly
decrease, but the increase in environmental costs is relatively small and within a reasonable
range. Moreover, considering demand response can enable users to participate in the
response, which is conducive to the consumption of renewable energy. The price is based
on demand response and leads the user to transfer the load, so the power purchase cost
is reduced. Through comprehensive calculation, the total cost of the scenario considering
demand response is reduced, and the goal of economic optimal scheduling of the microgrid
system is achieved.

The equipment scheduling level of the microgrid after considering the demand re-
sponse is shown in Figures 10 and 11, and the equipment scheduling level of the microgrid
without considering the demand response is shown in Figures 12 and 13.
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By comparing Figures 10a and 11a, it can be seen that the energy purchase period,
without considering demand response, is mainly in the peak time of energy consumption,
and the power purchase period in the micro grid scenario after considering demand
response is mainly distributed in the peak and valley time of electricity price. By comparing
the gas consumption of methanation reactions in Figures 10b, 11, 12b, and 13, it can be seen
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that, considering demand response scenarios, it is 26.4% and 16.7% of the gas consumption
without considering demand response scenarios, respectively. Without considering demand
response, methanation reactions account for a larger proportion of the gas consumption.
This is because in this scenario, the microgrid does not consider user load transfer, and
purchases during the low electricity price period for the first step of hydrogen production
from electricity to gas. Therefore, the hydrogen production is more than considering
demand response scenarios, and as a raw material for methanation reactions and hydrogen
fuel cells, it relatively reduces the purchase of natural gas during this scheduling period.

7. Conclusions

This article further rationalizes the configuration of microgrids and analyzes the
respective needs of the two stakeholders, microgrids, and users. Therefore, a low-carbon
economic optimization model for microgrids with a tiered carbon trading mechanism is
constructed to ensure system economy while reducing carbon emissions. In addition, on
this basis, a Stackelberg game model with price-based demand response, led by microgrids
and followed by users, was introduced. The microgrid benefits are determined as the
optimal scheduling of device operation, while the user side benefits are determined as
having the highest energy efficiency, with the lowest cost. Firstly, the three elements and
types of game are proposed, and the applicable game type in this chapter is Stackelberg
game. Secondly, a microgrid user Stackelberg game structure was established, and the goal
of the micro grid game was to achieve optimal operational economy, as well as constraints
due to the consideration of increased demand response. The game goal of the user end
was proposed to maximize revenue, and a satisfaction model including user electricity
consumption and electricity expenditure was analyzed as a constraint to participate in the
game. Once again, a Stackelberg game model was established between the microgrid and
users, and it was proven that there exists an equilibrium solution to the game. Finally,
an example analysis was conducted to verify the feasibility of the model. The specific
conclusions are as follows:

(1) Comparative analysis without considering demand response scenarios shows that the
optimization cost of microgrid operation considering price-based demand response
scenarios has decreased by 5%, which is 668.95 yuan. Among them, the power
purchase cost has decreased by 23.8%, which is 778.6 yuan, the carbon emissions have
increased by 17%, which is 83.96 kg, and the carbon trading cost has increased by
1.8%, which is 41.98 yuan. This proves that the introduction of demand response
can improve the overall economic benefits of microgrids while slightly increasing
environmental costs.

(2) After considering demand response, the selling price of microgrids is always lower
than the purchase price from the distribution network, and the price reduction rate is
relatively high during the initial load valley, encouraging users to adjust their load
during the time period. After the demand response, the user’s load curve underwent
significant adjustments and transformations, and the corresponding load transfer
was carried out according to the price signal of the microgrid, achieving the expected
“peak shaving and valley filling” effect of microgrid scheduling.

(3) In the microgrid scheduling scenario considering price-based demand response, the
electricity purchase period is mainly distributed during the low and flat peak periods
of tiered electricity prices. Due to the transfer of user load, the energy pressure caused
by user load is reduced.
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Glossary

Symbol Meaning
Pg,buy Gas purchases
Pe,.buy Purchase electricity
λe Power-hungry devices
λg Air consumption equipment
QPGU

CO2
The amount of CO2 emitted by coal-fired power plants

QCCS
CO2

The amount of CO2 captured by the carbon capture equipment
εe Unit electrical power
εx Carbon allowances per unit of power consumed by different devices
CCO2 Carbon trading costs
E Net carbon emissions of the system
i Equipment options, including cogeneration units, gas-fired boilers, and coal-fired

power plants
N Total number of devices
λ Price growth rate
l The length of the interval
c Carbon trading base price
F Minimum operating costs of the system
CPGU Fuel costs
Ce, buy Electricity purchase costs
Cg, buy The cost of purchasing gas
Pg, buy Overall system air consumption
ce Real-time electricity prices
cg Real-time gas prices
T Take 24 h
PWT(t) Wind energy output power
PCHP(t) The power output of the cogeneration unit
PSB, dis(t) Discharge power of power storage equipment
PHFC, e(t) Hydrogen fuel cells produce electricity
Pload(t) Electrical load
PSB, chr(t) The amount of charge of the storage device
HCHP(t) Combined heat and power unit thermal energy output power
HGB(t) Gas boiler heat generation
HTS, dis(t) Heat release from heat storage equipment
HTS, chr(t) Heat storage equipment stores heat
HLoad(t) Heat load
Gbuy(t) Gas purchases
GES, dis(t) Air receiver outgassing
GMR(t) The amount of CH4 produced by methanation in power-to-gas technology
Gload Gas load
GES, chr(t) Gas storage capacity for gas storage equipment
GCHP(t) Air consumption of a cogeneration unit
GGB(t) Gas boiler units consume natural gas

PEL, H2 (t)
The amount of hydrogen produced by the electrolyzer in the first step of
electro-to-gas
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PHS, dis(t) Hydrogen storage equipment storage capacity
PH2, MR Hydrogen consumption in methanation reactions
PH2, HFC Hydrogen fuel cell hydrogen consumption
PHS, chr(t) The amount of hydrogen released by hydrogen storage equipment
Pmax

PGU Upper limit of coal-fired unit output
Pmin

PGU Lower limit of coal-fired unit output
∆Pmax

PGU The maximum uphill climbing power of coal-fired units
∆Pmin

PGU Maximum downhill climb power of coal-fired units
∆PPGU The amount of power change
PPGU(t) t time coal-fired unit power
PPGU(t− 1) t− 1 time coal-fired unit power
Pmax

CHP, e Upper limit of electrical output of cogeneration units
Pmin

CHP, e Lower limit of electrical output of cogeneration units
Hmin

CHP, h Lower limit of thermal output of cogeneration units
Hmax

CHP, h Upper limit of thermal output of cogeneration units
∆Pmax

convert, e The maximum upward climb power of the cogeneration unit
∆Pmin

convert, e Maximum downhill climb power of cogeneration units
∆Pconvert, e Maximum downhill climb power of cogeneration units
Pconvert, e(t) The electrical power of the cogeneration unit after conversion at time t
Pconvert, e(t− 1) The electrical power of the cogeneration unit after conversion at time t− 1
Pmax

EL, H2
The upper limit of hydrogen production capacity of the electrolyzer

Pmin
EL, H2

The lower limit of hydrogen production by the electrolyzer
Gmax

MR The upper limit of the amount of CH4 resulting from the reaction
Gmin

MR Lower limit of the amount of CH4 resulting from the reaction
∆Pmax

EL, H2
The maximum uphill climb power of the electrolyzer

∆Gmax
MR The maximum uphill climb power of the methanation reaction

∆Pmin
EL, H2

Maximum downhill climb power of the electrolyzer
∆Gmin

MR Methanation reaction maximum downhill climb power
PEL, H2 (t) The amount of power change in the electrolyzer
GMR(t) The amount of change in methanation reaction power
PEL, H2 (t− 1) Electrolyzer power at t− 1 time
GMR(t− 1) Methanation reaction power at time t− 1
Hmax

GB Upper limit of gas boiler output
Hmin

GB Lower limit of gas boiler output
∆Hmax

GB The maximum upward climbing power of the gas boiler
∆Hmin

GB Maximum downhill climb power of gas boilers
∆HGB The amount of change in power
HGB(t) Gas boiler power at time t
HGB(t− 1) t− 1 time gas boiler power
Pmax

HFC, e Upper limit of hydrogen fuel cell output
∆Pmin

HFC, e Hydrogen fuel cell minimum uphill climb power
∆PHFC, e The amount of change in power
PHFC, e(t) The power of the gas boiler at the time t
PHFC, e(t− 1) The power of the gas boiler at the time t− 1
Ces, buy The cost of purchasing electricity to the upper grid in the game model
Ceu, sell The electricity price revenue sold by the microgrid to the user
Cgs, buy The cost of purchasing gas
CCO2, s Carbon trading costs in game models
ees, buy The unit price of electricity sold in the distribution network
eeu, sell Electricity purchased by the microgrid
Pes, buy The electricity purchased by the user is sold by the microgrid
Puser The amount of power after the user responds

Pmin
es, buy

The lower limit of the amount of electricity that the microgrid purchases from the
distribution grid

Pmax
es, buy

The upper limit of the amount of electricity that microgrids can purchase from the
distribution grid
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emax
eu, sell The upper limit of the electricity price that microgrid can sell to users

emin
eu, sell The lower limit of the electricity price sold by the microgrid to the user

PCHP(t) The output power of the electrical energy of the cogeneration unit
PSB, dis(t) The discharge power of the power storage device
PHFC, e(t) The power generation of hydrogen fuel cells
PSB, chr(t) The power to charge the storage device
∆Puser, t Changes in user electricity consumption before and after demand response
P0

user, t The user’s electricity consumption before the demand responds
P0, max

user, t The upper limit of the demand response preload value
P0, min

user, t The lower bound of the demand response preload value
Pmax

user, t The upper limit of the demand response afterload value
Pmin

user, t The lower bound of the demand response afterload value
CUE User’s interests
α User energy preference coefficient
Mmin The lower limit of user satisfaction with electricity consumption
P0

user Electricity consumption by users before demand response
Nmin Minimum consumer spend satisfaction
Φx Optimal operation scheme of microgrid
Ψy Optimal response on the user side
Φ∗n−x Other strategies except Φx
Ψ∗n−y Other strategies except Ψy
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