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Abstract: The smart chemical laboratory has recently emerged as a promising trend for future
chemical research, where experiment optimization is of vital importance. The traditional Bayesian
optimization (BO) algorithm focuses on exploring the dependent variable space while overlooking
the independent variable space. Consequently, the BO algorithm suffers from becoming stuck at local
optima, which severely deteriorates the optimization performance, especially with bad-quality initial
points. Herein, we propose a novel stochastic framework of Bayesian optimization with D-optimal
design (BODO) by integrating BO with D-optimal design. BODO can balance the exploitation in the
dependent variable space and the exploration in the independent variable space. We highlight the
excellent performance of BODO even with poor initial points on the benchmark alpine2 function.
Meanwhile, BODO demonstrates a better average objective function value than BO on the benchmark
Summit SnAr chemical process, showing its advantage in chemical experiment optimization and
potential application in future chemical experiments.

Keywords: chemical experiment optimization; Bayesian optimization; D-optimal design; experiment
space exploration

1. Introduction

The application of advanced machines and technologies is significantly driving chemi-
cal research evolving toward digitalization and automation, along with huge convenience
and high efficiency in the favor of chemists and chemical engineers [1]. With the foundation
of automation technology, the smart chemical laboratory is devoted to freeing researchers
from tedious and repetitive experiments, as well as greatly improving scientific research
efficiency, through a rational experiment optimization process [2,3]. Traditional experiment
design heavily relies on the researcher’s knowledge or experience to optimize the experi-
ment output. On the contrary, a smart laboratory is supposed to leverage the optimization
algorithm for efficient experiment space exploration [4]. Optimization algorithm-based
iterative experimentation has undoubtedly become a prevailing trend for the future labo-
ratory, and many laboratories have joined this trend to reform their experiments toward
high-performance material synthesis [5], optimal procedure design [6], process parameter
optimization [7], and so on [8,9]. For most chemical experiments to be researched, on one
hand, a first-principle model is usually lacked as a rigorous description of the chemical
process [10–12]; on the other hand, it is often the case that experiment data is insufficient
to establish a solid data-driven model, especially for those experiments that are time- or
resource-consuming (or both) [13]. Therefore, it is important to develop an efficient opti-
mization algorithm that iteratively recommends experiment points to search for optimal
experiment conditions. In this sense, the experiment optimization algorithm plays a central
role in experiment space exploration and drives scientific research in the future smart
chemical laboratory [14].
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In recent years, increasing research fields have started to focus on the use of experi-
ment algorithms to assist scientific research [15,16]. Some scholars attempted to describe
the whole experiment space with machine learning methods and then search for optimal
solutions using as-established models [17,18]. Zhou et al. proposed a machine learning
framework named MiYa to optimize heterologous metabolic pathways in saccharomyces
cerevisiae, using the voting results of computational recommendations of multiple neu-
ral network models [19]. Using artificial neural networks, Burre et al. approximated
thermodynamic models for reductive dimethoxymethane synthesis and achieved a high
energy efficiency of 91.9%, with their developed deterministic global optimization solver
MAiNGO [20]. Machine learning delivers a relatively higher fitting accuracy when com-
pared to traditional regression models [21], such as vanilla polynomial regression [22],
ridge regression [23], and partial least squares regression [24]. However, due to the data
amount requirement of machine learning, collected data samples are generally not enough
to describe the overall experiment space for emerging chemical processes, resulting in
overfitting, poor generalization, and unreliable prediction, which significantly hinders the
application of machine learning models [25,26].

In the scenario of data scarcity, the experiment optimization algorithm can be resorted
to as an alternative solution to optimize the experiment conditions, and has received a lot
of attention in recent years [27]. Lapkin’s group applied experiment optimization algo-
rithms to green chemical processes, and these algorithms showed a significant potential in
promoting the sustainability of versatile chemical products in their entire life cycles [28,29].
In addition, they developed open-source benchmark processes and fundamental optimiza-
tion strategies as a set of tools toward chemical process optimization, which is available at
https://github.com/sustainable-processes/summit (accessed on 20 August 2019) [30]. Among
various optimization algorithms, Bayesian optimization (BO) is one of the most-used algo-
rithms, which operates in the dependent variable space and exhibits two major advantages:
one is that BO employs the GP regression as its inner surrogate model, of which the results
depict not only the prediction value but also the confidence degree over the experiment
space; the other one is that BO is well fitted with the iterative experiment process, during
which the surrogate model can evolve to be more and more reliable with new experimental
data gradually added into the dataset [31]. BO has been used in many chemical experi-
ments with high experiment costs. Sun et al. combined BO with a first-principle model to
conveniently identify the most stable alloyed organic–inorganic perovskites [32]. Xue et al.
utilized BO to accelerate the search of BaTiO3-based piezoelectric materials with vertical
morphological phase boundaries [33]. Apart from single-task optimization, BO is also
helpful for chemical process with multiple targets, which usually include space–time yield,
by-product formation, and product selectivity. For example, Jorayev et al. simultaneously
optimized yield and conversion of the chemical route from a mixture of waste terpenes to
p-cymene using multi-objective BO [34]. Despite the fact that BO performs excellently in
experiment optimization with small datasets, BO is defined to search in the dependent vari-
able space using surrogate model prediction and overlooks searching in the independent
variable space from the perspective of experiment design [35]. Moreover, BO is strongly
dependent on the initial data points and tends to fall into local optima when starts with
points of bad quality [36].

To address this problem, we introduce the design of experiments (DoE) into BO to
complement its weakness in terms of initial point reliance and rational iterative experiment
recommendation [37]. DoE aims to select the most informative point locations in the
experiment space to facilitate mathematical statistics and analysis after experiments [38].
Optimal design is a typical class of DoE utilized, usually as an initial point selection aid,
to accommodate multiple types of factors in the independent variable space with respect
to a specific statistical criterion [39]. Herein, we propose Bayesian optimization with D-
optimal design (BODO) as an integrated stochastic optimization framework to improve
the optimization efficiency of chemical experiments. The D-optimal design criterion is a
representative DoE criterion that aims at maximizing the differential Shannon information

https://github.com/sustainable-processes/summit
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of recommended points in the experiment space [40,41]. In each experimental iteration
of BODO, the recommendation point is stochastically derived from the BO branch or the
D-optimal design branch. In the D-optimal design branch, candidate recommendation
points can be given by batch Bayesian optimization with local penalization (BBOLP) [42]
or random selection. The final recommendation is the candidate point with the maximal
D-optimal design criterion value. The BO branch is an exploitation process based on the
surrogate model prediction in the dependent variable space; The D-optimal design branch is
an exploration in the independent variable space for the most informative experiment point.
With this stochastic two-branch design, BODO achieves a tradeoff between exploitation
and exploration, and thus is expected to relieve the dependency on initial point selection
and contribute to optimal experiment condition search.

2. Preliminaries
2.1. Bayesian Optimization

Problem definition: Assume that f is a black-box function, of which the mathematical
form is unknown and it is time-consuming to generate evaluations for this function. Let
f : X → R be a function defined on a subset X ⊆ RD. Here D indicates the dimension of

the subsetRD. The goal is to solve the optimization problem expressed as Equation (1):

x∗ = argmax
x∈X

f (x) (1)

BO is a sequential design optimization algorithm for the black-box function that does
not assume any functional form. There are two main components in the BO framework: the
surrogate model and the acquisition function [43]. In each iteration, a surrogate model (e.g.,
Gaussian process regression) is established with experiment data already obtained, and
this surrogate model is capable of giving out both the prediction value and the standard
deviation of the dependent variable. Then, a predefined acquisition function measures the
extent to which each point is worth a practical experiment through concurrent consideration
of maximizing the prediction value and the uncertainty. Finally, the experiment point with
the maximal value of the acquisition function is solved as the next experiment point. The
pseudocode of BO is presented in Algorithm 1.

Algorithm 1. The pseudocode of BO.

Input: Dataset D0 = {(xi, yi)}n
i=1

for t = 1 to T do
Fit Gaussian process model and acquisition function αt(x) on Dt−1
Solve xt ← argmax

x∈X
αt(x)

Evaluate yt ← f (xt)
Take Dt = Dt−1 ∪ {(xt, yt)}
end for

Output:DT

Gaussian process: GP is the most common surrogate model used in BO [44]. GP
associates a normally distributed random variable at each point of the input dataset. In
this work, GP is given as GP(µ(x), k(x, x′)), where µ(x) is the mean function (Equation (2))
and k(x, x′) is the kernel function representing the covariance of any two observations. The
variance σ2(x) is given as Equation (3). Ki,j indicates the value at row i and column j of
K, which equals k

(
xi, xj

)
(Equation (4)). k∗ is defined as the variance between a candidate

data point (x) and all current observations ({xi}n
i=1) (Equation (5)).

µ(x) = k∗K−1y (2)

σ2(x) = k(x, x)− k∗K−1kT
∗ (3)
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Ki,j = k
(

xi, xj
)

(4)

k∗ = (k(x, x1), . . . , k(x, xn)) (5)

Acquisition function: The acquisition function α(x) is used to map the estimated
mean and standard deviation at a candidate point to its value for a practical experiment.
Routinely, the upper confidence bound (UCB) is used as the acquisition function, which is
calculated using Equation (6). κ is a parameter to balance the weights between the predicted
mean value and standard deviation of the GP model.

α(x) = µ(x) + κσ(x) (6)

2.2. Local Penalization

BBOLP is a variant of BO, which recommends a batch of points in each iteration and of
which the acquisition function is modified with local penalization (LP). BBOLP is a heuristic
approach by iteratively penalizing the acquisition function value of the recommended point
to find the next experiment point [42]. The BBOLP algorithm is given in Algorithm 2.

Algorithm 2. The pseudocode of BBOLP.

Input: Dataset D0 = {(xi, yi)}n
i=1, Batch size nb

for t = 1 to T do
Fit Gaussian process model and acquisition function αt(x) on Dt−1
Take α̃t,0 ← g(αt(x)) and L̂← max

x∈X
‖µ∇(x)‖

for j = 1 to nb do
Maximization step: xt,j ← argmax

x∈X
α̃t,j−1(x)

Penalization step: α̃t,j(x)← α̃t,0(x)
k

∏
j=1

ϕ
(

x; xt,j, L̂
)

end for
Take Bt ← {xt,1, . . . , xt,nb}
Parallel evaluate yt,1, . . . , yt,nb in Bt

Take Dt = Dt−1 ∪
{
(xt,j, yt,j)

}nb

j=1
end for

Output:DT

The acquisition function with LP is composed of two steps: the maximization step is
to find out the point that achieves the maximum value of the current acquisition function;
once the maximization step is completed, the penalization step multiplies the acquisition
function with an LP operator ϕ

(
x; xj, L̂

)
to avoid the next sampling point being too close

to the current one. ϕ
(
x; xj, L̂

)
measures the distance between the current point with any

other sampled point in the search space, and output with a value between 0 and 1 as the
penalization factor. ϕ

(
x; xj, L̂

)
can be written as:

ϕ
(
x; xj, L̂

)
=

1
2

er f c(−z) =
2√
π

∫ ∞

−z
e−η2

dη (7)

z =
1√

2σ2
n
(
xj
)(L̂‖xj − x‖ −max

x∈X
f (x) + µn

(
xj
))

(8)

where er f c is a complementary error function that outputs a value ranging from 0 to 2 and
L̂ represents the Lipschitz constant. Since the penalty is applied to the acquisition function
by multiplying, when the value of the acquisition function is negative, it would mistakenly
act as positive feedback which increases the value of the acquisition function in this region.
Therefore, a regularization function is utilized to adjust the acquisition function output and
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ensure that any output value of the acquisition function is positive. The used regularization
function can be written as Equation (10).

g(z) =

{
z, z ≥ 0
ln(ez + 1), z < 0

(9)

2.3. D-Optimal Design

Optimal design is a class of DoE methods that are optimal with respect to some well-
defined statistical criterion. In the DoE for estimating statistical models, the optimal design
allows parameters to be estimated with minimum variance and without bias. The core idea
of the optimal design criterion is to make the sampled points in the independent variable
space as dispersed as possible. A non-optimal design requires more experimental runs to
estimate the parameters with the same precision as an optimal design.

The D-optimal design criterion is an optimal design criterion devoted to maximizing
the differential Shannon information content of parameter estimates. Assume the existing
dataset is {(xi, yi)}n

i=1 and the next point candidate set is
{

xj
}m

j=1. For each point in the
candidate set, the D-optimality is calculated as the determinant value of the information
matrix. The information matrix can be expressed as Dj = det(Aj AT

j ), where Aj considers

first-order and second-order terms, and is set as
[
1, x1, x2, . . . , xn, xj, x2

1, x2
2, . . . , x2

n, x2
j

]
. The

candidate point with the maximal D-optimality value is considered to be able to minimize
the prediction variance the most. Therefore, this point is selected for the next experiment
iteration according to this D-optimal design criterion.

3. Methodology

In this work, we propose BODO as a novel experiment optimization method by
integrating BO with D-optimal design in a stochastic framework. Although BO has already
demonstrated good performance in many chemical experiments with limited available
data, it only operates in the dependent variable space and focuses on fast optimization
at the expense of global search capability. This would lead to a tendency for BO to fall
into local optimum solutions in some complex systems, especially when applied with bad-
quality initial points. The main idea of our proposed BODO is to introduce a bypass branch
that operates in the independent variable space into BO. The introduced bypass branch is
based on the D-optimal design criterion to balance local and global search performance
in experiment iteration. The BODO framework for experiment optimization is displayed
in Figure 1.

In the BODO framework, ε1, ε2, and β are three hyperparameters that balance the
probabilities of all branches for experiment point recommendation. In each iteration, the
probability that the final recommended point is generated by the BO branch (red part in
Figure 1) is 1− ε1. The architecture of BO is the same as introduced in Section 2.1. The
surrogate model and the acquisition function are GP regression and UCB, respectively.
BODO is designed to search the independent variable space through the introduced D-
optimal design branch (green part in Figure 1) with a probability of ε1. In the D-optimal
design branch, a candidate point set can be created by either BBOLP or random selection.
Then, the points in the candidate set are evaluated by the D-optimal design criterion to
select the final recommended point for the next experiment. The probability distribution
between BBOLP and random selection is adjusted by the hyperparameter ε2. The BBOLP
candidate point set is proposed in the light of already observed points and the randomly
selected candidate point set can explore the experiment space to a greater extent. The
pseudocode for BODO is given in Algorithm 3. A hyperparameter β ∈ (0, 1) is further
introduced as a decline factor of ε1 to dynamically tune the probability of exploration
after each iteration. At the beginning stage, it is rational to assign BODO with a greater
probability of exploring the experiment space. As the iteration progresses, BODO should
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gradually be more inclined to exploitation than exploration. This is realized by multiplying
ε1 with the defined decline factor β after each iteration.
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Algorithm 3. The pseudocode of BODO.

Input: Dataset D0 = {(xi, yi)}n
i=1, ε1, ε2, β, Candidate point set size nc

for t = 1 to T do
Fit Gaussian process model and acquisition function αt(x) on Dt−1
Take m1, m2 = random(0, 1)
if m1 > ε1 then
Solve xt ← argmax

x∈X
αt(x)

else
if m2 > ε2 then
Xt ← random select nc samples from X
else
α̃t,0 ← g(αt(x))
L̂← max

x∈X
‖µ∇(x)‖

for j = 1 to nc do
Maximization step: xt,j ← argmax

x∈X
α̃t,j−1(x)

Penalization step: α̃t,j(x)← α̃t,0(x)
k

∏
j=1

ϕ
(

x; xt,j, L̂
)

end for
Xt ← {xt,1, . . . , xt,nc}
end if
for xt,i ∈ Xt do

At,i =
[
1, x1, x2, . . . , xn, xt,i, x2

1, x2
2, . . . , x2

n, x2
t,i

]
Dt,i = det

(
At,i AT

t,i

)
end for
xt ← argmax

xt,i∈Xt

Dt,i

end if
evaluate yt ← f (xt), ε1 ← βε1
Take Dt = Dt−1 ∪ {(xt, yt)}
end for

Output:DT
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4. Results and Discussion
4.1. Benchmark alpine2 Function

In this work, we use the benchmark alpine2 test functions with different dimensions
to test the performance of BODO and compare it with other approaches such as BO. The
alpine2 function can be expressed as Equation (10), of which the definition domain of any
xi is [0,10]. The alpine2 function contains multiple local minima in the domain range and is
thus suitable for the validation of the experiment optimization algorithm. The theoretical
minimal value for the alpine2 function is −2.18× 2.81n−1, where n is the input dimension
size. The minimization optimization problem can be transformed into a maximization one
by adding a minus sign.

falpine2(x) =
n

∏
i=1

√
xi sin(xi) (10)

For the test settings, the number of initial points n0 was set to 3× D. Matern52 was
used as the kernel of GP regression in BODO and BO. Matern52 can be expressed as
Equation (11). Γ and Kν respectively represent the gamma function and the Bessel function
of the second kind. d

(
xi, xj

)
indicates the distance between xi and xj. The parameter ν

of Matern52 was fixed to 5/2 and the covariance l was fixed to 1. UCB was used as the
acquisition function and the parameter κ of Equation (6) was set to 2.

k
(

xi, xj
)
=

1
Γ(ν)2ν−1

(√
2ν

l
d
(

xi, xj
))ν

Kν

(√
2ν

l
d
(
xi, xj

))
(11)

Figure 2 is the visualization results of BO and BODO on the alpine22d test function
with initial points of bad quality. The preset initial points are all near a local optimum. The
iteratively recommended point locations are marked on the contour image of alpine22d,
with different colors indicating different iteration segments.
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Figure 2. Visualized optimization processes of BO (a) and BODO (b) on the 2-dimensional alpine2
function (alpine22d) with the same preset bad-quality initial points. The hyperparameters ε1, ε2, and
β are set to 0.6, 0.4, and 0.95, respectively. Points of different iteration segments are indicated with
different colors.

Figure 2a intuitively shows the optimization process of BO, which is a deterministic
algorithm based on UCB. The first 3 recommended points by BO are located near the
initial local optimum since the surrogate model prediction is relatively more optimal in
this region. Most recommended points of BO from iteration 4 to iteration 14 are located
at the boundary, which is the result of a larger variance of the GP model. In the final six
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iterations, BO converges back to the initial local optimum. In comparison, BODO adopts a
D-optimal design branch allowing for the method to sample over the experiment space
from the information perspective (Figure 2b). The strategy of BO heavily relies on its
inner surrogate model, which usually requires representative initial points for generalized
prediction. In this alpine22d case, BODO is able to discover the global optimum region
with poor initial points and further exploits near the optimum. This optimum region is
discovered by the point recommended by the D-optimal branch at iteration 8 and the
following point recommended by BO at iteration 9. This small example visually illustrates
the improvement of BODO in initial point dependence relief and local optimum avoidance.

The effects of different ε1, ε2 settings are investigated also in this work (Figure 3), with
a value of β fixed at 0.95. Each result is derived as the average of 10 runs at 10 different
random initial point sets (100 runs in total), and in each run BODO is iterated for 50 rounds.
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Figure 3. The average optimization results on alpine25d. (a–e) The heatmap of best values of BODO
with different ε1 and ε2 settings at iterations 10, 20, 30, 40, and 50, respectively. (f) The best value
comparison of BODO (ε1 = 0.6, ε2 = 0.4 ) with its counterparts that include only the LP D-optimal
branch (ε1 = 0.6, ε2 = 1.0 ), only the random selection D-optimal branch (ε1 = 0.6, ε2 = 0.0 ), and no
D-optimal branch (ε1 = 0.0 ).

If ε1 is set to 0.0, the D-optimal design branch in BODO is prohibited and BODO will
degrade into BO. It is noteworthy that a ε1 value of 1.0 does not mean that BODO only
carries out the D-optimal design branch, because ε1 is supposed to be multiplied with
β and decline after each iteration. Figure 3a–e plots the heatmaps of the best values of
BODO with different hyperparameter settings at different iterations. It can be observed
that BODOs with relatively smaller ε1 values can find a better solution than those with
larger ones at the beginning, but can hardly make any further progress after 30 iterations.
The BO method falls into a local optimum after approximately 30 iterations, and its average
best value remains −60 in subsequent iterations. In comparison, BODOs with relatively
larger ε1 can still find better solutions after 40 iterations, and the best BODO (ε1 = 0.6,
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ε2 = 0.4) achieves an average best value of −68, much smaller than that of BO. It can be
demonstrated that the introduced D-optimal design branch is helpful to jump out of local
optima and contributes to the optimization process. Additionally, Figure 3f manifests that
BODO with both LP and random selection outperforms BODO with either one of them
and degraded BODO, showing the synergistic effect of LP and random selection in the
D-optimal design branch.

To explore how BO and BODO (ε1 = 0.6, ε2 = 0.4) perform with different initial point
sets in detail, the results of different initial point sets are separately plotted in Figure 4a,
including the result best value of BO and the average, minimal, and maximal best value
of BODO. The number of points in the initial point set was 9 for BO and BODO, which
are separately applied to 10 different initial point sets. On almost all initial point sets,
BODO has a better average search result than BO. For initial point sets 2, 3, 4, and 8, the
performance of BODO is equivalent to that of BO. For the other six initial point sets, BODO
outperforms BO by an obvious improvement on the final best value. Moreover, for initial
point sets except 6 and 9, even the worst BODO results are better or similar to those of
BO. Comparing BO with BODO, it can be found BO would be stuck in local optima with
initial point sets 1, 5, 7, and 10, while BODO can possibly jump out of local optima and
find better solutions. Figure 4b shows the iteration process of BO and the 10 runs of BODO
with the initial point 7. After about 10 iterations, the deterministic BO algorithm falls into a
local optimum. Although the BODO average best value decreases slower than BO at the
beginning stage, it can continuously be optimized. After 50 iterations, even the worst run
of BODO reaches the same best value as BO and the best run of BODO finds a solution with
an objective function value of −135.68, which should be attributed to the D-optimal design
branch. Therefore, it can be concluded that the introduction of the D-optimal design can
assist the experiment optimization algorithm to leverage the exploration in the independent
variable space and promote the experiment optimization performance.
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results and BODO average results noted. (b) Example iteration processes of BODO and BO with the
initial point 7.

In BODO, β is a key parameter to determine the decline speed of the probability of the
D-optimal design branch. To figure out the effect of β on systems with different dimensions,
alpine23d, alpine25d, and alpine28d were adopted for investigation. ε1 was fixed to 0.6
and ε2 was fixed to 0.4. The iteration rounds of alpine23d, alpine25d, and alpine28d were
set to 80, 120, and 200, respectively. For each alpine2 test function, BODOs with different
β values were run with 10 different random initial point sets for 10 times. The BODO
average optimization results are displayed in Figure 5.
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Figure 5. The average BODO performance with different β settings (1.00, 0.98, 0.95, 0.90, and 0.85)
on (a) alpine23d, (b) alpine25d, and (c) alpine28d test functions. BODO is run for 10 times over
10 random initial point sets. The initial point sets are the same for all β settings.

For all alpine2 test functions, the best value decreases faster in the early stage when
β is set smaller. This is because a smaller β value means a relatively larger probability in
the BO branch for exploitation. However, after a certain number of iterations, a larger
β value can lead to a better best value for its inclination toward exploration through the
D-optimal branch. With regard to the final best value, the best β setting is 1.00 for all alpine2
test functions because the exploration probability does not decrease with the experiment
iteration. These results show that more attention should be paid to exploration for a better
final best value if the experiment can be iterated with enough rounds. Meanwhile, a smaller
β value is recommended for fast experiment optimization when the number of experiment
iterations is strictly limited.

In Figure 6a–c, BODO is compared with some other optimization algorithms on the
alpine23d, alpine25d, and alpine28d test functions, respectively. The comparing algorithms
include BO, BBOLP, Thompson sampling (TS), Nelder–Mead, and stable noisy optimization
by branch and fit (SNOBFIT). TS is also a GP-based algorithm for experiment optimiza-
tion which trains a GP model for the objective and then applies spectral sampling to the
trained GP for experiment recommendation [45]. Nelder–Mead is a simplex optimization
method which includes adaptions of point reflection, dimension reduction, and dimension
recovery [46]. SNOBFIT adopts a branching algorithm that recursively divides the search
space into smaller regions from which evaluation points are chosen for experiments [47].
In this way, SNOBFIT is capable of generating points in unexplored regions and presents
a global search ability. BODO outperforms all other GP-based methods on all alpine2
test functions, especially on alpine2 test functions with relatively larger dimension sizes.
BO suffers from the lack of exploration ability in the independent variable space. TS also
focuses only on the fitted GP model and is inferior in terms of exploration. BBOLP adopts
a penalization strategy to avoid the recommended points located in a small region, but
still lacks a guidance of point distribution in the independent variable space. As for other
comparing methods, Nelder–Mead is a simplex method and therefore its optimization
efficiency is unavoidably lower. As a global optimization method, SNOBFIT suggests a
better final optimization result than BODO in alpine23d. However, since SNOBFIT divides
the entire experiment space into subregions and can only recommend points in unexplored
subregions that are located near explored ones, its convergence speed is consequently
slow, which can be revealed by results on alpine25d, alpine28d, and the first 40 iterations of
alpine23d. These comparison results demonstrate the effectiveness of BODO in balancing
exploitation and exploration, as well as an outstanding feasibility in optimization problems
with different input dimension sizes.
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Figure 6. Average optimization results of BODO (ε1 = 0.6, ε2 = 0.4, β = 1) and comparing
algorithms on (a) alpine23d, (b) alpine25d, and (c) alpine28d test functions. Their theoretical min-
imal values are −17.21, −135.73, and −3005.58, respectively. Algorithms are run for 80, 120, and
200 iterations on alpine23d, alpine25d, and alpine28d, respectively. The average results are obtained
from 10 random initial point sets which are set the same for all algorithms. Non-deterministic
methods (BODO, TS, and SNOBFIT) are run for 10 times on each initial point set and then the results
are averaged. The batch size of BBOLP is set to 5.

4.2. Benchmark Chemical Process: Summit SnAr

An open-source benchmark chemical process, Summit SnAr (Figure 7) is used to
further test the proposed BODO and other methods for comparison [30,48]. Nucleophilic
aromatic substitution reaction is a commonly used reaction in the fine chemical industry.
The reaction condition optimization of the nucleophilic aromatic substitution reaction is of
significant importance. In the Summit SnAr case, 2,4-dinitrofluorobenzene (1) undergoes
nucleophilic attack by pyrrolidine (2) to form the desired product (3). The feedstock (1) and
the product (3) can also react with (2) to form two side products, (4) and (5). Generally, the
overall optimization target is to maximize the space–time yield of the designed product and
minimize the side product production. Kinetic parameters of the four SnAr reactions are
obtained from a previous report. Detailed pre-exponential factors and activation energies
are listed in Table 1.
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The SnAr reactions are simulated to occur in a plug flow reactor, for which the
residence time, stoichiometry, and temperature can be adjusted. The descriptions and
feasible domain ranges of input variables and output objectives are given in Table 2.

Table 2. The input variables and objectives of Summit SnAr.

Name Type Description Domain Range

tau input residence time [0.5, 2]
equipldn input equivalents of pyrrolidine [1, 5]
concd f nb input concentration of 2,4-dinitrofluorobenenze [0.1, 0.5]

temperature input reactor temperature [30, 120]
sty objective space time yield (kg/m3/h)

e f actor objective weight ratio of product 4 and 5 over 3

Combining sty and e f actor, the multi-objective optimization problem can be trans-
formed into a single objective optimization problem with Equation (12), where α is a
negative parameter to measure the weight between sty and e f actor. Referring to the re-
ported literature, α is set to −0.01 in this work (Felton et al., 2021). During optimization, a
minus sign is added to the objective function to transform the optimization problem into a
maximization one.

min objective = α× sty + e f actor (12)

The Summit SnAr test details are as follows: 12 random experiment points were
selected by random sampling as the initial dataset, and all optimization algorithms were
sequentially iterated for 60 rounds with the same initial point sets.

The optimization results are plotted in Figure 8. To exclude the influence of random-
ness, BODO was run for 10 times to obtain the average, as well as other non-deterministic
algorithms (TS and SNOBFIT). Deterministic algorithms were applied without repetition.
The minimal and maximal result values of BODO are also recorded at all iterations. Consis-
tent with the results on alpine functions, BODO outstands from other methods in final best
optimization value. In comparison, TS and Nelder–Mead displayed a slower convergence
speed throughout the optimization iteration. Meanwhile, SNOBFIT also suffers from the
sluggish optimization speed in the first 15 iteration rounds. Although the optimization
speed of BO is competitive in the early optimization stage, its final best value (−103.15)
is inferior to that of BODO (−104.44), which can be attributed to the exploration ability
endowed by the D-optimal design branch. The final best values of BBOLP and SNOBFIT are
−103.59 and −103.61, respectively, which are also better than BO, showing the importance
of rational point distribution in the independent variable space. BBOLP is realized by local
penalization, and SNOBFIT is realized by subregion division. Compared to BBOLP and
SNOBFIT, BODO can directly sample points in the independent variable space according to
the D-optimal design criterion and the final optimized best value is even better. Moreover,
it is noteworthy that even the largest final best value (−103.34) of the 10 BODO runs is
better than that of BO.

After experiment optimization, tau and concd f nb are both optimized to their corre-
sponding range limits (both are optimized to 0.5). The temperature and equivpldn distribu-
tions of BO and BODO best solutions are shown in Figure 9. BO and 3 BODO best results
are located near (1.5, 100), while the other seven best results of BODO are distributed
within the contour line of −104.38, showing the effectiveness of BODO in experiment space
exploration. Without profound knowledge of the experiment, BODO can recommend
points based on optimal design and achieve a more rational sample distribution from an
experiment design perspective. BODO delivers a balance between surrogate regression
and D-optimal design, and can contribute to experiment optimization in the benchmark
SnAr chemical process.
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Figure 9. The best result distribution of BO and 10 random BODO runs on temperature and equivpldn.
For BO and all BODO runs, tau and concd f nb are all optimized to their boundaries, with their
optimized values as 0.5 and 0.5, respectively.

5. Conclusions

In this study, we developed an iterative optimization framework BODO to reduce
the negative impact of poor initial point selection and local optimum on experiment
optimization. BODO innovatively highlights the integration of BO in the dependent
variable space search and D-optimal design in the independent variable space. BODO is
designed to maintain the scaffold of BO for fast local convergence and involve stochasticity
for D-optimal design to improve the global search ability. In addition, BODO integrates
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D-optimal design with BO by means of the probabilistic branch in each iteration, rather
than only the initial point selection.

BODO is a flexible optimization framework that allows hyperparameters to be tuned
according to actual requirements for fast convergence or a wide search range. BODO
was shown to achieve better results than BO with repeated tests and different initial
points in alpine2 test functions and the benchmark SnAr chemical process. A visualized
2-dimensional alpine2 function case shows BODO has a better global search ability by
jumping out of the initial local optimum. Meanwhile, with the same number of iterations,
BODO outperforms other typical optimization algorithms on alpine2 functions with differ-
ent dimension sizes and the SnAr chemical process, exhibiting a competitive performance
in terms of final best result and convergence speed, especially for processes with a relatively
larger input dimension size. BODO balances between surrogate model-based exploitation
and D-optimal design-based exploration to achieve a better experiment optimization per-
formance. The proposed efficient BODO method is promising to be applied in chemical
experiment optimization in the future, enlightening a new way for optimal condition search
and experiment guidance.
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