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Abstract: Due to the abundant operation data (e.g., pressure, flow rate, and temperature) for natural
gas (NG) gathering pipelines provided by the supervisory control and data acquisition (SCADA)
system, the machine-learning-based real-time flow prediction has become a critical solution to enable
the identification of the abnormality of pipelines, further to guarantee the safe operation of the
pipelines. However, traditional machine-learning-based methods cannot always function well due to
the temporal characteristics of the SCADA data often being ignored, resulting from a lack of time
memory capability. Therefore, this paper proposes a method to automatically perform the feature
mining of flow time series by considering the correlation of flow data at both ends of the pipeline,
combined with the long short-term memory (LSTM) network. The current and historical data at both
pipeline ends are used as input vectors of the LSTM network to predict the terminal output flow at
the next moment. Furthermore, to solve the problem that the parameters of the LSTM model are
configured with manual experience, a grid search algorithm (GSA) is introduced to optimize the
parameters of the LSTM. Consequently, the effectiveness and superiority of the proposed method are
carried out in a real-world NG gathering pipeline.

Keywords: natural gas pipeline; LSTM; grid search algorithm; parameter optimization; flow prediction

1. Introduction

According to the research published by the transportation research board (TRB) in
2004 [1], pipeline transmission is the safest way in the natural gas (NG) transmission
area, but it does not mean that they are at zero risk. In China, NG pipelines will enter
a highly aging stage in the next ten to twenty years, and pipeline accidents will also
occur frequently over time [2]. Therefore, guaranteeing the reliability of NG pipeline
transmissions has become an urgent demand for energy sectors [3,4]. Currently, supervisory
control and data acquisition (SCADA) systems are widely applied in the NG pipelines for
real-time observation of pipeline state variables [5–7]. However, real-time data of pipeline
SCADA systems cannot be effectively mined and leveraged. Assuming that the pipeline
flow can be obtained in advance by mining SCADA data, the real-time tracking of the
pipeline operation can be realized to help the operator judge the abnormal condition and
formulate a responding operation scheme. Thus, it is necessary to estimate the flow state of
NG pipelines.

Till now, some monitoring techniques, which build fluid models in pipelines based
on the conservation of mass, momentum, and energy, are proposed to monitor pipeline
flow [8,9]. However, the analytical model of NG pipelines is difficult to establish due to the
mass of state variables and the complexity of physical process knowledge. Fortunately, the
artificial neural network (ANN) provides an alternative solution to describe the complex
industrial system because of the advantage of approximate arbitrary nonlinear mappings.
For example, Mounce et al. integrated a fuzzy inference system (FIS) and ANN to detect
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pipeline bursts, where abundant history data are utilized for training the ANN model to
predict the urban water supply pipeline flow, and the FIS is used for detecting abnormal-
ities [10]. Nevertheless, this method requires an amount of data for model training, and
ANN training is time-consuming, which is easy to cause untimely alarm.

Moreover, some issues that exist in traditional prediction methods are as follows:
(1) the model prediction accuracy highly relies on the design of the feature extraction
method, while it always requires in-depth expert knowledge; (2) it is difficult to guarantee
that the complex process dynamic characteristics can be fully exhibited by using expert
knowledge for feature extraction [11]; and (3) using the existing machine learning models
(such as support vector machine and ANN), it is hard to obtain enough features due to
the use of the shallow network. In the context of big data, it is accompanied by great
computational burden and modeling complexity, which leads to the traditional machine
learning methods being unable to be satisfied with the application of the pipeline data
prediction. By contrast, data-driven methods with deep learning (DL) obtained more
attention because they can automatically and effectively perform statistical analysis and
information extraction on massive, multi-source, and high-dimensional data [12].

Although DL performs a strong ability to extract features, there are also several chal-
lenges with the feature extraction of the NG pipeline data. Firstly, the SCADA data of the
NG pipeline are non-linear and fluctuating. Time series data mining temporal characteris-
tics effectively from the SCADA data is the premise of obtaining accurate predictions for the
pipeline flow [13]. To handle the problem, the long short-term memory (LSTM) network,
which is a member of DL algorithms that can fully explore the temporal characteristics
of time series data, is adopted in this work. Specifically, LSTM can use the gate control
mechanism on the internal memory cell to learn and represent the long-term dependence
between the input sequence data (i.e., LSTM networks can remember the past time series
information). Hence, it is suitable for feature learning on the time series data.

Secondly, the parameters of the neural network (NN) should be pre-assigned before the
model trains, which determines the structure of the NN and further affect the computational
burden of model training and prediction. Thus, the parameter optimization of the model
is an important guarantee of the excellent performance of the model. However, LSTM is
similar to other DL networks in the difficulty of the parameter selection and often relies
on the hand-engineered adjustment. Manual parameter adjustment is difficult, especially
in the context of massive data and complex deep network structures. In order to obtain
the optimal parameters combination of LSTM to construct an appropriate model structure
and improve the prediction accuracy of the LSTM model for NG pipeline flow, a grid
search algorithm (GSA) is introduced to search for the optimal parameters for the LSTM
model. Finally, a GSA-based LSTM (GSA-LSTM) model is proposed for predicting the NG
pipeline flow.

The main contributions of this work can be summarized as follows:

(1) A pipeline flow prediction scheme via LSTM is proposed to accurately estimate the
NG pipeline flow by incorporating temporal correlations in the SCADA data.

(2) A GSA optimization method is introduced to automatically search for the optimal
parameter combination for the LSTM model, which solves the drawback of traditional
hand-engineered selection.

(3) Thorough investigations of GSA-LSTM based on a real-life NG pipeline are reported,
which would provide good instruction for NG pipeline condition monitoring.

The remainder of this paper is structured as follows. Section 2 briefly introduces the
long short-term memory (LSTM) network. The framework of the proposed GSA-LSTM
model is presented in Section 3. In Section 4, the performance of GSA-LSTM is verified by
a real-life NG gathering pipeline. Section 5 concludes the work.

2. Brief Revisit of Long Short-Term Memory Network

The long short-term memory (LSTM) network is a special recurrent neural network
(RNN) model for widely enjoying time series prediction tasks, which is developed to handle
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the issues of gradient disappearance and the explosion of the RNN [14,15]. Different from
only learning input point-to-output point mapping relationships of other conventional
machine learning methods, LSTM can retain the time dependencies of long sequences data.
In addition, as a nonlinear model, LSTM can be used as a complex nonlinear element to
construct a stronger network prediction model. Considering the nonlinearity and time
dependencies of pipe operation SCADA data, the LSTM is utilized as the baseline of the
pipeline flow prediction model in this work.

Generally, a basic LSTM unit structure includes the forget gate, the input gate, and
the output gate, as shown in Figure 1. Among these gate control cells, the forget gate
determines what information from the previous time step and the current input should be
discarded or retained, and the input gate and the output gate are used to update the cell
status and control the information to be passed to the next LSTM unit, respectively. The
update expression of LSTM stored cells in step t can be formulated as follows:

ft = σ(W f xt + U f jt−1 + b f ) (1)

it = σ(Wixt + Ui jt−1 + bi) (2)

ot = σ(Woxt + Uoht−1 + bo). (3)

C̄t = tanh(Wcxt + Uc jt−1 + bc) (4)

ct = ftect−1 + it c̄t (5)

ht = oteTanh(ct) (6)

where σ is the sigmoid activation function, jt−1 denotes the information from the previous
hidden state, xt is the current input, W f , U f , Wi, Ui, Wo, Uo, Wc and Uc are represent the
corresponding weight matrix, respectively, and f f , fi, fo, and fc are bias term, respectively,
they are updated with the learning process of the network.

Figure 1. The basic structure of a LSTM unit.

3. Framework of the Proposed GSA-LSTM for NG Pipeline Flow Prediction

In this work, to realize the high-accuracy prediction of the NG pipeline flow by fully
exploring the useful information in the SCADA data, a grid search parameter optimization-
based LSTM model is proposed. The details of the proposed pipeline flow prediction
method will be discussed in the following sections.

3.1. Data Acquisition and Preprocessing

In modern gas and oil companies, almost all the NG gathering pipelines are equipped
with a SCADA system to collect real-time time series signals, such as the flow, pressure, and
temperature. In this work, the continuous time series signals, including the flow, and pres-
sure, are used to build the healthy pipeline flow prediction model. Nevertheless, the flow
prediction accuracy of the NG pipeline highly depends on the quality of SCADA data [16].
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In fact, although the system is under normal working conditions, due to the influence of
the objective environment and the collection device, the continuous monitoring data show
the characteristics of the fixed frequency and variable amplitude. As a result, the SCADA
data collected at the output end of the pipeline may be missing or abnormal, which will
further lead to fracture on the timescale and reduce model prediction accuracy. Therefore,
it is necessary to preprocess SCADA data before constructing the prediction model.

Specifically, Figure 2 shows the distribution density plot of flow at the input and
output ends of the NG pipeline, where the shaded part of the hexagon is the joint density
distribution of the pipeline input and output flow. The outer parts are the distribution
histogram of the flow at the pipeline input Qin and output Qou, respectively, which present
the normal distribution. According to the data distribution characteristics, the 3σ criterion
is employed to eliminate maximum outliers in this work. The procedure of the data
preprocessing is illustrated in Figure 3, where σ and µ are the standard deviations and
mean value of the original data x(i), respectively.

Figure 2. The distribution density plot of flow at both ends of the NG pipeline.

Original data

N

N

Y

Y

Figure 3. The flowchart of the data preprocessing.

3.2. Procedure of LSTM Based NG Pipeline Flow Prediction

The DL-based method has been well-accepted to solve the problem that it is difficult
to establish accurate mechanism models in process industries [17], the non-linear activation
functions (e.g., sigmoid) and two-layer weighted network can approximate any mechanism
process with high accuracy [18,19]. In this paper, considering the temporal features of the
SCADA data and the advantage of the LSTM model in time series data modeling, we first
take the continuous time series data of a specified length adjacent to the target timestamp as
the model input, where the temporal features of the data can be extracted by the recurrent
structure of the LSTM model, and further predict the corresponding value of the target
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timestamp. The traditional prediction models are only constructed using the single state
at the pipe end, which always performs poorly. However, the NG gathering pipeline is
a complex system with continuous change, and there is a high correlation between the
pipeline operation states. Therefore, the historical input and output ends of the NG pipeline
pressure (P) and flow (F) are utilized to predict the output flow of the next time step and
the difference between the actual and predicted output flow (i.e., residual) as the evaluation
index of the pipeline operation condition.

As illustrated in Figure 4, the implementation procedure of the LSTM-based NG
pipeline flow prediction can be specifically split as follows:

Step 1: Preprocess the time series data collected by the SCADA system through the
method described in Section 3.1 to obtain high-quality data.

Step 2: Utilize a sliding window to segment the original pipeline state data into many
subsequences with the same length, where the sliding size is set as 1. Given a known data
sequence q1, q2, · · · , qn, the qk+1 is the output label of the subsequence q1, q2, · · · , qn, when
the sequence length is set as k, while qk+2 is the label of q2, q3, · · · , qk+1. By analogy, the
model required input data with the size of n− k + 1 is finally constructed, and further split
into training and testing sets.

Step 3: Train LSTM by using the training set, then the LSTM-based pipeline flow
prediction model can be described as follows:

Fou(t + 1) = NN


Pin(t), Pin(t− 1), · · · , Pin(t− d)
Fin(t), Fin(t− 1), · · · , Fin(t− d)

Pou(t), Pou(t− 1), · · · , Pou(t− d)
Fou(t), Fou(t− 1), · · · , Fou(t− d)

 (7)

where the Fou(t + 1) is the predicted flow at the pipeline output, Pin and Pou represent the
pressure at the input and output ends of the pipeline, respectively, while Fin and Fou are
the pipeline input and output flow, respectively, d is the time sequence length, and NN[∗]
denotes the LSTM network. For each test datum, the corresponding predicted flow can be
obtained according to Equation (7).

Data preprocessing and

determine time step

LSTM 

model

input output

Figure 4. The overall workflow of the pipeline flow prediction model.

3.3. GSA-Based Parameter Optimization Strategy for LSTM

The model parameters of traditional NN networks are commonly determined by the
manual-experience selection, which is difficult to find proper parameters to make the model
perform well. In this work, the grid search algorithm (GSA) is used to solve the problem of
traditional parameter selection. GSA is a well-adopted exhaustive optimization method,
which can find the optimal solution for the objective problem by using exhaustive grid
search in the given search range, thereby providing the relative best modeling parameters
for the LSTM. In detail, the main steps of GSA optimization-based LSTM pipeline flow
prediction are outlined as follows:

Step 1: Determine the search range of LSTM modeling parameters and deliver them to
the grid search function to arrange all combinations in the given range.

Step 2: Construct different LSTM models based on each parameter combination.
Step 3: Define the loss function to evaluate the performance of model parameters,

mean square error (MSE) is used as the loss function in this work:

JLOSS =
1
n

n

∑
i=1

L(yi, ŷi) =
1
n

n

∑
i=1

(yi − ŷi)
2 (8)
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where L(·) denotes the loss function, n is the sample size, and yi and ŷi are the actual and
predicted output of the ith sample, respectively.

Step 4: Obtain the final values of the loss function for each LSTM model after the
network training reaches the maximum learning iteration.

Step 5: The best solution with the lowest loss function value is chosen to provide the
optimal parameter combination for LSTM modeling.

4. Experiments

In this section, the proposed pipeline flow prediction model GSA-LSTM is evaluated
through applications to a real-world NG gathering pipeline system in Nanchong, China.
The prediction performance of the proposed method is evaluated using the root mean
square error (RMSE) and mean absolute percentage error (MAPE):

RMSE =

√
1

ntest

ntest

∑
i=1

(ŷtest,i − ytest,i)2 (9)

MAPE =
ntest

∑
i=1
| ŷtest,i − ytest,i

ytest,i
| × 100

ntest
(10)

where ntest is the number of query samples, and ytest,i and ŷtest,i are the observed and
predicted values of the ith sample, respectively. The smaller the value of the RMSE and
MAPE, the higher the prediction accuracy of the model.

4.1. Dataset Description

The experiment dataset was collected from the SCADA data of the healthy NG pipeline
provided by the Longgang gas field, and the sampling interval is 20 seconds. The data
from 28 February 2020 to 7 March 2020 were collected, where the data from 28 February
2020 to 5 March 2020 are used for model training while the remaining data are used for
testing. Table 1 shows some instances of the collected data of both pipeline ends; there are
a total of four variables including the pipeline input and output pressure and flow.

Table 1. Instances of the collected data of pipeline input and output ends.

Time Input Pressure Input Flow Output Pressure Output Flow

2020-02-28 14:33:00 6.20 8.66 6.05 8.58
2020-02-28 14:33:20 6.20 8.75 6.05 8.70
2020-02-28 14:33:40 6.20 8.72 6.05 8.55
2020-02-28 14:34:00 6.20 8.07 6.05 8.32

To eliminate the scale influence between variables, it is necessary to normalize the
variables after the data preprocessing mentioned in Section 3.1. In this paper, the min-max
scaling method is utilized to map the original data to the range of [0, 1], and realize the
equal scaling of the original data. The normalization formula is as follows:

Xnorm =
X− Xmin

Xmax − Xmin
(11)

where X is the original data, Xmax and Xmin are the maxim and minimal value in the
X, Xnorm is the normalized data. Subsequently, a sliding window is used to divide the
original data sequence into many subsequences to satisfy the input requirement of the
proposed method.

4.2. Model Parameters Optimization

To obtain high-accuracy prediction model, four critical parameters (learning rate, bacth
size, time sequence length, and the number of hidden layer nodes) for the LSTM method
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are optimized by the GSA. The candidates for these parameters are tabulated in Table 2,
and the details of the parameters optimization are analyzed in the following subsections.

Table 2. The candidates for modeling parameters.

No. Parameter Type Candidate Range

1 Learning rate (lr) 0.1, 0.01, 0.001
2 Time sequence length (L) 3~30
3 The number of hidden layer nodes (n) 8~128
4 Batch size 16~51

a. Learning rate

The learning rate is the speed of information accumulation with the process of the NN
training, which determines whether the loss function of the NN can effectively converge to
the optimal value. In the process of parameters optimization, the loss reduction of the loss
function under the different learning rates is shown in Figure 5. It can be seen that when
the learning rate is set as 0.001, the minimum training loss is obtained. The converging
speed of the built LSTM is fast, as the loss function converges rapidly within 20 iterations.

Figure 5. The comparison of training loss at different learning rates.

b. Batch size

The number of samples selected for each training; batch size affects the memory usage
and the model’s optimization degree and speed. The batch size is too small, which may
cause difficulty in model convergence. The batch size is too large. Although the training
time can be reduced, the model’s generalization performance will decline as the required
memory capacity increases. This paper comprehensively considers the amount of data,
calculates the cost and time cost, and the search range of batch size set as 16 to 512. Figure 6
shows the loss functional value under different batch sizes. The GSA algorithm in this
paper uses mean squared error as the loss function. The smaller the MSE value, the better
the performance of this version of the model. It can be seen from the figure that when
the batch size is 32, the mean value of the mean squared error is the smallest, and the
confidence interval is the smallest, which means that the model performance is the most
stable at this time.
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Figure 6. Bar error chart of model training loss under different batch sizes.

c. Time sequence length

The different time sequence length has a great impact on the performance of the NN
model [20]; a too-short sequence cannot fully leverage the capability of LSTM for processing
time series data, while a too-long sequence will increase the modeling complexity, even
against the model prediction performance. Consequently, the time sequence length is
chosen as the key to optimized model parameters in this work. Figure 7 shows the influence
of different sequence lengths on the model prediction accuracy, it is readily observed that
the RMSE and MAPE are minimal (i.e., the best model prediction performance) when the
sequence length is 9.

Figure 7. The influence of different sequence lengths on the model performance (batch size = 32,
lr = 0.001, n = 64).

d. The number of hidden layer nodes

The number of hidden layer nodes also plays an important role in predicting the
pipeline flow. Suppose that the number of hidden nodes is small. In that case, the critical
characteristics of pipeline operating conditions cannot be effectively captured. Still, a large
size will result in obtaining more helpless information and disturbing the final predictions.
Therefore, the basic concept of node size is using fewer nodes when obtaining the satisfied
prediction performance. In this work, in contrast to traditional trial and error, the optimal
node size is searched by GSA in the range of manual-experience selection. Some examples
of the prediction performance of different node sizes for the model are listed in Table 3. It
can be seen that too-large or too-small nodes cannot achieve a better prediction performance
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for the model. When the number of hidden layer nodes is set as 64, the model obtains better
prediction accuracy, while the model complexity is smaller.

Table 3. Examples of prediction performance of different node sizes for the model (batch size = 32,
lr = 0.001, L = 9).

The Number of Hidden Layer Nodes RMSE MAPE

8 0.6334 5.9133
16 0.6110 5.7682
32 0.6188 5.8016
64 0.5930 5.6518
128 0.6259 5.7794

According to the above analysis, the learning rate, the time sequence length, the
number of hidden layer nodes, and batch size for the LSTM are 0.001, 9, 64, and 32,
respectively, the model obtains the optimal performance.

4.3. Comparison of Prediction Results

To verify the effectiveness of the proposed GSA-LSTM model, a comparison is made
with the non-optimized LSTM model in Table 4. Note that five repeat experiments are
conducted to average the prediction results to reduce the inherent randomness of neural
network prediction. It is clearly seen that the RMSE and MAPE values of the GSA-LSTM are
reduced by 8.43% and 11.28%, respectively, compared with the LSTM, which indicates that
the proposed method obtains better prediction performance. Furthermore, Figures 8 and 9
show the predicted trend plots of the NG pipeline flow obtained using the non-optimized
LSTM and GSA-LSTM models, respectively. It is obvious that the proposed method can
better capture the real-value curve than non-optimized LSTM.

Figure 8. Prediction results of the NG pipeline flow from the LSTM.

Figure 9. Prediction results of the NG pipeline flow from the proposed GSA-LSTM.
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Table 4. Prediction results of the LSTM and GSA-LSTM method for the NG pipeline flow.

Method RMSE MAPE

LSTM 0.5479 5.4722
GSA-LSTM 0.5017 4.8547

Overall, the above experimental results confirm that the proposed GSA-LSTM method
can effectively search for the optimal parameter combination for LSTM and captures the
temporal features of the SCADA data, hence providing reliable predictions for the NG
pipeline flow.

5. Conclusions

In this work, a prediction method for NG pipeline flow, namely GSA-LSTM, is pro-
posed to solve the problem that traditional ML and statistical methods cannot extract
temporal features from the SCADA data, which limits the accuracy of the prediction model.
The proposed method first considers the correlation of the flow data of the SCADA at both
ends of the pipeline, using the LSTM to learn the temporal information of the time series
data at both ends of the pipeline. The past input and output of the pipeline system are
used to predict the output at the next time step, effectively capturing the fluctuation trend
of the original pipeline data. Then, the GSA optimization method is introduced to search
for the optimal parameters for the LSTM, which solve the difficulty of manual-experience
selection. Finally, a real-world NG pipeline system is carried out in the proposed method,
and the experiment results demonstrate the superiority of the proposed method.

Thanks to the capability of the GSA-LSTM to analyze and predict the time series
data with nonlinearity from the NG pipeline, future work will combine the prediction
residual with the leak threshold to detect abnormal conditions. Since the healthy pipeline
data train the model, the residual should be less than the leak threshold when the normal
working condition data arrive. On the contrary, the model cannot adapt to the abnormal
data when leakage occurs, and the residual will exceed the threshold range, thus realizing
leakage detection.
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