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Abstract: Genetic Programming (GP) has been widely employed to create dispatching rules intelli-

gently for production scheduling. The success of GP depends on a suitable terminal set of selected 

features. Specifically, techniques that consider feature selection in GP to enhance rule understanda-

bility for dynamic job shop scheduling (DJSS) have been successful. However, existing feature se-

lection algorithms in GP focus more emphasis on obtaining more compact rules with fewer features 

than on improving effectiveness. This paper is an attempt at combining a novel GP method, GP via 

dynamic diversity management, with feature selection to design effective and interpretable dis-

patching rules for DJSS. The idea of the novel GP method is to achieve a progressive transition from 

exploration to exploitation by relating the level of population diversity to the stopping criteria and 

elapsed duration. We hypothesize that diverse and promising individuals obtained from the novel 

GP method can guide the feature selection to design competitive rules. The proposed approach is 

compared with three GP-based algorithms and 20 benchmark rules in the different job shop condi-

tions and scheduling objectives. Experiments show that the proposed approach greatly outperforms 

the compared methods in generating more interpretable and effective rules for the three objective 

functions. Overall, the average improvement over the best-evolved rules by the other three GP-

based algorithms is 13.28%, 12.57%, and 15.62% in the mean tardiness (MT), mean flow time (MFT), 

and mean weighted tardiness (MWT) objective, respectively.  

Keywords: dynamic job shop scheduling (DJSS); feature selection; dispatching rules; genetic  

programming (GP) 

 

1. Introduction 

Production scheduling aims to assign available production resources to several dif-

ferent demands within a reasonable running time in order to optimize one or more target 

values [1,2]. The Job shop scheduling (JSS) problem has attracted much interest from aca-

demics and industry experts due to its extensive applications and inherent difficulties in 

the manufacturing area [3,4]. A set of jobs and machines are given on the job shop floor, 

and each job contains several operations that need to be executed by an appropriate ma-

chine. Then, the goal of JSS is to construct a scheduling procedure that processes the op-

eration with machines under a predefined sequence to optimize some defined objectives, 

such as minimizing the makespan, flow time, and tardiness [5]. 

In general, job shop conditions can be divided into static and dynamic. Jobs are ready 

for processing at time zero in static conditions, and their operational information, such as 

arrival time, number of operations, and due date, is always available. Unlike the static 

environment, dynamic job shop scheduling (DJSS) deals with situations where job arrivals 

are usually unknown in advance. The processing attributes can only be obtained gradu-

ally over time. Therefore, traditional search-based techniques that are capable of obtaining 

high-quality solutions are not applicable because they search a solution space that is not 

only computationally expensive but also too slow to react adequately to unanticipated 
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disruptions such as the arrival of new jobs, a change in the due date, or the malfunctioning 

of machines. Thus, scheduling heuristics that deliver acceptable but not necessarily opti-

mal solutions in a short computational time have been employed to solve DJSS. Due to its 

adaptability, low time complexity, and rapid response to varying conditions, the dispatch-

ing rule, which is a particularly simple type of scheduling heuristic, is now widely used 

[6]. In each decision situation, the dispatching rule decides the job with the highest priority 

value to be scheduled next when a machine is free. However, dispatching rules are chal-

lenging to design manually due to these reasons. It is hard to determine the relative factors 

from the various job shop characteristics and to understand their influence on rule perfor-

mance. In addition, selecting and testing the best dispatching rules through complex sim-

ulation runs in job shop scenarios is very time-consuming. 

In recent years, researchers have devoted more attention to automated heuristic de-

sign, which uses AI and machine learning to address complicated computational issues 

known as “Hyper-heuristics.” [7]. This approach is motivated by a desire to shorten the 

time required for experts to design effective heuristics for various circumstances and to 

get important insights by investigating a broad variety of unexplored heuristics [8]. Ge-

netic Programming (GP) is a well-known hyper-heuristics approach for creating efficient 

scheduling heuristics for a variety of industrial applications [9,10]. Due to the powerful 

search engine, GP can automatically determine the structure and parameters of the pro-

gram compared to other artificial intelligence methods. The three factors: maximal depth 

of the tree, function set, and terminal set, are the factors that determine the GP search area. 

Therefore, decreasing the number of terminals is one of the ways to reduce the scope of 

GP search and enhance the search capability. In DJSS, a wide range of features can be 

included in the terminal sets, such as system-related, job-related, and machine-related fea-

tures [11,12]. Previous studies often consider all the potential attributes to construct GP 

trees. Not all the attributes in the terminal section are helpful, and some might be unre-

lated or redundant for producing superior dispatching rules in the specific job shop set-

tings. For example, the due date of the job is considered to be a useless feature for opti-

mizing the mean flow time. Similarly, the weight of the job plays an important role if the 

objective is mean-weighted tardiness rather than mean flow time. Therefore, selecting im-

portant terminal sets for different scenarios is challenging without losing promising areas 

in the search space. 

Feature selection in machine learning provides a good idea for solving this challeng-

ing task. It has been proven to be an effective way when dealing with classification [13,14], 

clustering [15], and regression tasks [16]. Although GP can identify relevant features and 

use them to evolve the best GP trees simultaneously in the adaptive evolutionary process, 

there are still some irrelevant or redundant features. More in-depth research is needed in 

this area. 

As far as we know, there is little research on feature selection in DJSS. The feature 

selection approach that calculates the terminal frequency in the best-evolved rules was 

designed to improve the evolutionary ability of GP [17]. A novel feature selection method 

instead of frequency was first introduced to identify the crucial features for different job 

shop scheduling situations [18]. To improve the efficiency of feature selection, an efficient 

feature selection algorithm with niching and surrogate techniques was proposed to pro-

duce superior dispatching rules in dynamic job-shop scenarios [19]. The construction of 

dispatching rules for the flexible DJSS issue was then proposed using a novel two-stage 

genetic programming-based hyper-heuristic (GPHH) framework with feature selection 

and individual adaptive strategy [20]. However, the existing feature selection approaches 

in GP evolution for DJSS have revealed some challenges and gaps in the current ap-

proaches, as described below: 

(1) Most feature selection methods assess the effect of each terminal by the frequency 

with which it occurs in the best-evolved rules. The main shortcoming of this tech-

nique is that the results may be biased towards irrelevant features because of the 

occurrence of redundant features. 
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(2) Obtaining a diverse set of excellent individuals is a challenging task and is considered 

a key factor in achieving high accuracy in feature selection. Although the niching-

based GP feature selection method has been proven to be an effective algorithm, it is 

still difficult and complex to determine the parameter of the niche. 

(3) The proposed feature selection approaches for DJSS are usually based on the mode 

of offline selection mechanisms or a checkpoint to obtain relative terminal sets. This 

offline approach not only requires a significant expenditure of time and code effort 

but may also waste some of the excellent individual structures that have been gener-

ated during the feature selection process. 

(4) The enhancement of the solution quality of dispatching rules in different job shop 

scenarios is not taken into account by current techniques, which primarily concen-

trate on rule interpretability via the feature selection process. 

Therefore, this paper aims to address the literature limitations by proposing an inte-

gration approach that combines a novel GP method with a feature selection mechanism 

to design interpretable and high-quality dispatching rules for DJSS. The main contribu-

tions of this work can be summarized as follows: 

(1) Develop a three-stage GP framework to utilize the information of both the selected 

features and the promising diverse individuals in the feature selection process. 

(2) Propose a novel GP method, GP via dynamic diversity management, with a feature 

selection mechanism to acquire compact, interpretable, and high-quality rules for 

DJSS automatically. In this strategy, the level of population diversity is related to the 

stopping criterion and the time elapsed to gradually adjust the search space of the 

algorithm from exploration to exploitation. 

(3) Verify the effectiveness of the proposed approach compared to the three GP-based 

algorithms and 20 benchmark rules from the existing literature under mean tardi-

ness, mean weighted tardiness, and mean flowtime objectives, respectively. 

The rest of the paper is organized as follows: The problem description and literature 

on the automated design of dispatching rules, genetic programming-based hyper heuris-

tic, and genetic programming with feature selection are reviewed in Section 2. The sug-

gested technique is detailed in Section 3, while Section 4 provides the experimental design. 

Section 5 covers the experimental results and discussions, and further analysis is provided 

in Section 6. Finally, conclusions and future recommendations are given in Section 7. 

2. Background 

2.1. Problem Definitions for DJSS 

The Dynamic Job Shop Scheduling (DJSS) problem is a typical optimization problem 

that can be described as follows. The job shop floor has a number of � machines. An 

arriving job � has a sequence of �� operations ���, ⋯ , ����.The �th operation of job �, de-

noted as ���. Each operation ��� can only be processed by its eligible machine �(���), 

and its processing time is denoted as �(���) (abbreviated as ���). The time when the job 

� arrives on the shop floor is the operation ready time of the first operation of job � (la-

beled as ��) and is referred to as the release time of the job [21]. A job also has a due date 

��. This paper focuses on DJSS problems with dynamic job arrival, which means that the 

properties of a job can only be known when it arrives. 

2.2. Related Work 

Automated design of dispatching rules. Job shop scheduling problem (JSSP) as an 

NP-complete combinatorial optimization problem [3]. Due to this, accurate optimization 

techniques are difficult for solving large-scale production issues [22]. Therefore, approxi-

mate optimization methods such as genetic algorithm [23], simulated annealing [24], and 

ant colony algorithm [25] have been developed to find quasi-optimal solutions for static 

JSSP in an acceptable amount of computing time. Under dynamic conditions, traditional 
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scheduling methods are impractical due to the limited information horizon in DJSS prob-

lems, which need precise job shop information in advance. Therefore, dispatching rules is 

considered an effective heuristic search method for real-time events for dealing with DJSS 

problems. Specifically, the dispatching rule assigns a score to each waiting job according 

to its priority function when a machine is available. Then, the job with the highest priority 

among the waiting ones is then selected to be processed next. Numerous research has been 

conducted to manually establish suitable dispatching rules for a variety of workshop sit-

uations and goals. More details are available in several articles [26]. 

The manual design of dispatching rules begins with creating a collection of job shop 

qualities, then attempting to achieve the optimal mathematical combination of these ter-

minals. All candidate rules are then hard-coded and assessed using a discrete event sim-

ulation (DES) model. This cycle is conducted several times to determine the optimal rule 

for optimizing a performance metric under specific job shop conditions. Since man-made 

dispatching rules cannot achieve satisfactory performance, many researchers aim to de-

velop a hyper-heuristic approach that can automatically discover adaptive rules for the 

JSS problems. Hyper-heuristics combine the components utilized in current heuristics by 

different operators to build new heuristics, which are then trained on training problem 

cases and developed to become more successful. Regarding the automated construction 

of scheduling rules, it has been shown that GP is a promising hyper-heuristic method that 

outperforms conventional machine learning techniques [27]. 

Genetic programming-based hyper-heuristic. As a hyper-heuristic method, GP can 

automatically design new dispatching rules based on structure and parameters without 

rich domain knowledge. Individuals in GP may be represented in several ways [28], with 

the tree-based representation being the most common. The intuitive nature of the GP’s 

individual representation approach allows it to build trees of various formats and lengths, 

making it suited for use as a hyper-heuristic in automatically producing dispatching rules. 

Figure 1 gives an example of a parse tree and the corresponding dispatching rule. The tree 

is usually interpreted from left to right in depth-first order. 

The GPHH technique examines the space of heuristics via the GP to uncover the heu-

ristics that may be utilized to successfully address the production scheduling difficulties. 

Burke et al. [7] presented a categorization of hyper-heuristic techniques according to their 

search process, which includes choosing and creating hyper-heuristics. A quick overview 

of hyper-heuristic applications for a variety of scheduling and combinatorial optimization 

issues was also provided. According to the authors, GP is well suited for adapting dis-

patching rules in dynamic situations, even if it is seldom employed to directly handle pro-

duction scheduling problems. The article by Branke et al. [1] included a comprehensive 

analysis of the design decisions and important concerns that arose throughout the course 

of the development process. In the survey, significant design considerations such as fea-

ture selection, rule representation, and fitness function analysis are discussed. In the same 

context, Nguyen et al. [29] present an overview of the automated design of dispatching 

rules in the area of production scheduling using genetic programming. They provided a 

detailed discussion of the key components and practical issues that should be considered 

before developing a GP system for generating production scheduling heuristics. This ar-

ticle also showed that the number of works on the subject of automated design of sched-

uling heuristics had increased significantly since 2010. Branke et al. [28] studied the auto-

matic construction of dispatching rules in DJSS by comparing GP in a tree structure, neu-

ral network, and linear representation. The GP tree form offered the highest quality an-

swer, followed by the neural network representation, while the linear representation 

yielded the lowest outcomes. One major factor is that the GP method concurrently inves-

tigates a heuristic’s structure and associated parameters without supposing any specific 

distribution or domain expertise. 

In addition to the above research, the GPHH approach has been utilized to generate 

scheduling heuristics for production scheduling problems with diverse characteristics, 

such as the DJSP with dynamic job arrivals and machine breakdowns [30,31] and the dual-
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constrained flow shop scheduling with machines and operators [32]. Furthermore, several 

research projects aimed at increasing the performance of the GPHH technique using di-

verse strategies. By using ensemble learning for the ensemble GPHH technique through 

different combination strategies for the DJSP, Park et al. [33] increased the robustness of 

the GPHH approach. Zhou et al. [34] proposed a surrogate-assisted cooperative coevolu-

tion GP technique for the dynamic flexible JSP, which increased the computational effi-

ciency and the offline learning process of the hyper-heuristic without compromising its 

performance. 

 

Figure 1. A GP individual tree example and its corresponding dispatching rule. 

Genetic programming with feature selection. Regardless of the chosen representa-

tion, the selection of appropriate job and shop characteristics that constitute the evolvable 

components of priority functions is a crucial design issue. In DJSS, the terminal set may 

consist of different shop attributes for constructing dispatching rules. The list of attributes 

could be anything from common attributes (e.g., the processing time of the operation) to 

multiple attributes (e.g., the remaining processing time of the job), but not all of them are 

equally relevant in a specific job shop case. Removing the irrelevant and redundant attrib-

utes in evolving dispatching rules may bring the following benefits. First, it will improve 

GP’s searchability by reducing search space. Scend, GP tends to derive effective, compact, 

and meaningful dispatching rules without irrelevant or redundant attributes. Third, it can 

reduce the computational time of GP with shorted rules. In order to create compact and 

interpretable dispatching rules, it is important to select the vital few attributes for the dif-

ferent scenarios. Although GP can detect the hidden relationships between a subset of 

features, it is not very effective and accurate. Previous research has shown that the best 

individuals still have some irrelevant and redundant features. In other words, GP’s ability 

is limited. Several academics have advocated attribute selection or simplification as a 

means to decrease the number of terminals accessible for the evolution of dispatching 

rules. 

Friedlander et al. [17] suggested a feature selection approach based on frequency 

analysis, that is, the number of times a certain terminal appears in rules (genotypic anal-

ysis). This approach has its own limitation: some features are incorrectly estimated based 

on their frequency in the redundant priority function. Therefore, Mei et al. [18] proposed 

an offline feature selection approach in GP, which measures the importance of features 

based on their contribution to the priority function. Although this method can select the 

important features more accurately, it requires expensive computational time to obtain a 

set of good individuals with diversity. In a follow-up study, Mei et al. [19] designed an 

offline feature selection algorithm with niching and surrogate techniques to produce su-

perior dispatching rules in DJSS. Specifically, a niching-based GP algorithm was applied 

to initially obtain a set of good individuals with diversity. Then, the feature’s contribution 

to the performance of good rules was estimated using a weighted voting mechanism. Fi-

nally, the selected terminal set was applied to evolve the best rules in future GP runs. The 

limitation of this work is that the program size of the evolved rules is still large, even 

though the approach is sufficient to identify a compact set of features. Nguyen et al. [35] 

added an attribute vector to the tree representation of each rule in an effort to improve the 

interpretability of the rules by choosing relevant characteristics. The most significant 
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restriction is that it disregards scenarios in which a certain property may not be included 

in the priority function. Based on Nguyen’s research [35], Shady et al. [36] proposed a new 

representation of the GP rules by modifying the attribute vector that abstracts the im-

portance of each terminal during the evolution process. Later, Shady et al. [37] extended 

this attribute vector into the liner representation of gene expression programming (GEP) 

to evolve effective rules in simple structures with an affordable computational budget. 

Moreover, Panda et al. [38] suggested a novel GP with simplification for DJSS and exam-

ined its effectiveness in developing effective and simple/small rules. In addition to adopt-

ing the general algebraic simplification operators, additional problem-specific numerical 

and behavioral simplification operators were designed for DJSS. Huang et al. [39] devel-

oped scheduling strategies for multitasking issues utilizing the building block reuse of 

liner genetic programming. Fan et al. [40] employed the GPHH approach to solving DJSS 

with extended technical precedence restrictions. To improve the performance of GP-

evolved rules, they proposed problem-specific GP attribute selection by incorporating 

store state information that is important for scheduling. Recently, Zhang et al. [20] pro-

posed a novel two-stage GPHH framework with feature selection and individual adaptive 

strategies for the flexible DJSS problem. Using a predetermined checkpoint, this approach 

separates the whole GP procedure into two phases. A niching-based method combined 

with a surrogate module to achieve selected terminals in the first phase. While the new 

terminal replaces the original one, it is used for individual evolution after checkpoint gen-

eration in the second stage. Although this feature selection framework was adapted online 

and obtained compact rules, it neglected to consider the improvement of rule perfor-

mance. 

There is, as already suggested, a growing body of research literature on the design of 

scheduling rules with attribute selection or simplification, but there are still some gaps in 

rule interpretability and the impact of improved strategies on rule performance that de-

serve attention. The focus of the recent literature is obtaining more compact rules with 

fewer features rather than improving the performance of evolved rules. Few studies have 

considered both feature selection mechanisms and rule quality improvement. Therefore, 

this work aims at designing interpretable and high-quality rules simultaneously for the 

DJSS problem. 

3. Proposed Methods 

3.1. Framework of the Proposed Approach 

The existing literature on feature selection methods for DJSS generally employs an 

offline selection mechanism. The overall process is usually divided into two parts, in 

which feature selection is taken as a preprocessing step to obtain the feature set first. Then 

the selected features are used in another independent GP run to solve the DJSS problem. 

The whole process is completed independently and separately, which is time-consuming 

and impractical. In order to evolve high-quality rules with compact structures effectively, 

this paper proposes a novel GP algorithm with online feature selection based on the idea 

in Zhang’s research [20]. As illustrated in Figure 2, the framework of the proposed ap-

proach comprises of three steps. In the first stage, the GP proceeds with a diversity man-

agement strategy that considers the stopping criterion and elapsed period to obtain a di-

verse set of superior individuals for feature selection. An essential feature of this diversity 

management strategy is the dynamic penalization scheme that considers similarity 

measures between individuals in the replacement phase. This way, a diverse set of best 

dispatching rules can be derived, which is a key factor in achieving high accuracy in fea-

ture selection [19]. In the second stage, the feature selection mechanism is carried out to 

obtain feature subsets based on the final population obtained in the first phase for the 

different scenarios. Based on the final population with individual adaptation and selected 

feature subsets getting from previous steps, stage three is used to evolve more compact 

and high-quality rules. In the third stage, the standard GP algorithm is used, except for 
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the initialization and mutation process. The initialization process takes the final popula-

tion of stage 1 as the initial population. The standard subtree mutation is applied by gen-

erating random trees using only the selected features. 

 

Figure 2. Flowchart of the proposed novel genetic programming with online feature selection. 

3.2. A Novel GP Method 

Diversity management in the population is crucial to the success of evolutionary al-

gorithms. In the case of GP, several methods and strategies have been developed to meas-

ure diversity or maintain the level of population diversity [41,42]. Recently, Ricardo et al. 

proposed a design concept for GP that relates the level of population diversity to the stop-

ping criterion and the time elapsed to enhance the performance of GP in symbolic regres-

sion problems [43]. The most important feature of this design principle is the inclusion of 

a dynamic penalization scheme in the replacement phase, which aims to avoid the exist-

ence of similar individuals. Compared with other diversity management schemes, it has 

been demonstrated to be competitive in solving combinatorial optimization problems. In-

spired by their research, this paper applies this idea but explores it for the DJSS problem 

in production scheduling. 

(1) The replacement strategy: The pseudocode of the proposed replacement strategy in 

GP is described in Algorithm 1. The algorithm aims to select the number of desired survi-

vors � to create a new population ���� for the next generation. Initially, the current pop-

ulation � and offspring � are added to create a set of candidates �. Since the fitness in 

this article is to be reduced, the smallest candidate is chosen and removed from the present 

candidates and utilized to create a new population. A threshold value (�) is then com-

puted for penalizing the candidates in subsequent steps (line 4). After the previous initial 

steps, the survivors are chosen from the candidate set to create the new population 

through � − 1 iterations (see lines 5–15). The algorithm categorizes the candidates into 

the penalized set (��) and the non-penalized set (���) at each iteration (line 6). To be spe-

cific, any candidate with a distance to the nearest survivor below the threshold �, is clas-

sified as a penalty candidate or else as a non-penalized candidate. If there are non-
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penalized candidates, a multi-objective method that considers fitness and simplicity is 

used to choose randomly dominated candidates, while penalized candidates are disre-

garded. If there are non-penalized candidates, a multi-objective selection procedure that 

takes into account fitness and simplicity is applied to select randomly dominated candi-

dates, with penalized individuals being overlooked (lines 7–9). Otherwise, if all candi-

dates are penalized, the algorithm will choose the farthest (line 11). It may imply that the 

population diversity is too limited under this condition; thus, it seems more promising to 

select the individual with the farthest distance. Lastly, the selected candidate is removed 

from the candidates set and incorporated into the new population. 

Algorithm 1:����  ← Replacement���, ��  

Input: A current population ��, offspring �, number of survivors �, elapsed iterations ��, 

termination criterion ������, initial distance threshold ���� 

Output: New Population ���� 
1 � ← �� ∪ �; 

2 ���� ← {��������������(�)}; 
3 � ← �\����; 
4 � = ������� �������� ��������(����, ������, ����); 
5 while |����| < � do 

6    ���, ���� ←categorize-individuals(����, �, �); 

7    if ��� ≠ ∅ then 

8      ��� ←non-dominated-set�����   

9      � ←random-sampling(���) 
10   else 

11     � ←farthest���, ��� 

12   end 
13   ���� ← ���� ∪ {�} 
14   � ← �\{�} 
15 end 
16 return ���� 

(2) Phenotypic Characterization of Dispatching Rules: The minimum required distance 

function used in Algorithm 1 to establish the threshold value, which is then utilized to 

distinguish between individuals who are penalized and those who are not. The threshold 

is a dynamic value that decreases linearly during the evolution process. This indicates that 

more closely related individuals are accepted as the iteration goes on, gradually moving 

the focus away from exploration and toward exploitation. In this way, the dynamic 

threshold automatically focuses the search toward the most promising areas in the final 

stage of the optimization. 

In this paper, the threshold � is set as follows: 

� = ���� −
���� × ��

������
 (1)

���� = 0.5 × ������(�) (2)

������(�) =
�

|�|
∑ ���(�(��), �\�(��))|�|

���   (3)

where ���� is the initial distance value, ������(�) is the average of the closest distance 

between individuals in a population �, �� is the elapsed iterations, ������ is the stop-

ping criterion. 

In the above threshold function, a distance measure ���(��, ��) between two rules �� 

and �� is needed. Different from traditional tree distance measures like ��2 distance, it 

is possible that two rules with different genotype structures will make the same behavior 

decisions in GP tree. So, the distance metric should reflect the difference in phenotypic 
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behavior, not the difference in genotype structure. Therefore, this paper employs pheno-

typic characterization of dispatching rules based on a decision vector [44], which is a rec-

ord of all decisions made by a rule � under decision situations �. Specifically, the refer-

ence dispatching rule ���� is first used to rank all candidate jobs in Ω ∈ � to obtain the 

ranking vector ����. The rule � to be characterized is also applied to rank the jobs to ob-

tain the ranking vector ��. Then, the index � of the jobs with the highest priority assigned 

by the reference rule ���� is identified. Finally, the rank of the �th job in the ranking vector 

is set to the �th element of the characteristic vector. In Algorithm 2, this phenotypic char-

acterization of dispatching rules is described in pseudocode. 

Algorithm 2: Compute the phenotypic characterization of dispatching rule 

Input: the dispatching rule � to be characterized, the reference rule �, set of decision situations 

�.  

Output: decision vector �. 
1 for � ← �, |�| do; 
2 � ← �[�];                             for each decision situation � ∈ � 
3 ���� ← �����(����, �);          determine ranks, highest priority gets rank 1 

4 �� ← �����(�, �); 
5 � ← ������(��) 
6 �[�] ← ����[�] 

7 end for 
8 return � 

3.3. Feature Selection 

In this paper, the feature selection idea is taken from Mei’s research [19], which con-

siders the importance of features related to both individual fitness and its contribution to 

individuals. Therefore, given a set of good and diverse individuals ��, features can be se-

lected by a Feature Selection function (�, ��). Algorithm 3 describes the pseudo-code of 

the feature selection approach. First, a certain number of top individuals with better fit-

ness values are selected from the final population at stage 1, and then taken as diverse and 

good individuals ��. Second, the contribution of each feature to each individual is meas-

ured by (4), where �������(�̃|� = 1) denotes the fitness value of the rule �̃ that fixed the 

feature � with the constant of 1. For example, (�� + ����|�� = 1) = 1 + ����. A pos-

itive value of ���(�, �̃) indicates that the rule performance becomes worse after remov-

ing the feature �. So, the measured feature can be given voting weight from the rule �̃. 

���(�, �̃) = �������(�̃|� = 1) − �������(�̃) (4)

Since the objective functions included in this article are to be minimized, the smaller 

the fitness of dispatching rules, the greater their voting weights. Then, the “voting weight” 

of a dispatching rule should be a monotonically decreasing function of its fitness. The 

calculation is given by (5)–(8). Finally, if the weight voting for a feature � is greater than 

the weight against it, the feature � is selected (from lines 10 to 13). 

�(�) = ��� �
�(�) − ����

���� − ����
, 0� (5)

�(�) =
1

1 + �������(�)
 (6)

���� =
1

1 + ���(�������(�)|� ∈ �)
 (7)

���� =
1

1 + ���(�������(�)|� ∈ �)
 (8)
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Algorithm 3: Feature Selection process 

Input: A set of good and diverse individuals ��. 

Output: The selected feature set �. 
1 set � ← �; 
2 foreach � = � �� |�| do                      
3    ����(�) ← �                         
3    foreach �� ∈ � do 
4        calculate the contribution ���(�, ��) by Eq (4); 
5         calculate the voting weight �(��) by Eq (5)-(7) 
6        if ���(�, ��) > � then 
7           ����(�) ← ����(�) + �(��) 
8        end 
9     end 

10     if ����(�) ≥ (∑ �(��))/�
|�|
����  then 

11       � ← � ∪ �; 
12    end  
13 end 
14 return � 

3.4. Individual Adaptation Strategy 

In the third stage, the promising individuals obtained from the novel GP algorithm 

and the selected features are utilized to evolve interpretable and high-quality rules. How-

ever, there are still unselected features in the final population. To address this problem, 

two representative individual adaptation strategies have been proposed in previous stud-

ies [20]. Setting the unselected feature in the dispatching rule to a constant number one is 

a common strategy. Another works by assuring that phenotypically similar individuals 

evolving only with selected features replace the promising ones in the final population at 

stage one. The experimental results obtained in their research show that both strategies 

can effectively inherit information from the final population of individuals. It also demon-

strated that the first strategy has a more promising inheritance ability compared to the 

second. Therefore, in order to reduce the computing costs of generating behavioral similar 

individuals, the first strategy is adopted to eliminate the unselected features while retain-

ing the individual structure as much as possible. The standard GP algorithm is used in 

the third stage, except for the initialization and mutation process. In the initialization pro-

cess, the first part of the initial population contains the promising individuals from the 

novel GP algorithm, while the remaining part stores the random individuals evolved by 

the selected features. The standard subtree mutation is applied by generating random 

trees using only the selected features. 

4. Experimental Design 

To investigate the effectiveness and interpretability of the proposed approach in a 

wide range of scenarios, a set of experiments has been designed. 
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4.1. Discrete Event Simulation Model 

To evaluate various GP-HH methods for DJSS, discrete event-based simulations have 

been designed in previous literature [35,45]. In our experimental settings, there are ten 

machines; jobs are released, and they arrive at the shop stochastically. Job parameters are 

randomly generated, such as the route of the job, the processing time, the number of op-

erations, etc. Job arrival follows a Poisson process with rate � which is based on a prede-

termined utilization �. The number of operations per job is randomly sampled from 2 to 

10, and the mean processing time of each operation is sampled between 25 and 100. Job 

due dates are assigned using the total work content method with different tightness factor 

values. In terms of the weights of the jobs, the 4:2:1 rule recommended by Shady’s research 

is adopted [36]. 

In the experiment, the job shop starts running from an empty state; a warm-up time 

period is needed to achieve a reliable state. The statistics are only recorded for the 501st 

through 2500th jobs to assess the performance of dispatching rules. To evaluate the effec-

tiveness of the designed rules, it is necessary to define a wide range of scenarios reflecting 

different types of problem instances. A simulation scenario is represented by a tuple 
〈�̅, �, �, 〉 whose parameters are described in Table 1. Past research has shown that the 

tightness factor � and machine utilization � are the main factors to define the load con-

ditions, which play a major part in rules’ performance. This article takes into account both 

light-load and heavy-load situations in order to assess the quality of the created rules. To 

do this, two or three values are set for α and μ in the job-shop simulation, ranging from 2 

to 7 and 80% to 99%, respectively. Simulator runs a single replication for each scenario 

during the training phase. For testing the generated rules, 20 simulation replications are 

executed for each test configuration. 

Table 1. Scenarios used in simulations for training and testing. 

Parameter Description Training Test  

�̅ Mean processing time 25, 50 25, 50, 100 

� Due dates tightness factor 3, 5, 7 2, 4, 6 

� Shop utilization level 85, 90, 95 80, 90, 99,  

Scenarios × replications  18 × 1 27 × �� 

Objectives functions: MT, MWT, MFT, 

The objective functions investigated in this paper are Mean Tardiness (MT), Mean 

Weighted Tardiness (MWT), and Mean Flow Time (MFT), respectively. MT and MWT are 

given in Equations (9) and (10), where �� is the completion time of job �, and �� is the 

weight of the job �. � denotes the set of delayed jobs, while ℂ represents the collection 

of completed jobs. In addition, Equation (11) is used to estimate the MFT objective, where 

�� means the flowtime of job �. 

�� =
∑ (�����)�∈�

|�|
  (9)

��� =
∑ ��(�����)�∈�

|�|
  (10)

��� =
∑ ���∈ℂ

|ℂ|
  (11)

Moreover, when evaluating the overall performance of each dispatching rules �, the 

fitness function is calculated by Equation (12), where �(�, �) is the value of scheduling 

objective, which is calculated by applying the rule � to a training instance � ∈ �, ����(�) 

denotes the target value, obtained by the reference rule in the same training instance. Due 

to the impressive results for minimizing the MT, MWT, MFT objectives, the Covert, 

WATC, PT+WINQ rules are adopted as reference rules, respectively [5,19]. 
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�������(�) =
�

|�|
∑

�(�,�)

����(�)

|�|
���   (12)

4.2. Algorithm Parameters 

Table 2 includes the list of terminal and function sets. The terminal set used for the 

experiment contains the common features used in the existing literature about GP-HH 

approaches [19,20,36]. These features range from job-related features (e.g., the number of 

operations remaining for a job NOR) to machine-related terminals (e.g., waiting time of a 

machine) and the current state of the shop (e.g., current time NOW). Four traditional 

mathematical operators “+, −,×,/” are included in the function set. The operator “/” 

works as a protected division, returning a value of 1 in the case of the dominator is zero. 

Also, the “max” and “min” functions are used. 

Table 2. The GP terminal and function sets. 

Node Name Description 

NOW The current time 

PT Processing time of the operation 

NPT Processing time of the next operation 

OWT The waiting time of the operation 

NOIQ Number of operations in the current queue 

NOINQ Number of operations in the next queue 

WIQ Work in the current queue 

WINQ Work in the next queue 

MRT Ready time of the machine 

ORT Ready time of the operation 

NOR Number of operations remaining 

WKR Work remaining (including the current operation) 

DD Due date of the job 

W Weight of the job 

SL Slack time of the job 

FDD Flow due date of the operation 

Function set +,−,×,/, max, min 

Details of other parameter settings of the algorithm are listed in Table 3. 

Table 3. Parameter settings. 

Parameter Value 

Initialization Ramped-half-and-half 

Population size 450 

Maximal depth 8 

Crossover/Mutation rate 90%/20% 

Selection Tournament selection (size = 5) 

Number of generations in stage 1 and stage 3 50/50 

Terminal/non-terminal selection rate 10%/90% 

4.3. Comparison Design 

In order to validate the achievements of the proposed approach (NGP-FS), three al-

gorithms are considered for comparison. The standard genetic programming algorithm 

(SGP) without feature selection is adopted as the baseline approach. The SGP with feature 

selection approach, designated as SGP-FS, is compared to investigate the impact of the 

online feature selection mechanism on the standard GP algorithm. Additionally, the novel 
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genetic algorithm (NGA) is compared to determine if dynamic diversity management in 

GP without feature selection enhances the algorithm’s ability to develop concise and high-

quality dispatching rules. All methods are evaluated and compared according to the so-

lution quality and interpretability of the rules. In addition, the rule performance is also 

compared to the representative benchmark rules, as given in Table 4. 

Table 4. Benchmark dispatching rules. 

Benchmark Rules Descriptions 

SPT Shortest processing time 

EDD Earliest due date 

FDD Earliest flow due date 

LPT Longest processing time 

FIFO First in, first out 

LILO Last in, last out 

CR Critical ratio 

RR Raghu and Rajendran 

MDD Modified due date 

SL Slack  

WATC Weighted apparent tardiness cost 

COVERT Cost over time 

PW Process waiting time 

NPT Next processing time 

WINQ Work in next queue 

PT + WINQ Processing time+WINQ 

2PT+WINQ+NPT Double processing time+WINQ +NPT 

PT+WINQ+SL Processing time+WINQ+SL 

SPT+PW+FDD Processing time+PW+FDD 

2PT+WINQ+NPT+WSL 2Processing time +WINQ+NPT+waiting slack 

5. Results and Discussion 

The experimental findings of the evolved rules for three objective functions are pre-

sented in this section. As mentioned earlier, the proposed NGP-FS approach is compared 

to SGP, SGP-FS, and NGP to verify its effectiveness. The three key performance metrics, 

including test performance, mean rule length (number of nodes), and computational time, 

are applied to compare the four GP-based methods. For these three metrics, the smaller 

the metrics, the better the evolved rules’ performance. For statistical significance testing, 

the Wilcoxon rank sum test is used, with a significance level of 0.05. 

5.1. Training Performance 

Table 5 shows the statistical analysis of the proposed algorithm NGP-FS compared 

to the three algorithms in the three objective functions. The marks “+”, “−”, and “=” inside 

the findings indicate that the associated result is considerably superior to, inferior to, or 

equal to its counterparts, respectively. The test performance of the evolved rule � is de-

fined as the percentage deviation from the reference rule, i.e., 100 ∙ (1 − �������(�)) , 

where �������(�) is estimated by Equation (12). The percentage deviation for the MT, 

MWT, and MFT targets is shown in Figure 3a–c, respectively. 

Table 5. Mean and standard deviation of the performance measures (training phase). 

Measures Obj SGP SGP-FS NGP NGP-FS 

Percentage 

deviation 

MT 115.78 ± 5.21 106.21 ± 12.37 126.92 ± 4.25 141.58 ± 3.69 (+,+,+) 

MWT 131.57 ± 15.23 128.18 ± 21.28 145.46 ± 12.77 162.33 ± 10.97 (+,+,+) 
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MFT 78.03 ± 2.91 66.14 ± 5.24 111.24 ± 3.61 119.57 ± 3.58 (+,+,+) 

Mean rule 

size 

MT 25.23 ± 3.35 20.85 ± 3.57 19.23 ± 3.15 17.26 ± 2.67 (+,+,+) 

MWT 27.19 ± 4.36 25.85 ± 3.49 22.23 ± 3.08 18.56 ± 2.78 (+,+,+) 

MFT 26.15 ± 3.46 21.36 ± 3.81 18.23 ± 1.79 14.63 ± 1.26 (+,+,+) 

Computational 

time 

MT 131.83 ± 2.67 125.66 ± 1.95 145.04 ± 6.77 132.64 ± 3.14 (+,=,+) 

MWT 189.43 ± 4.73 180.14 ± 3.91 210.18 ± 3.36 195.26 ± 3.44 (+,=,+) 

MFT 113.83 ± 3.67 110.66 ± 3.95 120.04 ± 1.97 114.64 ± 2.11 (+,=,+) 

Concerning the performance of the designed rules, the NGP-FS algorithm outper-

forms all other algorithms for the three analyzed goals. It is also noted that the SGP-FS 

algorithm performs poorly in all objectives. It seems counter-intuitive because feature se-

lection is considered an effective way to reduce irrelevant features in the GP algorithm to 

enhance the quality of the solution. However, this might indicate that the quality of the 

final population from stage 1 affects the accuracy of feature selection, even though the 

same adaptation strategy and mutation process are used for SGP-FS and NGP-FS in stage 

three. 

 
Figure 3. The percentage deviation of the GP algorithms for the three objectives in the training stage. 

(a): Percentage change in MT scenarios across generations, (b): Percentage change in MWT scenarios 

across generations, and (c): Percentage change in MFT scenarios across generations. 

Evolving compact and easily interpretable dispatching rules is important in schedul-

ing tasks. An important factor that concerns interpretability is the rule size, which is usu-

ally defined as the number of nodes included in a rule. The concise dispatching rules pro-

vide an advantage in reduced computational complexity and increased generalization. 

Figure 4a–c show the change in average rule size over generations under the MT, MWT, 

and MFT, respectively. It shows that the SGP tends to evolve much larger rules in all con-

sidered objectives compared to other algorithms. These results are in agreement with pre-

vious research, which has shown that the rules designed by simple GP algorithms are 

generally larger. Although the feature selection mechanism is used to eliminate the re-

dundant features in SGP-FS, the average rule size is still larger than NGP and NGP-FS in 

the three objectives. The second-lowest average rule size is found in the NGP algorithm, 

demonstrating that dynamic management of diversity in GP positively affects rule size. 

After the feature selection process (after the 50 generations), it turns out that the evolved 

rules of NGP-FS become more compact than the NGP algorithm. It is suggested that the 

NGP-FS algorithm can achieve small feature subsets and simultaneously generate com-

pact dispatching rules. 
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Figure 4. The average rule size of the GP algorithms for the three objectives in the training stage. 

(a): Mean rule size across generations for the MT scenarios, (b): Mean rule size across generations 

for the MWT scenarios, and (c): Mean rule size across generations for the MFT scenarios. 

In terms of computational budget, it is clear that the NGP algorithm has the highest 

computational time than the other algorithm in the three objectives, as shown in Figure 

5a–c. The main reason is that the replacement operator requires more individual evalua-

tion. Although the NGP-FS has no advantage in the first 50 generations, it achieved a sim-

ilar computational time as the SGP and SGP-FS after the feature selection process. This 

may indicate that, compared with a large feature set, using a limited terminal set with 

chosen features allows for the development of more effective rules. It is also noted that 

there is no big difference between the computational time of the SGP and SGP-FS, which 

indicates that selected features without accuracy cannot decrease the computational time 

of the algorithm. 

 
Figure 5. The computational time of the GP algorithms for the three objectives in the training stage. 

(a): Computational time across generations for the MT scenarios, (b): Computational time across 

generations for the MWT scenarios, and (c): Computational time across generations for the MFT 

scenarios. 

Finally, it can be concluded that the NGP-FS algorithm can evolve compact and high-

quality dispatching rules in a feasible computational time under different objectives. 

5.2. Test Performance 

In order to show the effectiveness of the proposed approach, the outcomes of test 

scenarios for the MT, MWT, and MFT goals are presented in this section. The average 

results (mean) and standard deviation (std) of the best dispatching rules developed by the 

four algorithms in 30 different runs for three goals are shown in Tables 6–8. Tests also 

show the objective value of the best benchmarking rules for each scenario. Under the MT 

objective, the NGP-FS algorithm significantly outperforms the BR, SGP, and SGP-FS algo-

rithms in all simulated scenarios. The MT objective value of NGP-FS varies from 15.57 ± 

3.67 (lowest value) to 400.81 ± 10.84 (highest value) in 27 scenarios, as shown in Table 6. 

In particular, when the scenarios become more complex, the gap between them is more 
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obvious, e.g., the objective value obtained by the best benchmark rule 2PT+ WINQ + NPT 

is 200% larger than those obtained with rules evolved by NGP-FS in <100, 2, 99%> and 

<50, 2, 99%> scenarios. The scenarios with significant gaps are shown in bold. Compared 

with the NGP algorithm, NGP-FS obtained better MT results in 24 scenarios, with no sig-

nificant difference in 3 scenarios. The rules produced using the SGP-FS algorithm have 

the worst performance compared to the rules developed by other algorithms and com-

pared benchmark rules. 

Regarding the MWT objective, the NGP-FS algorithm obtained the best results com-

pared to other algorithms in all 27 instances. Table 7 shows the MWT objective value of 

NGP-FS varies from 618.48 ± 14.36 (lowest value) to 3258.24 ± 68.79 (highest value) in 27 

scenarios. It is significant to mention that the gap between the performance of the NGP-

FS algorithm is much clearer than the others. Especially in extreme scenarios with high 

shop utilization levels and tight due dates, the results of the NGP-FS algorithm are clearly 

better than those obtained by the NGP and SGP algorithms. As depicted in Table 7, the 

significantly better results in 12 challenging scenarios are marked in bold, which means 

that the NGP-FS can produce competitive rules within the time limit. As expected, the 

rules developed by SGP-FS still have the worst solution quality than those obtained with 

the other algorithms in all scenarios. 

For the scenarios with MFT as objective, the NGP-FS still has the best objective values 

(changing from 216.75 ± 3.12 to 759.25 ± 6.19) among the considered methods, as shown 

in Table 8, but the difference in rule performance is not significant compared to scenarios 

with MT and MWT objectives. Additionally, the gaps widen in the scenarios with high 

shop utilization (marked in bold) compared to low utilization scenarios. It is worth noting 

that changing the tightness factor does not have much of an impact on the job flow time, 

which is in line with our domain knowledge. 

From the experiment results, the following findings can be seen: (1) The benchmark 

rules achieve higher standard deviations than the GP-based methods in the three afore-

mentioned objectives, which indicates that the manually designed dispatching rules are 

less robust. More particular, human-made dispatching rules are unable to deliver con-

sistent results under a variety of working circumstances. (2) Further observation of the 

performance of the rules indicates that the NGP rules are also able to achieve good per-

formance among the considered algorithms. This supports our assertion that the GP di-

versity management strategy can have an important and favorable influence on the qual-

ity of the solutions. (3) The average improvement of the NGP-FS rules over the best-

evolved rules by the other three GP-based algorithms is 13.28%, 12.57%, and 15.62% in the 

mean tardiness (MT), mean flow time (MFT), and mean weighted tardiness (MWT) objec-

tive, respectively. (4) Finally, compared with SGP, SGP-FS, NGP, and benchmark rules, 

the proposed NGP-FS algorithm is able to generate high-quality rules with impressive 

small sizes in a feasible computational time when dealing with different job shop condi-

tions. 

Table 6. Mean and standard deviation of the MT objective value of the considered algorithms in the 

testing phase. 

Scenarios RBR SGP SGP-FS NGP NGP-FS 

(20, 2, 80%) 56.34 ± 9.97 (PT+WINQ) 51.78 ± 5.35 54.86 ± 2.43 48.54 ± 5.69 44.88 ± 3.62 (+, +, +, +) 

(20, 2, 90%) 148.12 ± 17.45 (PT+WINQ) 135.84 ± 7.81 142.58 ± 4.14 128.77 ± 15.46 121.56 ± 16.83 (+, +, +, +) 

(20, 2, 99%) 204.33 ± 22.01 (PT+WINQ) 195.36 ± 12.13 201.61 ± 18.56 145.85 ± 15.27 88.60 ± 6.99 (+, +, +, +) 

(20, 4, 80%) 87.64 ± 11.79 (PT+WINQ) 88.67 ± 6.35 92.15 ± 9.25 86.84 ± 8.49 82.93 ± 7.15 (+, +, +, +) 

(20, 4, 90%) 120.62 ± 18.19 (2PT+NPT+WINQ) 121.28 ± 7.59 125.69 ± 8.82 115.98 ± 17.71 116.32 ± 18.56 (+, +, +, =) 

(20, 4, 99%) 329.25 ± 16.38 (PT+WINQ) 322.13 ± 2.3 338.15 ± 27.43 313.58 ± 20.98 314.25 ± 17.92 (+, +, +, =) 

(20, 6, 80%) 30.72 ± 19.97 (COVERT) 22.15 ± 9.92 28.60 ± 6.91 20.45 ± 15.37 16.85 ± 17.92 (+, +, +, +) 

(20, 6, 90%) 91.99 ± 14.56 (COVERT) 90.33 ± 11.01 92.15 ± 10.27 87.67 ± 15.09 85.44 ± 12.63 (+, +, +, =) 

(20, 6, 99%) 409.14 ± 25.32(RR) 409.52 ± 15.55 411.24 ± 18.48 405.79 ± 12.17 400.81 ± 10.84 (+, +, +, +) 

(50, 2, 80%) 84.48 ± 21.63 (PT+WINQ) 83.95 ± 5.69 85.89 ± 4.16 78.22 ± 7.15 75.47 ± 5.89 (+, +, +, +) 

(50, 2, 90%) 71.51 ± 14.99 (PT+WINQ) 69.17 ± 5.88 72.29 ± 7.25 69.19 ± 3.84 65.18 ± 2.97 (+, +, +, +) 
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(50, 2, 99%) 246.77 ± 62.59 (2PT+NPT+WINQ) 233.06 ± 19.42 255.47 ± 51.92 185.12 ± 17.59 135.29 ± 18.64 (+, +, +, +) 

(50, 4, 80%) 48.98 ± 11.04 (2PT+NPT+WINQ) 48.61 ± 2.95 52.17 ± 8.32 38.1 ± 4.09 35.74 ± 4.14 (+, +, +, +) 

(50, 4, 90%) 303.6 ± 45.68 (COVERT) 299.65 ± 28.79 310.55 ± 35.07 287.35 ± 21.22 285.16 ± 18.87 (+, +, +, =) 

(50, 4, 99%) 57.97 ± 21.25 (SL/RO) 55.15 ± 9.63 65.84 ± 10.16 50.63 ± 8.25 45.23 ± 9.12 (+, +, +, +) 

(50, 6, 80%) 148.89 ± 32.45 (PT+WINQ) 145.52 ± 15.06 156.29 ± 11.81 142.87 ± 10.93 137.65 ± 16.34 (+, +, +, +) 

(50, 6, 90%) 67.11 ± 14.38 (SL/RO) 68.29 ± 14.43 72.37 ± 11.67 60.25 ± 12.29 54.15 ± 14.15 (+, +, +, +) 

(50, 6, 99%) 75.95 ± 14.38 (COVERT) 74.17 ± 8.88 82.16 ± 9.13 69.15 ± 7.08 64.25 ± 6.89 (+, +, +, +) 

(100, 2, 80%) 51.67 ± 7.19 (2PT+NPT+WINQ) 48.97 ± 5.86 53.79 ± 5.39 31.18 ± 4.61 25.16 ± 3.74 (+, +, +, +) 

(100, 2, 90%) 141.25 ± 26.94 (PT+WINQ) 138.15 ± 17.13 145.17 ± 16.99 126.48 ± 18.79 117.26 ± 17.52 (+, +, +, +) 

(100, 2, 99%) 147.37 ± 24.86 (2PT+NPT+WINQ) 142.38 ± 15.79 152.49 ± 28.01 105.69 ± 14.21 73.45 ± 15.13 (+, +, +, +) 

(100, 4, 80%) 30.64 ± 25.71 (PT+WINQ) 29.32 ± 2.67 35.14 ± 9.59 22.37 ± 5.89 15.57 ± 3.67 (+, +, +, +) 

(100, 4, 90%) 242.83 ± 33.71 (COVERT) 240.18 ± 27.06 251.29 ± 28.17 229.16 ± 22.40 225.84 ± 21.28 (+, +, +, +) 

(100, 4, 99%) 301.55 ± 41.79 (PT+WINQ) 283.67 ± 15.47 302.47 ± 24.09 162.28 ± 17.13 156.42 ± 16.67 (+, +, +, +) 

(100, 6, 80%) 227.26 ± 48.99 (COVERT) 222.81 ± 28.16 232.71 ± 38.30 211.06 ± 32.95 198.08 ± 34.56 (+, +, +, +) 

(100, 6, 90%) 198.05 ± 76.56 (COVERT) 195.78 ± 15.20 215.48 ± 26.38 187.26 ± 18.81 181.47 ± 21.28 (+, +, +, +) 

(100, 6, 99%) 42.54 ± 27.48 (COVERT) 37.85 ± 4.73 49.92 ± 13.65 34.91 ± 8.29 32.45 ± 7.59 (+, +, +, +) 

Table 7. Mean and standard deviation of the MWT objective value of the considered algorithms in 

the testing phase. 

Scenarios RBR SGP SGP-FS NGP NGP-FS 

(20, 2, 80%) 1583.27 ± 85.48 (WATC) 1526.94 ± 87.61 1694.65 ± 121.26 1489 ± 99.34 1146.48 ± 71.27 (+, +, +, +) 

(20, 2, 90%) 1889.42 ± 78.99 (WATC) 1874.36 ± 88.34 1983.19 ± 112.75 1764.22 ± 95.57 1609.45 ± 57.31 (+, +, +, +) 

(20, 2, 99%) 1914.32 ± 78.31 (WATC) 1904.53 ± 85.14 1935.96 ± 103.67 1837.29 ± 95.28 1615.84 ± 13.07 (+, +, +, +) 

(20, 4, 80%) 2187.37 ± 35.98 (PT+WINQ) 2199.39 ± 38.73 2213.47 ± 45.31 2116.48 ± 35.16 1959.24 ± 46.63 (+, +, +, +) 

(20, 4, 90%) 2796.24 ± 19.58 (2PT+NPT+WINQ) 2834.07 ± 22.15 2867.89 ± 24.14 2791.34 ± 20.36 2579.85 ± 27.61 (+, +, +, +) 

(20, 4, 99%) 948.76 ± 27.48 (PT+WINQ) 951.93 ± 21.95 995.15 ± 26.31 927.64 ± 35.18 785.34 ± 26.18 (+, +, +, +) 

(20, 6, 80%) 1489.76 ± 23.79 (COVERT) 1507.38 ± 27.13 1535.07 ± 38.95 1465.67 ± 25.37 1237.85 ± 17.92 (+, +, +, +) 

(20, 6, 90%) 3637.95 ± 48.99 (COVERT) 3625.11 ± 55.38 3637.59 ± 65.57 3512.48 ± 79.05 3258.24 ± 68.79 (+, +, +, +) 

(20, 6, 99%) 1796.61 ± 16.47(RR) 1783.29 ± 11.23 1899.82 ± 17.89 1727.33 ± 9.34 1432.11 ± 7.95 (+, +, +, +) 

(50, 2, 80%) 1484.68 ± 16.87 (PT+WINQ) 1413.21 ± 15.06 1485.29 ± 24.61 1378.52 ± 17.65 957.39 ± 15.24 (+, +, +, +) 

(50, 2, 90%) 1768.52 ± 24.19 (PT+WINQ) 1769.37 ± 25.48 1872.94 ± 47.58 1699.31 ± 23.57 1575.28 ± 12.96 (+, +, +, +) 

(50, 2, 99%) 2395.77 ± 18.59 (2PT+NPT+WINQ) 2395.56 ± 39.71 2428.27 ± 41.82 2385.52 ± 27.65 1835.56 ± 19.24 (+, +, +, +) 

(50, 4, 80%) 1548.98 ± 21.44 (2PT+NPT+WINQ) 1597.61 ± 22.64 1682.17 ± 28.26 1538.1 ± 24.19 1335.64 ± 24.24 (+, +, +, +) 

(50, 4, 90%) 1524.67 ± 32.78 (COVERT) 1529.53 ± 38.79 1580.28 ± 35.17 1487.55 ± 31.72 1285.47 ± 28.87 (+, +, +, +) 

(50, 4, 99%) 1256.97 ± 19.34 (SL/RO) 1255.15 ± 19.63 1267.74 ± 21.26 1150.67 ± 18.25 945.73 ± 19.32 (+, +, +, +) 

(50, 6, 80%) 1643.89 ± 12.35 (PT+WINQ) 1605.12 ± 15.27 1658.29 ± 18.58 1599.28 ± 13.83 1137.45 ± 15.62 (+, +, +, +) 

(50, 6, 90%) 1667.31 ± 34.38 (SL/RO) 1660.37 ± 34.83 1665.37 ± 32.67 1560.25 ± 22.69 1454.15 ± 24.35 (+, +, +, +) 

(50, 6, 99%) 972.59 ± 14.83 (COVERT) 989.37 ± 15.28 1082.16 ± 11.13 969.45 ± 6.27 689.25 ± 8.89 (+, +, +, +) 

(100, 2, 80%) 1651.37 ± 17.28 (2PT+NPT+WINQ) 1648.26 ± 15.39 1686.81 ± 15.29 1531.48 ± 24.61 1225.86 ± 23.84 (+, +, +, +) 

(100, 2, 90%) 1526.75 ± 26.18 (PT+WINQ) 1518.15 ± 27.13 1545.27 ± 26.99 1326.34 ± 28.81 1117.26 ± 27.52 (+, +, +, +) 

(100, 2, 99%) 1466.67 ± 14.96 (2PT+NPT+WINQ) 1452.68 ± 17.89 1487.59 ± 18.21 1385.71 ± 14.21 983.65 ± 9.13 (+, +, +, +) 

(100, 4, 80%) 2030.64 ± 25.61 (PT+WINQ) 2029.32 ± 22.35 2135.74 ± 29.59 1982.77 ± 25.15 1715.57 ± 23.67 (+, +, +, +) 

(100, 4, 90%) 2442.83 ± 53.92 (COVERT) 2483.58 ± 57.06 2541.29 ± 58.47 2429.56 ± 42.47 2285.95 ± 41.18 (+, +, +, +) 

(100, 4, 99%) 2519.55 ± 33.37 (PT+WINQ) 2513.17 ± 35.28 2598.37 ± 34.29 2409.78 ± 37.53 2156.42 ± 36.87 (+, +, +, +) 

(100, 6, 80%) 927.16 ± 16.05 (COVERT) 928.81 ± 18.26 999.87 ± 18.27 911.26 ± 12.96 618.48 ± 14.36 (+, +, +, +) 

(100, 6, 90%) 1798.25 ± 27.17 (COVERT) 1795.78 ± 25.19 1815.48 ± 27.38 1687.26 ± 19.71 1481.47 ± 11.28 (+, +, +, +) 

(100, 6, 99%) 2022.54 ± 37.56 (COVERT) 2017.85 ± 34.73 2249.92 ± 33.74 1934.91 ± 28.29 1632.55 ± 17.29 (+, +, +, +) 

Table 8. Mean and standard deviation of the MFT objective value of the considered algorithms in 

the testing phase. 

Scenarios RBR SGP SGP-FS NGP NGP-FS 

(20, 2, 80%) 311.21 ± 9.45 (PT+WINQ) 305.74 ± 3.07 309.27 ± 3.14 301.35 ± 2.37 285.56 ± 1.84 (+, +, +, +) 

(20, 2, 90%) 341.89 ± 11.17 (PT+WINQ) 336.68 ± 4.69 339.56 ± 5.27 331.63 ± 4.21 321.18 ± 2.12 (+, +, +, +) 

(20, 2, 99%) 377.33 ± 12.01 (PT+WINQ) 375.68 ± 5.24 371.61 ± 5.49 365.27 ± 4.78 338.25 ± 4.38 (+, +, +, +) 

(20, 4, 80%) 294.64 ± 8.19 (2PT+NPT+WINQ 288.67 ± 5.67 292.25 ± 5.16 286.63 ± 3.48 281.83 ± 3.27 (+, +, +, +) 

(20, 4, 90%) 331.62 ± 10.86 (PT+WINQ) 324.18 ± 5.32 327.69 ± 8.91 321.37 ± 7.65 315.42 ± 7.78 (+, +, +, +) 

(20, 4, 99%) 398.75 ± 15.38 (PT+WINQ) 389.53 ± 7.13 394.34 ± 6.13 387.26 ± 5.17 365.37 ± 4.19 (+, +, +, +) 

(20, 6, 80%) 230.52 ± 13.97 (PT+WINQ) 225.15 ± 4.96 228.60 ± 5.18 223.75 ± 3.78 216.75 ± 3.12 (+, +, +, +) 

(20, 6, 90%) 305.79 ± 14.28 (PT+WINQ) 296.33 ± 11.01 301.75 ± 5.37 294.67 ± 4.15 285.84 ± 2.47 (+, +, +, +) 

(20, 6, 99%) 513.84 ± 28.76 (PT+WINQ) 509.52 ± 6.35 511.34 ± 8.48 495.67 ± 5.17 456.21 ± 4.23 (+, +, +, +) 

(50, 2, 80%) 351.28 ± 12.64 (PT+WINQ) 341.05 ± 5.23 347.69 ± 5.99 335.12 ± 5.15 325.26 ± 4.16 (+, +, +, +) 

(50, 2, 90%) 489.72 ± 17.05 (PT+WINQ) 478.23 ± 3.57 485.49 ± 5.25 473.19 ± 2.74 465.38 ± 1.97 (+, +, +, +) 
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(50, 2, 99%) 595.27 ± 37.23 (2PT+NPT+WINQ) 587.36 ± 4.89 591.21 ± 4.12 585.12 ± 3.37 535.18 ± 2.37 (+, +, +, +) 

(50, 4, 80%) 407.98 ± 45.24 (2PT+NPT+WINQ) 398.26 ± 4.95 405.23 ± 4.17 395.15 ± 3.94 386.69 ± 3.81 (+, +, +, +) 

(50, 4, 90%) 431.16 ± 48.28 (PT+WINQ) 425.15 ± 3.79 428.15 ± 5.08 421.67 ± 3.88 412.66 ± 3.79 (+, +, +, +) 

(50, 4, 99%) 617.57 ± 59.25 (PT+WINQ) 604.27 ± 9.73 615.24 ± 10.16 591.23 ± 7.13 525.73 ± 6.12 (+, +, +, +) 

(50, 6, 80%) 358.19 ± 13.79 (PT+WINQ) 348.12 ± 6.06 356.29 ± 8.81 345.81 ± 5.92 337.25 ± 5.14 (+, +, +, +) 

(50, 6, 90%) 497.11 ± 31.67 (PT+WINQ) 492.29 ± 14.43 496.17 ± 9.23 485.36 ± 7.19 474.37 ± 6.28 (+, +, +, +) 

(50, 6, 99%) 695.05 ± 67.36 (PT+WINQ) 689.37 ± 6.98 693.26 ± 7.27 686.35 ± 5.98 608.48 ± 5.12 (+, +, +, +) 

(100, 2, 80%) 451.27 ± 45.48 (2PT+NPT+WINQ) 444.21 ± 6.17 453.29 ± 6.38 436.18 ± 5.62 425.86 ± 4.74 (+, +, +, +) 

(100, 2, 90%) 641.25 ± 56.74 (PT+WINQ) 632.15 ± 7.05 638.67 ± 7.99 626.48 ± 6.73 618.36 ± 5.77 (+, +, +, +) 

(100, 2, 99%) 832.17 ± 85.86 (2PT+NPT+WINQ) 812.38 ± 5.99 826.19 ± 6.01 798.27 ± 5.32 713.25 ± 4.84 (+, +, +, +) 

(100, 4, 80%) 439.24 ± 48.76 (PT+WINQ) 429.12 ± 6.67 435.24 ± 7.27 422.27 ± 6.19 415.28 ± 5.16 (+, +, +, +) 

(100, 4, 90%) 553.83 ± 62.71 (2PT+NPT+WINQ) 546.18 ± 7.08 551.29 ± 8.23 539.26 ± 7.12 527.34 ± 6.18 (+, +, +, +) 

(100, 4, 99%) 815.75 ± 91.87 (PT+WINQ) 808.27 ± 9.26 812.47 ± 10.09 804.28 ± 9.58 756.12 ± 8.12 (+, +, +, +) 

(100, 6, 80%) 537.26 ± 76.19 (PT+WINQ) 528.71 ± 8.09 532.61 ± 8.31 521.76 ± 7.25 498.58 ± 6.76 (+, +, +, +) 

(100, 6, 90%) 668.25 ± 87.56 (PT+WINQ) 661.78 ± 15.20 665.48 ± 26.38 657.26 ± 8.19 625.17 ± 7.13 (+, +, +, +) 

(100, 6, 99%) 852.54 ± 101.27 (PT+WINQ) 836.75 ± 7.93 849.92 ± 8.15 824.11 ± 7.72 759.25 ± 6.19 (+, +, +, +) 

5.3. Unique Feature Analysis 

To further verify the superiority of the NGP-FS algorithm in the complexity of gen-

erated rules, the number of unique features of the best-evolved rules using SGP, SGP-FS, 

NGP, and NGP-FS methods is analyzed. Figure 6a–c exhibit the feature distribution of the 

30 best-evolved rules in three considered objectives, respectively. It is evident that the 

created rules have much less unique features than other algorithms, indicating that the 

NGP-FS algorithm has more potential to achieve smaller rules for interpretation. In addi-

tion, the gaps between relevant and irrelevant features are comparatively larger than the 

other related approaches. For the scenarios with MT as the objective, the NGP-FS rules 

achieve a reduction in the number of features by 35.75%, 31.26%, and 12.69% compared 

to SGP, SGP-FS, and NGP methods. Moreover, the most important features, PT, WINQ, 

NOR, DD, NOW, and WKR, are apparently visualized compared to the unimportant fea-

tures ORT, OWT, NPT, and W. Regarding the MWT objective, the rules evolved by the 

NGP-FS algorithm decrease the number of features in best-evolved rules with 38.24%, 

29.78%, and 13.35% compared to SGP, SGP-FS, and NGP methods, respectively. The GP-

based algorithms choose W as an important feature to minimize mean-weighted tardiness 

rather than mean tardiness and mean flow time as expected, whereas the MR, OWT, and 

FDD features are non-significant. As for the MFT objective, the NGP-FS rules have 33.16%, 

25.14%, and 15.28% fewer features than the rules produced by the SGP, SGP-FS, and NGP 

algorithms. The features PT, WKR, and WINQ are included extensively in the best-de-

signed rules of the four algorithms, which indicate that these features have a great impact 

on minimizing mean flow time. 

From the above analysis, it is shown that the proposed approach has the ability to 

identify the relevant and irrelevant features of the three objective functions. Most im-

portantly, the NGP-FS algorithm shows an outstanding ability to evolve compact and in-

terpretable rules in feasible computational time. 
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Figure 6. Terminal distribution in the 30 best-evolved rules for the SGP, SGP-FS, NGP, and NGP-FS 

algorithms for the three objectives. (a): Terminal distribution for the MT scenarios, (b): Terminal 

distribution for the MWT scenarios, and (c): Terminal distribution for the MFT scenarios. 

6. Further Analyses 

6.1. Feature Analyses 

Figure 7a–c exhibit the feature selection results of the NGP-FS algorithm in 30 inde-

pendent runs for the MT, MWT, and MFT objectives, respectively. Each matrix’s row de-

notes a run, whereas each column denotes a feature. (Table 2 for details). If a feature � is 

chosen in the �ith run, a point is drawn at the location where the feature � and �th run 

coincide. For the MT objective results depicted in Figure 7a, PT, WINQ, and SL are se-

lected in all 30 runs. It is consistent with the results of previous research [35,37] that PT, 

WINQ, and SL are the most significant terminals to minimize the mean tardiness. In most 

runs, NOR, DD, NOW, and WKR features are selected. This means that the jobs with tight 

due dates and less remaining workload are selected. This means that the jobs with tight 

due dates and less remaining workload are preferred to be processed in order to reduce 

the mean tardiness in the job shop. The features ORT, OWT, NPT, and W are not chosen 

in most runs, which indicates that they may be irrelevant for the MT objective. 

As shown in Figure 7b, PT and W are the top significant features to minimize the 

MWT objective, which aligns with our subject expertise. Expect for these two features, 

WIQN, NOINQ, and NPT are also selected in most runs, which indicates that the work-

load information in the next queue is very important to minimizing the MWT objective. 

In most runs, MRT, OWT, and FDD features are not chosen, which indicates that they 

have no contribution to the best-evolved rules for the MWT objective. Unlike the findings 

in early research [5], the feature DD is not included in the irrelevant feature sets, but it is 

selected more than 40% time. This may be due to the configuration of the experiment, 

which includes the tight and light due date factor is contained. 

For the MFT objective, PT, NPT, WINQ, and WKR play an important role, as depicted 

in Figure 7c. PT and WKR were selected all over the 30 runs, indicating that the jobs with 

short processing time and less work remaining have a higher chance of being processed 

early. WINQ and NPT are selected in most runs, which indicates that the workload infor-

mation in the next queue is an important factor for the objective of the MFT. However, the 

features WIQ, NOIQ, SL, and W are rarely selected, which indicates to some extent that 

these features are irrelevant or redundant in MFT scenarios and may not contribute to the 

construction of excellent best-evolved rules. Moreover, the importance of the remaining 

features is not clear. 
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Figure 7. The matrix plot of the feature selection results of the SGP-FS Algorithm for the three ob-

jectives. (a): Selected terminals using the SGP-FS algorithm for the MT scenarios, (b): Selected ter-

minals using the SGP-FS algorithm for the MWT scenarios, and (c): Selected terminals using the 

SGP-FS algorithm for the MFT scenarios. 

6.2. Rule Analysis 

In order to gain more insight into the rules’ complexity and interpretability, this pa-

per simplifies the rules using the numerical reduction technique mentioned by Nguyen 

[18]. After the rules have been simplified, they are analyzed on size (number of nodes), 

depth, and leaves (number of terminals). As it is more challenging to optimize than other 

objectives, the MWT objective is used as an example. Previous analysis indicates that the 

NGP-based algorithm has a much larger advantage over the SGP-based algorithm in 

terms of regular structure. Thus, Equations (13) and (14) show the two example rules ob-

tained by NGP and NGP-FS for further comparison in the MWT objective, respectively. 

Note that rule 2 has a smaller size than rule 1. Furthermore, rule 2 makes extensive use of 

useful building blocks like PT/W and WINQ/W, which are well-known to be essential 

elements for reducing MWT objective value. In contrast, rule 1 still contains features that 

are not key features (such as NOR, WIQ, and FDD), indicating that the actual part that 

contributes to the priority function in rule 1 is smaller than that in rule 2. This may be the 

reason why rule 1 performs worse than rule 2 on training testing. In summary, the pro-

posed NGP-FS approach easily finds more meaningful building blocks than the NGP al-

gorithm through the key feature set. 

    

1

2

max

min , .

NOIQ MRT NOIQ MRT
r W NOR

W W

WKR
NOIQ FDD PT NOINQ ORT WIQ

W

    
      
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     
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W

PT WINQ
PT WINQ NOR

W W

 


  
    

    

(14)

7. Conclusions and Future Work 

The aim of this paper is to analyze if, by using such a combined procedure, it is pos-

sible to acquire interpretable and high-quality rules for DJSS automatically. The goal was 

achieved by integrating a novel GP method, the GP via dynamic diversity management, 

with feature selection. The novel GP method maintains population diversity using a re-

placement strategy that combines phenotypic distance-based penalties with a multi-ob-

jective Pareto selection based on fitness and simplicity. Then, diverse and promising indi-

viduals gained from the novel GP method are used for feature selection to select important 
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terminals. Finally, based on the evolutionary information from the novel GP and selected 

features, the proposed approach successfully achieved competitive dispatching rules. The 

proposed approach (NGP-FS) was compared to three algorithms (SGP, SGP-FS, NGP) in 

MT scenarios, MWT scenarios, and MFT scenarios from the aspect of rule size, solution 

quality of designed rules, and computation time. 

Experimental results show that the proposed approach can design more interpretable 

and high-quality rules and achieve high robustness to complex scenarios. Considering the 

distribution of features in the best rules, the NGP-FS obtains compact rules with a small 

terminal set of selected features. Based on the rule analysis, it reveals that the NGP-FS has 

the ability to find more meaningful building blocks to improve rule performance. Besides 

having a compact structure, the NGP-FS evolved rules present overall improvement com-

pared to the rules evolved by the other three algorithms (SGP, SGP-FS, NGP) under three 

objective functions (MT, MWT, MFT). 

As future research, the suggested approach can be extended to develop numerous 

dispatching rules for a variety of workshop scenarios and dynamically adapt to the shop’s 

status. These job shop situations might include the arrival of urgent work, machine prob-

lems, order cancellations, or lot size adjustments. Furthermore, this work should be tested 

in different types of job shops, such as flexible job shop scheduling or parallel machine 

scheduling, while optimizing single or multi-objectives. 

Author Contributions: A.S.: Conceptualization, methodology, data curation, formal analysis, vali-

dation, writing—original draft, writing—review and editing. Y.Y.: methodology, project admin-

istration, supervision. M.L. and J.M.: resources and supervision. Z.B. and Y.L.: methodology and 

project administration. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China (no. 

71961029), the Xinjiang Scientific and Technology Project (no. 2020B02013), and the Xinjiang Scien-

tific and Technology Project (no. 2021B01003). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Acknowledgments: The authors are grateful to the Xinjiang Digital and Manufacturing Center for 

the use of SIEMENS Plant Simulation software. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Branke, J.; Nguyen, S.; Pickardt, C.W.; Zhang, M. Automated design of production scheduling heuristics: A review. IEEE Trans. 

Evol. Comput. 2016, 20, 110–124. 

2. Zhang, F.; Nguyen, S.; Mei, Y.; Zhang, M. Genetic Programming for Production Scheduling; Springer: Singapore, 2021. 

3. Xiong, H.; Shi, S.; Ren, D.; Hu, J. A survey of job shop scheduling problem: The types and models. Comput. Oper. Res. 2022, 142, 

105731. 

4. Kim, J.G.; Jun, H.B.; Bang, J.Y.; Shin, J.H.; Choi, S.H. Minimizing tardiness penalty costs in job shop scheduling under maximum 

allowable tardiness. Processes 2020, 8, 1398. 

5. Ghasemi, A.; Ashoori, A.; Heavey, C. Evolutionary learning based simulation optimization for stochastic job shop scheduling 

problems. Appl. Soft Comput. 2021, 106, 107309. 

6. Shady, S.; Kaihara, T.; Fujii, N.; Kokuryo, D. Automatic design of dispatching rules with genetic programming for dynamic job 

shop scheduling. IFIP Adv. Inf. Commun. Technol. 2020, 591, 399–407. 

7. Burke, E.K.; Gendreau, M.; Hyde, M.; Kendall, G.; Ochoa, G.; Özcan, E.; Qu, R. Hyper-heuristics: A survey of the state of the art. 

J. Oper. Res. Soc. 2013, 64, 1695–1724. 

8. Braune, R.; Benda, F.; Doerner, K.F.; Hartl, R.F. A genetic programming learning approach to generate dispatching rules for 

flexible shop scheduling problems. Int. J. Prod. Econ. 2022, 243, 108342. 

9. Luo, J.; Vanhoucke, M.; Coelho, J.; Guo, W. An efficient genetic programming approach to design priority rules for resource-

constrained project scheduling problem. Expert Syst. Appl. 2022, 198, 116753. 

10. Zhu, X.; Guo, X.; Wang, W.; Wu, J. A Genetic Programming-Based Iterative Approach for the Integrated Process Planning and 

Scheduling Problem. IEEE Trans. Autom. Sci. Eng. 2022, 19, 2566–2580. 



Processes 2023, 11, 65 22 of 23 
 

 

11. Lara-Cárdenas, E.; Sánchez-Díaz, X.; Amaya, I.; Cruz-Duarte, J.M.; Ortiz-Bayliss, J.C. A genetic programming framework for 

heuristic generation for the job-shop scheduling problem. Adv. Soft Comput. 2020, 12468, 284–295. 

12. Zhang, F.; Mei, Y.; Nguyen, S.; Zhang, M. Importance-Aware Genetic Programming for Automated Scheduling Heuristics 

Learning in Dynamic Flexible Job Shop Scheduling. In Proceedings of the International Conference on Parallel Problem Solving 

from Nature, Dortmund, Germany, 10–14 September 2022; pp. 48–62. 

13. Omuya, E.O.; Okeyo, G.O.; Kimwele, M.W. Feature selection for classification using principal component analysis and 

information gain. Expert Syst. Appl. 2021, 174, 114765. 

14. Salimpour, S.; Kalbkhani, H.; Seyyedi, S.; Solouk, V. Stockwell transform and semi-supervised feature selection from deep 

features for classification of BCI signals. Sci. Rep. 2022, 12, 11773. 

15. Song, X.F.; Zhang, Y.; Gong, D.W.; Gao, X.Z. A fast hybrid feature selection based on correlation-guided clustering and particle 

swarm optimization for high-dimensional data. IEEE Trans. Cybern. 2021, 52, 9573–9586. 

16. Vandana, C.P.; Chikkamannur, A.A. Feature selection: An empirical study. Int. J. Eng. Trends Technol. 2021, 69, 165–170. 

17. Friedlander, A.; Neshatian, K.; Zhang, M. Meta-learning and feature ranking using genetic programming for classification: 

Variable terminal weighting. In Proceedings of the 2011 IEEE Congress of Evolutionary Computation (CEC), New Orleans, LA, 

USA, 5–8 June 2011; pp. 941–948. 

18. Mei, Y.; Zhang, M.; Nyugen, S. Feature selection in evolving job shop dispatching rules with genetic programming. In 

Proceedings of the Genetic and Evolutionary Computation Conference 2016, Denver, CO, USA, 20–24 July 2016; pp. 365–372. 

19. Mei, Y.; Nguyen, S.; Xue, B.; Zhang, M. An Efficient Feature Selection Algorithm for Evolving Job Shop Scheduling Rules with 

Genetic Programming. IEEE Trans. Emerg. Top. Comput. Intell. 2017, 1, 339–353. 

20. Zhang, F.; Mei, Y.; Nguyen, S.; Zhang, M. Evolving scheduling heuristics via genetic programming with feature selection in 

dynamic flexible job-shop scheduling. IEEE Trans. Cybern. 2020, 51, 1797–1811. 

21. Xia, J.; Yan, Y.; Ji, L. Research on control strategy and policy optimal scheduling based on an improved genetic algorithm. Neural 

Comput. Appl. 2022, 34, 9485–9497. 

22. Zeiträg, Y.; Figueira, J.R.; Horta, N.; Neves, R. Surrogate-assisted automatic evolving of dispatching rules for multi-objective 

dynamic job shop scheduling using genetic programming. Expert Syst. Appl. 2022, 209, 118194. 

23. Rafsanjani, M.K.; Riyahi, M. A new hybrid genetic algorithm for job shop scheduling problem. Int. J. Adv. Intell. Paradig. 2020, 

16, 157–171. 

24. Lee, J.; Perkins, D. A simulated annealing algorithm with a dual perturbation method for clustering. Pattern Recognit. 2021, 112, 

107713. 

25. Yi, N.; Xu, J.; Yan, L.; Huang, L. Task optimization and scheduling of distributed cyber–physical system based on improved ant 

colony algorithm. Future Gener. Comput. Syst. 2020, 109, 134–148. 

26. Shady, S.; Kaihara, T.; Fujii, N.; Kokuryo, D. A hyper-heuristic framework using GP for dynamic job shop scheduling problem. 

In Proceedings of the 64th Annual Conference of the Institute of Systems, Control and Information Engineers, Kobe, Japan, 20–

22 May 2020; pp. 248–252. 

27. Liu, L.; Shi, L. Automatic Design of Efficient Heuristics for Two-Stage Hybrid Flow Shop Scheduling. Symmetry 2022, 14, 632. 

28. Branke, J.; Hildebrandt, T.; Scholz-Reiter, B. Hyper-heuristic evolution of dispatching rules: A comparison of rule 

representations. Evol. Comput. 2015, 23, 249–277. 

29. Nguyen, S.; Mei, Y.; Zhang, M. Genetic programming for production scheduling: A survey with a unified framework. Complex 

Intell. Syst. 2017, 3, 41–66. 

30. Shady, S.; Kaihara, T.; Fujii, N.; Kokuryo, D. Evolving Dispatching Rules Using Genetic Programming for Multi-objective 

Dynamic Job Shop Scheduling with Machine Breakdowns. Procedia CIRP 2021, 104, 411–416. 

31. Wen, X.; Lian, X.; Qian, Y.; Zhang, Y.; Wang, H.; Li, H. Dynamic scheduling method for integrated process planning and 

scheduling problem with machine fault. Robot. Comput. Integr. Manuf. 2022, 77, 102334. 

32. Burdett, R.L.; Corry, P.; Eustace, C.; Smith, S. Scheduling pre-emptible tasks with flexible resourcing options and auxiliary 

resource requirements. Comput. Ind. Eng. 2021, 151, 106939. 

33. Park, J.; Mei, Y.; Nguyen, S.; Chen, G.; Zhang, M. An investigation of ensemble combination schemes for genetic programming 

based hyper-heuristic approaches to dynamic job shop scheduling. Appl. Soft Comput. 2018, 63, 72–86. 

34. Zhou, Y.; Yang, J.J.; Huang, Z. Automatic design of scheduling policies for dynamic flexible job shop scheduling via surrogate-

assisted cooperative co-evolution genetic programming. Int. J. Prod. Res. 2020, 58, 561–2580. 

35. Nguyen, S.; Mei, Y.; Xue, B.; Zhang, M. A hybrid genetic programming algorithm for automated design of dispatching rules. 

Evol. Comput. 2019, 27, 467–496. 

36. Shady, S.; Kaihara, T.; Fujii, N.; Kokuryo, D. A novel feature selection for evolving compact dispatching rules using genetic 

programming for dynamic job shop scheduling. Int. J. Prod. Res. 2022, 60, 4025–4048. 

37. Shady, S.; Kaihara, T.; Fujii, N.; Kokuryo, D. Feature selection approach for evolving reactive scheduling policies for dynamic 

job shop scheduling problem using gene expression programming. Int. J. Prod. Res. 2022, 60, 1–24. 

https://doi.org/10.1080/00207543.2022.2092041. 

38. Panda, S.; Mei, Y.; Zhang, M. Simplifying Dispatching Rules in Genetic Programming for Dynamic Job Shop Scheduling. In 

Proceedings of the European Conference on Evolutionary Computation in Combinatorial Optimization, Madrid, Spain, 20–22 

April 2022; pp. 95–110. 



Processes 2023, 11, 65 23 of 23 
 

 

39. Huang, Z.; Zhang, F.; Mei, Y.; Zhang, M. An Investigation of Multitask Linear Genetic Programming for Dynamic Job Shop 

Scheduling. In Proceedings of the European Conference on Genetic Programming (Part of EvoStar), Madrid, Spain, 20–22 April 

2022; pp. 162–178. 

40. Fan, H.; Xiong, H.; Goh, M. Genetic programming-based hyper-heuristic approach for solving dynamic job shop scheduling 

problem with extended technical precedence constraints. Comput. Oper. Res. 2021, 134, 105401. 

41. Chen, Q.; Xue, B.; Zhang, M. Preserving population diversity based on transformed semantics in genetic programming for 

symbolic regression. IEEE Trans. Evol. Comput. 2020, 25, 433–447. 

42. Rueda, R.; Cuéllar, M.P.; Ruíz LG, B.; Pegalajar, M.C. A similarity measure for Straight Line Programs and its application to 

control diversity in Genetic Programming. Expert Syst. Appl. 2022, 194, 116415. 

43. Nieto-Fuentes, R.; Segura, C. GP-DMD: A genetic programming variant with dynamic management of diversity. Genet. Program. 

Evolvable Mach. 2022, 23, 279–304. 

44. Zhang, F.; Mei, Y.; Nguyen, S.; Zhang, M.; Tan, K.C. Surrogate-assisted evolutionary multitask genetic programming for 

dynamic flexible job shop scheduling. IEEE Trans. Evol. Comput. 2021, 25, 651–665. 

45. Ferreira, C.; Figueira, G.; Amorim, P. Effective and interpretable dispatching rules for dynamic job shops via guided empirical 

learning. Omega 2022, 111, 102643. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting from any ideas, methods, instructions or products referred to in the content. 


