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Abstract: Transitioning to energy-saving and renewable energy sources is impossible without accel-
erated development of hydrogen energy and hydrogen technologies. This review summarizes the
state-of-the-art and recent advances of various hydrogen production processes, including but not
limited to thermochemical and electrolytic processes. Their opportunities and limitations, operat-
ing conditions, and catalysts are discussed. Nowadays, most hydrogen is still produced by steam
reforming of methane, its partial oxidation, or coal gasification. Considerable attention is also paid to
natural gas pyrolysis. However, hydrogen produced using these technologies has a lot of impurities
and needs additional purification. A series of technologies for hydrogen purification, including its
filtration through palladium alloy membranes, and membrane catalysis, allowing hydrogen produc-
tion and purification in one stage, are discussed. The main way to produce carbon-free hydrogen
is water electrolysis using low-cost energy from nuclear or renewable sources. Both conventional
and novel methods of hydrogen storage and transportation, which are an important part of the
hydrogen economy, are reviewed. Biohydrogen production technologies are also discussed. Finally,
prospects for further work in this field are provided. This review will be useful to researchers and
manufacturers working in this field.

Keywords: hydrogen production; hydrogen storage; steam reforming; water electrolysis; biomass;
biohydrogen; membrane catalysis

1. Introduction

Economic and technological developments are impossible without energy consump-
tion, which is constantly growing. At the same time, energy production leads to substantial
environmental pollution. The main reasons for this are the emissions of carbon oxides, sul-
fur oxides, nitrogen oxides, and products of incomplete combustion of fossil fuels into the
atmosphere. Particular attention is paid to carbon dioxide, which, according to a number of
researchers, is the primary greenhouse gas. Therefore, the Paris Agreement focuses special
attention on the energy sector. Significant efforts are being made to move towards energy
conservation and new technologies associated with the use of environmentally friendly
and renewable energy sources, such as solar panels, wind turbines, and tide stations [1,2].
However, to ensure an uninterrupted power supply, these sources should be used together
with energy storage devices [3–8]. To level seasonal fluctuations in energy production, it is
most appropriate to accumulate energy in the form of hydrogen.

Fuel cells can be used as autonomous or backup power sources [9–11]. To operate, they
need hydrogen, which does not exist in a free state on the Earth. Moreover, hydrogen is
currently required for a number of technologies, primarily for the production of ammonia,
methanol, oil refining, metallurgy, and electronics. Hydrogen has long been considered as
an alternative energy source due to its extremely high specific energy per unit mass—it is
about three times higher than that of oil [12]. The total consumption of hydrogen in the
world is about 115 million tons per year [13]. According to the International Energy Agency
forecasts [14], hydrogen production should increase by 2.5 times in the next 30 years. Half
of it will be spent on energy production, and another 30% will be spent for land transport,
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while now only about 3% of hydrogen is spent for these purposes. However, according
to [15], the production of hydrogen should grow faster and approach 700 million tons per
year by 2050.

It is clear that hydrogen of different purities is required for different purposes. In
metallurgy, in a number of chemical industries, or as a fuel, hydrogen can be used in a
mixture with other gases [16,17], while high-purity hydrogen is required for microelectron-
ics and the currently prevalent low-temperature fuel cells [11,18]. An important aspect
is the impact of byproducts of hydrogen production on the environment, which largely
determines the further development of various technologies for hydrogen production.
Moreover, cost optimization for implementation should also be taken into account [19].

Nowadays, three quarters of hydrogen is produced by steam reforming of natural gas,
and just under a quarter is by coal gasification [20]. According to other reports, oil refining
also makes a significant contribution [21,22]. Nevertheless, it is obvious that technologies
leading to pure hydrogen production based on electrolysis or photolysis of water are still
less-demanded. A comparison of costs of hydrogen produced by different technologies
and their energy efficiencies and carbon footprints is shown in Figure 1. Although coal
gasification is the cheapest source of hydrogen, its high emissions (Figure 1) and level of
hydrogen impurities make this approach less promising. Now, hydrogen production from
coal is developing primarily in China [23]. Coal gasification can be performed directly
under the ground. The product of this process is synthesis gas (syngas, a mixture of
hydrogen and carbon monoxide), which contains methane, carbon dioxide, nitrogen, and
small amounts of hydrogen sulfide [24,25].
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In this review, the main methods of hydrogen production and the prospects for their
development are discussed.

2. Steam Methane Reforming

The most attractive and common approach for hydrogen production is steam reform-
ing of methane (SRM) (Figure 2) [33], which can be described by the following reaction:

CH4 + H2O↔ CO + 3H2, ∆H0 = 206 kJ/moL (1)
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Figure 2. Scheme of steam–methane reforming for H2 production.

This approach enables reaching a maximum yield of hydrogen (up to 3 moles of
hydrogen and 1 mole of CO per 1 mole of methane). Moreover, carbon monoxide can
interact with water steam at temperatures of 200–400 ◦C to form carbon dioxide and
generate additional hydrogen (water–gas shift reaction) (Figure 2):

CO + H2O↔ CO2 + H2, ∆H0 = −41 kJ/moL (2)

However, since the main process (Equation (1)) is endothermic, it requires high tem-
peratures, at which the CO2 yield is limited [34]. The need for high temperatures is also
determined by the fact that activation of a highly symmetrical molecule of methane with
strong C–H bonds requires a lot of energy. Moreover, as temperature decreases, the carbon
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deposition on catalyst proceeds more intensively. It is also noted that the conversion of
methane increases with increasing the steam-to-methane ratio up to five [35]. Both of
the above processes (Equations (1) and (2)) are catalytic and can be accelerated by both
noble and transition metals. In the series of noble metals, the catalytic activity decreases
in the series Ru > Rh > Ir > Pt [36,37]. High reforming activities and low rates of carbon
formation are among advantages of these catalysts [38–40], but due to high cost, their
use is limited. In this regard, the attention of researchers was attracted to the iron family
metals [41]. However, iron is prone to oxidation, while cobalt is relatively expensive and
toxic; therefore, catalysts based on nickel, whose activity is comparable to that of platinum
and iridium, are more in demand [42,43]. The use of bimetallic catalysts is also effective
and increases their activity, selectivity, and durability in comparison with monometallic
catalysts, as well as limits carbon formation, oxidation, and sintering [44–48]. It is worth
noting the use of catalysis to lower the reaction temperature [49].

The most serious problems are sulfur poisoning and activity loss due to rapid sintering
and carbon formation (Figure 3). The use of supports, predominantly oxides, such as alu-
mina and silica, increases the conversion degree and reduces the poisoning effect [50–52].
Even more effective are spinels (MgAl2O4, ZnAl2O4), which reduce carbon deposition and
increase resistance to sintering [53,54], doped zirconia and ceria, etc. [55–57]. Their advan-
tages include improved conversion and decreased carbon deposition [35,56]. The activation
energy and reaction rate are significantly affected by the support’s nature, dispersity, and
structure [34,54,58–61].
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blue and black balls denote support, metal catalyst and carbon, respectively.

A promising approach is the selective extraction of one of the products (hydrogen or
carbon dioxide), leading to a shift in the thermodynamic equilibrium and thus increasing
the hydrogen yield. Extraction of hydrogen is usually performed via a process of membrane
catalysis, which we write about below. CO2 extraction is also very promising [62–64].
Amines [37,65], calcium compounds [66,67], alkali metal zirconates, and silicates [68–71]
have been used to absorb carbon dioxide. Direct extraction of CO2 is possible using anion
exchange membranes [72]. Using this approach, the hydrogen yield can be significantly
increased [71,73]. Thus, according to [74], it can be more than 90%.

3. Partial Oxidation of Methane

Partial oxidation of methane (POM) is another common approach to hydrogen produc-
tion [75–78]. In contrast to steam methane reforming, this process produces less hydrogen
(Equation (3)) and is more difficult to control, since the released hydrogen is easily oxi-
dized by oxygen. However, its undoubted advantage is that it is exothermic, although the
released heat is small.

CH4 + 1/2O2 ↔ CO + 2H2, ∆H0 = −8.6 kJ/moL (3)
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The product of Reaction (3), proceeding at 600–950 ◦C, is a POM syngas [79–82],
which is often used for the synthesis of chemicals (methanol, dimethyl ether, etc.). High
temperatures and low selectivity of the process (Equation (3)) lead to the formation of
carbon as a byproduct, which deactivates catalysts [83–85]. At the same time, it is possible
to further oxidize CO by steam (Equation (2)) by cooling the product flow to increase
the hydrogen yield [86–88]. To compensate for the heat released, partial oxidation can be
combined with steam reforming of methane. This is the so-called autothermal reforming of
methane (Figure 4) [89].
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Since partial oxidation of methane requires activation of the same bonds as for its
steam reforming and many other processes, which are described in more detail below, the
catalysts used for both processes turn out to be very similar. First of all, we are talking about
platinum-group metals [83–85,90–93], among which rhodium should be noted [77,94,95].
Rhodium alloys with various transition metals are used to improve methane conversion
and productivity [76,96–99]. At the same time, considerable attention is paid to transition
metals, predominantly nickel [100]. The use of lanthanum–nickel alloys leads to an increase
in the CO2 fraction in the reaction products [90].

One of the main problems of nickel and some other catalysts are oxide and carbon
deposits. To suppress their formation, supports based on oxides of zirconium, titanium,
cerium, and lanthanum are used [95,101–103]. Support optimization is also used to increase
the degree of methane conversion and the CO2 fraction in the POM products [104].

To date, an approach is also being developed where the oxygen sources (oxygen
carriers) for the partial oxidation of methane are oxides of nickel, copper, iron, and other
metals, which are reduced to a metal and then oxidized again (Figure 5) [63,105,106]. As
a development of this approach, it is possible to combine oxidation with the capture of
released CO2 by calcium oxide [107]. However, according to [31], the cost of hydrogen
produced using this approach exceeds the cost of hydrogen produced using any others.
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4. Carbon Dioxide Reforming

Another common approach is the carbon dioxide reforming of methane, which is
often called ‘dry reforming of methane (DRM)’, since CO2 is a substitute for water in steam
methane reforming [108,109]:

CH4 + CO2 ↔ 2CO + 2H2, ∆H0 = 248 kJ/moL (4)

This process is endothermic, and its heat is comparable to that of steam reforming
of methane. Accordingly, this process proceeds at high temperatures (700–1000 ◦C). A
CO-rich synthesis gas is produced using this technology, and therefore, DRM can hardly be
considered as a method for hydrogen production. Even in the case of DRM syngas use for
the synthesis of organic compounds, it is better to combine this process with steam methane
reforming (Equation (1)) to increase the H2/CO2 ratio up to two [110,111]. Interest in dry
reforming of methane is primarily stimulated by the problem of CO2 management [65,112].

A lot of attention is drawn to the choice of catalysts. The DRM process proceeds
via sorption of methane and carbon dioxide molecules, which lowers their dissociation
energy [113]. Wei et al. showed that catalysts with optimum binding of oxygen and carbon
atoms to the catalyst surface exhibit maximum catalytic activity [114]. As a rule, despite
high binding energy, the activation of CO2 molecules turns out to be lower. Bitter et al.
suggested that methane is activated on metal sites, while CO2 is activated on acid sites of
the support [115].

Platinum-group metals, primarily ruthenium and platinum, exhibit high catalytic
activity in the dry reforming of methane (Table 1), which allows the process to proceed at
relatively low temperatures [115]. However, nickel catalysts are more often used for this
process due to their lower cost [110,112,116,117]. Moreover, the activity of catalysts in DRM
depends on catalyst support (primarily its basicity and redox ability) and metal–support
interactions (Table 1). The basicity of the support determines its activity in sorption and
activation of gas molecules, while redox properties can promote the catalytic process as a
whole and determine the main directions of the process and its byproducts. Thus, supports
are primarily used to ensure high activity of a catalyst material and to minimize carbon
deposits [118–120].

Table 1. Comparison of the catalyst activity in DRM (feed-gas ratio CH4:CO2 = 1:1).

Catalyst
T (◦C)

Conversion (%) Time on
Stream (min)

Reference
Metal Support CH4 CO2

Ni La2O3 650 62 67 3000 [121]
Ni SiO2/TiO2 650 65 54 1440 [122]

Ni Activated
carbon 900 80 98 500 [123]

Ni MgO/Ce0.8Zr0.2O2 800 95 96 12,000 [124]
Ni Al2O3 800 63 82 1200 [125]
Ni CeO2–Al2O3 850 100 100 600 [126]
Ni SBA-15 800 88 89 300 [127]

Ni-Co SBA-15 25 29 19 600 [128]
Ni-La SBA-15 750 88 96 660 [129]

Co Sr/La2O3 800 94 99 1800 [130]

5. Methane Pyrolysis

Unfortunately, all the processes described above lead to the production of carbon
oxides as byproducts and, with the exception of CO2 reforming, do not solve the carbon
footprint problem [131]. In this regard, in recent years, interest in the well-known process
of natural gas pyrolysis (Equation (5)) has increased significantly.

CH4 ↔ C + 2H2, ∆H0 = 74.8 kJ/moL (5)
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Based on the stoichiometry of reaction (5), solid carbon is the only byproduct, and
there are no greenhouse emissions, which contribute to atmospheric pollution with car-
bon oxides [131–134]. Therefore, it is often believed that it is possible to produce hy-
drogen with zero carbon footprint, which should help solve the carbon management
problem [131,135–137]. The carbon byproduct generated by methane pyrolysis is predomi-
nantly a carbon black that can be used in metallurgical (steel) industry as carbon additive or
production of carbon fibers for variety applications, including car tires. There is an opinion
about the possibility of using carbon in direct-carbon fuel cells [138]. However, assuming
that pyrolysis will provide a significant portion of hydrogen production, the amount of
carbon will significantly exceed the needs for its use.

Unlike previous technologies, in methane pyrolysis there are no reagents with a
chemical affinity for its components, and therefore maximum activation energy is required.
In this regard, its implementation is possible only at temperatures above 1100 ◦C. The
reaction proceeds through the formation of methyl radicals and hydrogen atoms and
further similar transformations of sequentially formed hydrocarbons. The temperature
of pyrolysis can be reduced by using catalysts that promote these processes initiated by
molecular [139,140] or dissociative adsorption of hydrocarbons [141–143]. Dissociation of
hydrocarbons is facilitated by the transfer of electrons from the C–H bonds of methane to
vacant d-orbitals of transition metals [144–148]. An increase in catalytic activity in the series
Fe < Co < Ni has been reported [144,146,149]. Nickel catalysts exhibit maximum activity
(Table 2), which rapidly decreases due to blockage by the formed carbon layer [146,148,150].

Iron-based catalysts exhibit significantly lower activity in methane pyrolysis (Table 2),
but at the same time, they are cheaper and show better resistance towards carbon deposits.
Fe catalysts can operate stably at temperatures up to 1000 ◦C [145,151–153] due to higher
carbon diffusion, which is three orders of magnitude higher than that of nickel-based
catalysts [131,145]. This helps to ‘clean’ the catalyst surface and maintain its activity for a
longer time. The least-demanded are cobalt catalysts because of their toxicity and lower
activity compared to nickel [154,155].

Considerable attention is also paid to oxide supports, which are designed to prevent
both the agglomeration and the deactivation of catalyst particles [150,153,156,157]. In
catalytic pyrolysis, nickel-based alloys with cobalt, palladium, copper, and some other
metals are also actively used. The second metal is used as a so-called promoter, leading to
additional acceleration of the process [145,146,158]. It should be noted that the role of the
second metal in this case is not quite traditional. Often, it is introduced to increase the rate
of carbon diffusion in the alloy, enabling it to work at higher temperatures and providing
less deactivation of nickel by carbon deposits [159–161].

Table 2. Comparison of the catalyst activity in methane pyrolysis.

Catalyst T (◦C) Feed Gas
Composition

Conversion of
CH4 (%) Reference

Ni/SiO2 650 CH4 85 [162]
55% Ni − 15%

Cu/MgO·Al2O3
675 CH4 80 [163]

12.5% Ni − 12.4%
Co/La2O3

700 N2:CH4 = 1:9 82 [164]

50% Ni − 10%
Fe/Al2O3

675 N2:CH4 = 7:3 68 [144]

50% Ni − 10%
Pd/Al2O3

675 N2:CH4 = 7:3 75 [165]

20% Fe/WO3 + ZrO2 800 N2:CH4 = 1:2 90 [166]
Fe − 5.1% Mo/Al2O3 750 CH4 69 [167]

65% Fe/Al2O3 750 CH4 70 [168]
Fe sponge 1000 CH4 85 [169]
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Even less-active are carbon catalysts (activated carbon, carbon black, acetylene black,
etc.), which operate only at temperatures from 800 to 1000 ◦C [131,170–172]. At the same
time, they are widely used in this process due to their low cost and high stability, since in
this case the process becomes autocatalytic and only a small amount of catalyst is needed
to initiate it. Moreover, carbon catalysts are also stable to sulfur and other impurities
contained in natural gas [131,173]. Active catalytic centers of carbon catalysts are believed
to have multiple defects on their surface, which is confirmed by the dependence between
the number of defects in graphene layers, initial temperatures, and reaction rates [174].

Recently, considerable attention has been paid to methane pyrolysis over molten
metals or salts. This results in the long-term activity of catalysts due to prevention of rapid
carbon deposition [133,175–180]. An additional advantage is the high heat capacity of the
melt, which ensures the stability of the catalytic process.

Despite the great attention to hydrogen production by methane pyrolysis and op-
timism regarding its environmental friendliness, this method has many disadvantages.
Among them, first of all, it is worth mentioning the high energy consumption. Moreover,
formation of carbon as a co-product is a huge problem, as through this process we lose
half of the potential methane energy. Moreover, as was mentioned above, the amount
of carbon formed in the production of potentially demanded hydrogen is an order of
magnitude higher than the need for carbon [131–133]. Since methane pyrolysis proceeds at
high temperatures and is not quite selective, the hydrogen produced still contains a lot of
impurities and also requires deep purification.

6. Reforming of Biomass and Bio-Alcohols

Biomass is an excellent renewable feedstock and can cover a major part of humanity’s
needs for precursors for organic synthesis and energy carriers. There are various approaches
to its processing. For example, biomass can be used as a source of methane (biomethane)
and, using approaches similar to those described above, be converted into hydrogen-rich
synthesis gas [181–183]. Steam reforming of lignin [184,185], products of fermentation of
biomass containing an aqueous solution of ethanol [186–189] or methanol produced by dry
distillation of lignin seems to be even more attractive. Many authors note the attractiveness
of the direction associated with the reforming of aqueous solutions of various organic
compounds, including biomass processing products, wastewater, etc. in milder conditions
(230–270 ◦C and autogenous pressure)—so-called ‘aqueous phase reforming’ [184,190,191].
It should be noted that at present, biomass is also considered a promising and renewable
carbon source for the production of chemicals.

The advantage of alcohol steam reforming is milder reaction conditions, e.g., lower
temperatures, compared to SMR. For ethanol and methanol, the overall reactions of alcohol
steam reforming can expressed by Equations (5) and (6), respectively:

C2H5OH + 3H2O = 2CO2 + 6H2, ∆H0 = 157 kJ/moL (6)

CH3OH + H2O = CO2 + 3H2, ∆H0 = 50 kJ/moL (7)

Although the main products of these processes are hydrogen and CO2, other byprod-
ucts, e.g., CO, which negatively affect the operation of low-temperature fuel cells, are also
presented. However, their concentrations are lower than in SRM, while the hydrogen yield
is higher. Therdthianwong et al. reported the implementation of this process without
any catalyst at a pressure of 25 MPa in supercritical water in the temperature range of
500–600 ◦C [192]. In the catalyst’s presence, these processes proceed even more easily. Thus,
the steam reforming of ethanol usually proceeds at temperatures of 400–500 ◦C, while in
the case of methanol, the reaction temperature is in the range of 300–400 ◦C [193].

Despite a significant difference in temperatures with methane and ethanol steam
reforming, the same catalysts (noble metals, copper, or nickel) are often used for these
processes [194–197]. The reason for this is that its initiation also requires activation of C-H
and O-H bonds [198]. The activity of catalysts based on noble metals is usually higher, but
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copper and nickel are used more often due to their low costs. As in the processes described
above, alloys of these metals are often used to increase the catalytic activity [198–200].

Perhaps in steam reforming of alcohols even more attention is paid to choosing catalyst
supports [201,202]. In accordance with the predominant opinion, the role of metal in this
process is the activation of alcohols, while sorption of water vapor occurs on the support
(Figure 6). In this case, the main catalytic transformation processes described by Reactions
(6) and (7) occur at the interface between the catalyst and its support [187]. Finely dispersed
oxides of metals with a charge of 2–4 (zinc, aluminum, silicon, etc.) are commonly used as a
support [203–209]. Obviously, the support surface area should be considered. For example,
it was shown that the activity of zirconia-supported catalysts increases by increasing the
dispersion of ZrO2 particles [210]. In this regard, mesoporous oxides are also used as
supports [195,211]. The catalyst activity can be additionally increased by doping supports
based on zirconia or titania with trivalent elements or cerium (MXZr (Ti)1−XO2−δ) [212,213],
which increase the mobility of oxygen ions in these oxides [214].
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The use of highly dispersed carbon supports, including carbon blacks and nanodi-
amonds, in steam reforming of alcohols has been reported [215]. At first glance, their
activity seems not quite clear, since carbon is not an active water sorbent. It has been
shown that its activity is determined by the high content of oxygen-containing groups
(OH, CO, and COOH) on the carbon particle surface and that it increases upon special
surface treatment [193,216]. A successful combination of catalyst and support reduces the
CO concentration in the reaction products.

In recent years, biological methods of hydrogen production from biomass have been
actively developed. They are based on the ability of microorganisms (primarily bacteria)
to consume biomass and release hydrogen (the so-called microbial conversion of bio-
mass). Dark (as no light is required) fermentation is the simplest approach, which uses
anaerobic bacteria to produce enzymes (it is a part of their anaerobic digestion) capable
of converting biomass into hydrogen, organic acids (mostly acetic and byteric acids), and
carbon dioxide [217–219]. However, the hydrogen yield is significantly limited by the
metabolism of the bacteria (once the hydrogen partial pressure exceeds a critical value,
a different metabolic pathway can be switched on) and depends on many factors such
as substrate, temperature, pH, toxic substances, competitive bacteria, etc. At the same
time, there is information on increased hydrogen yield obtained, for example, by the
addition of metal ions and oxide nanoparticles [218] or the use of genetically modified
bacteria [220]. A significant advantage of this method is the ability to produce hydrogen
around-the-clock. Increased hydrogen yield is provided by photofermentation under
anaerobic conditions, which allows processing of biomass into hydrogen using light energy
for photosynthesis [219,221].

The problem with all the methods of microbial biomass conversion (including the
microbial electrolysis described in the last section) is the low hydrogen yield, and therefore,
these promising methods are still at an early stage of development. Another problem
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with many of them is the incomplete conversion of biomass and the formation of waste
containing a large amount of fatty acids that need further processing [222]. However,
according to [223], by 2050, biomass will provide more than 25% of energy demand. The
reason for this is that the absorption of CO2 during the formation of biomass compensates
for its emissions during energy production, which leads to a carbon neutral scenario [224].

7. Reversible Hydrogen Carriers

One of the serious problems of hydrogen energy is storage and transportation of
hydrogen, as it is difficult to liquefy it. In the case of compressed hydrogen, the high
weight of gas cylinders/tanks is the main limitation to its transportation (tank weight is
more than an order of magnitude higher than that of hydrogen). Transportation of liquid
hydrogen is no less problematic [11,225]. In this regard, chemical methods of hydrogen
storage have become very popular in recent years (Figure 7). The highest weight-storage
density of hydrogen is achieved in metal borohydrides (Figure 8) [226]. However, there are
significant problems with their hydrolysis products, which are boric acid or its salts. They
are toxic and not easily rehydrogenated to borohydrides. In this regard, the ammonia cycle
(Equation (8)) has significant advantages.

2NH3 ↔ N2 + 3H2, ∆H0 = 92 kJ/moL (8)Processes 2023, 10, x FOR PEER REVIEW 11 of 34 
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One of the ammonia decomposition products is nitrogen (Equation (8)), which can
be discharged into the atmosphere and is relatively easily recovered from it through
liquefaction and distillation. This method is second only to the borohydride method in
terms of gravimetric hydrogen density [227]. Ammonia production is the well-known
Haber–Bosch process. Both for it and for the reverse process (dehydrogenation of ammonia),
an important task is the selection of a catalyst, primarily for the efficient adsorption of
nitrogen and hydrogen. For this purpose, catalysts based on iron and ruthenium are most
often used [228]. Mayenite (Ca24Al28O64), with cavities capable of efficiently absorbing
hydrogen, should be mentioned among oxide systems [229,230]. The ammonia cycle is
being actively developed in a number of countries, but its use is associated with a number
of problems that should be mentioned, among which are the toxicity of concentrated
ammonia and incomplete conversion limited by the thermodynamic equilibrium. The
ability of ammonia to cause fuel cell degradation even at a low content in the fuel (on the
order of ppm) should be also noted [231]. Some disadvantages can be effectively mitigated
by using membrane catalysis [33,232].

Liquid organic hydrogen carriers provide the most comfortable transportation by
transport or in pipelines. Cyclic compounds, which transform into aromatic compounds
upon dehydrogenation (benzene, toluene, cyclohexane, methylcyclohexane, decalin, etc.),
predominate among them [233–235]. Typical examples are the benzene cycle based on
hydrogenation of benzene and dehydrogenation of cyclohexane:

C6H12 ↔ C6H6 + 3H2, ∆H0 = 206 kJ/moL (9)

One of the most common cycles is the toluene cycle due to its high selectivity, re-
versibility, and the absence of carcinogenic products [236]. The hydrogen storage capacity
of toluene is 6.1%, while the maximum theoretical storage capacity of liquid organic carriers
reaches values just above 8%.

Heterocyclic compounds are considered promising hydrogen carriers due to their
reduced dehydrogenation temperature. Among them, the most widely represented sys-
tems include nitrogen–heterocyclic compounds [237–243]. There are also works on cyclic
hydrocarbons with sulfur atoms [244] and boron [245].

Most often, catalysts based on platinum-group metals on oxide supports are used
for hydrogenation and dehydrogenation of organic carriers. Their high catalytic ac-
tivity allows, in some cases, achieving full dehydrogenation at temperatures of about
300 ◦C [233,243,245–254]. In recent years, much attention has been paid to cheaper cat-
alysts that do not contain platinum-group metals, e.g., iron and manganese-based cata-
lysts [255–257].

The advantages and disadvantages of various storage methods are summarized in
Table 3.

Table 3. Comparison of various hydrogen storage methods.

Storage Method Advantages Disadvantages

Compressed H2
- Commercialized

- Low volumetric storage capacity
- High pressure
- Limited storage time
- Special transportation configuration
- Safety issues
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Table 3. Cont.

Storage Method Advantages Disadvantages

Liquid H2

- Increased storage capacity
(1.6–1.7 times more than that of
compressed H2)

- Commercialized

- High liquefaction energy (requires
cryogenic temperature (−253 ◦C))

- Boil-off effect
- Hydrogen leakage
- Special transportation configuration
- Safety issues

Cryo-compressed H2

- Increased storage capacity
(2–3 times more than that of
compressed H2)

- High energies of compression and
liquefaction

- Low availability of infrastructure
- High cost of infrastructure

Solid carrier

- Lightweight; high storage density;
superior reversibility and cycle
stability; high charging–discharging
rate (forms materials with
physisorption)

- Reversibility; high volumetric
density (for materials with
chemisorption)

- Unlimited storage time

- Requires low temperatures or high
pressures to store and elevated–to
release H2 (for materials with
physisorption)

- Poor sorption kinetics; irreversible
reactions (materials with
chemisorption)

- Requires a new infrastructure
(immature technology)

Ammonia

- High hydrogen storage capacity
- High auto-ignition temperature

(650 ◦C)

- Toxicity/safety issues
- High energy input

Liquid organic hydrogen carrier

- Excellent safety
- High gravimetric and volumetric

hydrogen storage capacity
- Unlimited storage time

- Requires elevated temperatures for
both hydrogenation and
dehydrogenation

- Limited experience

8. Hydrogen Purification and Membrane Catalysis

Nowadays, the most common type of devices for power generation using electrochem-
ical oxidation of hydrogen or hydrogen-containing fuel are proton-exchange membrane
fuel cells operating at temperatures up to 100 ◦C [11]. High-purity hydrogen is required
for them. They should not contain even trace CO impurities, which irreversibly poison
platinum catalysts at these temperatures [258–260]. Unfortunately, hydrogen produced
using all the processes described above is not suitable for direct use in such devices and
must be deeply purified. Hydrogen can be purified using polymeric, molecular sieving
carbon, and other membranes with nanosized pores [261–263]. However, all of them can
only reduce the impurity content. This can also be achieved using membranes with mixed
oxygen and electron conductivity [264]. Membranes are also often used in membrane
reactors for the safe conversion of natural gas in the presence of oxidizers [34,265,266].

Extremely high-purity hydrogen can only be obtained using dense metallic mem-
branes based on palladium and its alloys, through which only hydrogen can permeate [267].
It should be noted that vanadium is more permeable to hydrogen, but V-based mem-
branes are prone to extreme hydrogen embrittlement. Alloys of palladium with copper,
silver [268–272], or ruthenium [273,274] are characterized by the highest hydrogen per-
meability. The widespread use of palladium membranes is limited by their high cost
and relatively low productivity, which can be increased by reducing the Pd-membrane
thickness. However, the possibility of this approach is limited by the need to maintain
sufficient membrane strength to withstand a significant pressure drop. Another approach is
the creation of composite membranes, e.g., films based on highly porous oxide supports, in
particular, anodic alumina, coated with palladium alloys [275,276]. Oxide supports provide
mechanical strength, while the high selectivity of hydrogen extraction is determined by the
Pd-coating, the small thickness of which, along with the porosity of the oxide layer, pro-
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vides high hydrogen permeability. Vanadium-based membranes with palladium coating
combine both high hydrogen permeability and resistance to embrittlement [277].

Membrane reactors are also used to produce high-purity hydrogen from methane,
alcohols, and other reagents in one stage using membrane catalysis (Figure 9) [33,278–280].
Among other advantages of this approach, it is worth noting the possibility of reducing the
process temperature and increasing the hydrogen yield by removing it from the reaction
zone and thereby shifting the thermodynamic equilibrium [198,216,281–283].
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The most obvious example is the water–gas shift reaction described by Equation (2).
The removal of hydrogen from the reaction zone leads to an increase in the CO conversion
and increases the hydrogen purity [284,285]. A recent publication [116] describes various
approaches to hydrogen production using ceramic membranes. However, membranes
based on palladium alloys, which produce high-purity hydrogen, are more commonly used
in these processes [33]. It should be noted that the water-gas shift reaction is most suitable
for increasing both the hydrogen yield and its purity in the SRM and POM processes.
However, these processes proceed at high temperatures, which are unfavorable for the
water–gas shift reaction. In this regard, it is preferable to divide the process into two or
three stages: in the first stage, methane conversion occurs at high temperatures, and then
the water–gas shift reaction occurs through the reaction of CO and excess water vapor
at temperatures of 200–450 ◦C (Figure 2) [286,287]. For example, Tokyo Gas Company
produces high-purity hydrogen from methane with the additional oxidation of CO at
temperatures of 400–500 ◦C [288].

Alcohols can be obtained from biomass and can be considered a renewable feedstock.
The steam reforming of alcohols proceeds at lower temperatures, which are actually optimal
for both the main process (reforming) and the water–gas shift reaction. Therefore, in this
case, the process is carried out in one stage, significantly increasing the conversion of
alcohols above the thermodynamic equilibrium [289]. Thus, the application of membrane
reactors with membranes made of palladium–silver or palladium–ruthenium alloys with
Cu- or Ru-based catalysts at temperatures of 200–350 ◦C achieves methanol conversion of
85–100% with high-purity hydrogen yield of 40–97% [198,290]. Similar results have been
obtained for composite membranes based on anodic alumina with a selective palladium
layer [281].

In the case of ethanol steam reforming in membrane reactors, the ethanol conversion
varied from 40 to 99–100%, while the high-purity hydrogen yield can be low and varied from
10 to 93% [291]. The main reason for this is a higher process temperature (400–600 ◦C), which
determines the lower selectivity of the process and worsens the thermodynamics of the
water–gas shift reaction. Membranes made of both palladium–copper or palladium–silver
alloys [291–294] and a wide range of composite membranes have been used [291,295–298].
Catalysts based on noble metals (Pt, Ru, or Ir) as well as catalysts based on nickel, cobalt,
and copper have been used.
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Acetic acid is one more product of biomass fermentation. It can also be converted into
hydrogen according to Equation (10):

CH3COOH + 2H2O↔ 2CO2 + 4H2, ∆H0 = 134.9 kJ/moL (10)

In Reaction (10), the maximum yield of pure hydrogen in the permeate zone reached
70% using reactors with palladium–silver membranes and Ni catalysts at a temperature of
400–450 ◦C [299].

9. Water Electrolysis

Electrolysis of water using renewable energy sources is the main completely environ-
mentally friendly method of hydrogen production today. However, its disadvantages are
obvious [300]. The maximum efficiency of electrolyzers and fuel cells under the most favor-
able conditions (at low currents) is about 70%. Therefore, at best, only half of the energy
spent to produce such hydrogen can be generated back from it. Moreover, electrolyzers are
quite expensive. In this regard, at present, hydrogen produced by electrolysis is usually
2–4 times more expensive than hydrogen produced from natural gas [301,302].

The thermodynamic potential of the water electrolysis reaction is 1.23 V. However,
electrolysis is actually carried out at even higher potentials. To understand the reason
for this phenomenon, consider the electrolysis mechanism. According to the current
concept, the hydrogen evolution reaction (HER) proceeds by the following pathways
(Equations (11)–(13)):

H+ + e− = Had, (11)

H+ + e− + Had = H2, (12)

2Had = H2, (13)

where Had represents an adsorbed hydrogen atom on the catalyst surface. It can act as a
reaction center for the reduction of another H+ ion (Equation (12)) or can react with the
second adsorbed hydrogen atom to form a hydrogen molecule (Equation (13)) [303]. In
alkaline electrolyzers with anion-exchange membranes, processes (11) and (12) proceed by
the following equations [304]:

H2O + e− = OH− + Had, (14)

H2O + e− + Had = OH− + O2. (15)

In any case, an adsorbed (unbonded) hydrogen atom is formed in the first step.
Obviously, a much higher potential than 1.23 V is generally needed for the H–O bond to
break in the acid medium. The same problems are typical for the oxygen evolution reaction
(OER). Thus, both these processes require additional energy, which is expressed in terms of
overvoltage in electrochemistry (analogous to the activation energy in kinetics). It is the
high overvoltage of HER and OER reactions that is one of the main problems that limit
the water electrolysis application [305]. This overvoltage can be reduced by adsorption
of radicals formed at the first stages of electrolysis to reduce energy losses during their
formation. However, as the sorption energy increases, the desorption of products from the
surface becomes more difficult. Therefore, the dependence of the current density on the
metal–H binding energy has a volcano-like pattern (Figure 10), as for many other processes
of hydrogen production, and platinum-group metals (Pt, Rh, and Ir) with mild hydrogen
adsorbtion energies are the most favorable for the electroreduction of hydrogen [306,307].
An additional contribution to the overvoltage is made by the concentration effects and the
resistance of electrodes and the electrolyte [308]. Moreover, the contribution of ohmic losses
is higher with increasing electrolysis intensity, since

UOhm = IR, (16)
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where R is the total resistance of the electrolysis cell, and I is the current.

Processes 2023, 10, x FOR PEER REVIEW 15 of 34 
 

 

2Had = H2, (13) 

where Had represents an adsorbed hydrogen atom on the catalyst surface. It can act as a 

reaction center for the reduction of another H+ ion (Equation (12)) or can react with the 

second adsorbed hydrogen atom to form a hydrogen molecule (Equation (13)) [303]. In 

alkaline electrolyzers with anion-exchange membranes, processes (11) and (12) proceed 

by the following equations [304]: 

H2O + e− = OH− + Had, (14) 

H2O + e− + Had = OH− + O2. (15) 

In any case, an adsorbed (unbonded) hydrogen atom is formed in the first step. Ob-

viously, a much higher potential than 1.23 V is generally needed for the H–O bond to 

break in the acid medium. The same problems are typical for the oxygen evolution reac-

tion (OER). Thus, both these processes require additional energy, which is expressed in 

terms of overvoltage in electrochemistry (analogous to the activation energy in kinetics). 

It is the high overvoltage of HER and OER reactions that is one of the main problems 

that limit the water electrolysis application [305]. This overvoltage can be reduced by 

adsorption of radicals formed at the first stages of electrolysis to reduce energy losses 

during their formation. However, as the sorption energy increases, the desorption of 

products from the surface becomes more difficult. Therefore, the dependence of the cur-

rent density on the metal–H binding energy has a volcano-like pattern (Figure 10), as for 

many other processes of hydrogen production, and platinum-group metals (Pt, Rh, and 

Ir) with mild hydrogen adsorbtion energies are the most favorable for the electroreduc-

tion of hydrogen [306,307]. An additional contribution to the overvoltage is made by the 

concentration effects and the resistance of electrodes and the electrolyte [308]. Moreover, 

the contribution of ohmic losses is higher with increasing electrolysis intensity, since 

UOhm = IR, (16) 

where R is the total resistance of the electrolysis cell, and I is the current. 

 

Figure 10. Dependence of exchange current density vs. the M–H bond energy in acidic media (ac-

cording to [306]). 

Figure 10. Dependence of exchange current density vs. the M–H bond energy in acidic media
(according to [306]).

There are four main electrolysis methods, depending on the type of membrane
used: (1) proton-exchange membrane water electrolysis, (2) alkaline electrolysis, (3) high-
temperature electrolysis with solid oxide membranes, and (4) microbial electrolysis
(Figure 11, Table 4). Proton-exchange membrane electrolyzers use Nafion-type perflu-
orinated membranes and noble metal-based electrocatalysts that are stable during the
operation of such cells [309–311]. The latter are the most widespread due to their compact-
ness, fast response, and high efficiency. Their disadvantage is the high cost of materials and
a whole cell. Base-metal electrocatalysts and non-perfluorinated membranes can be used in
alkaline electrolysis, which reduces the cost [312]. Initially, cheap porous membranes from
asbestos impregnated with an alkali solution were used in alkaline electrolysis cells [313].
In recent years, a new approach associated with the use of polymeric anion-exchange
membranes has been actively developed. However, the hydrogen electroreduction rate in
alkaline media is usually 2–3 orders of magnitude lower than that in acidic media [313,314].
High-temperature solid oxide electrolysis requires a lot of energy due to high operating
temperatures and pressures [315]. At the same time, a number of researchers note that
the use of steam at elevated temperatures increases the electrolysis efficiency [316,317].
Electrolysis using renewable energy sources is the most promising. However, the stochas-
ticity of these sources results in the variability of their operation and requires heating to
high temperatures at each start-up cycle. Moreover, significant energy losses due to heat
exchange are possible, which depend on the cell design and size. It is also worth noting the
developing direction based on the use of microbial electrolysis cells [318]. Another interest-
ing approach includes a two-step electrochemical–chemical cycle for water splitting [319].
In this process, the hydrogen and oxygen evolution reactions are carried out in different
chambers. Low-temperature (25 ◦C) hydrogen reduction is accompanied by the release of
hydroxide ions, which oxidize nickel (II) hydroxide at the anode:

Ni(OH)2 + OH− − e− → NiOOH +H2O. (17)
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Figure 11. The main types of electrolysis methods: (a) proton-exchange membrane water electrol-
ysis; (b) alkaline electrolysis; (c) high-temperature electrolysis with solid oxide membranes; and
(d) microbial electrolysis.

Table 4. Comparison of different water electrolysis methods.

Electrolysis Method Advantages Disadvantages

Alkaline electrolysis
(Commercialized)

- Low cost
- High durability
- Non-metal

electrocatalytic

- Energy efficiency is 70%
- Low-purity H2
- Low operating pressure
- Limited current density
- Corrosive environment
- Gas crossover

Proton-exchange membrane
water electrolysis

(Good prospects for
commercialization)

- Energy efficiency is
80–90%

- Ultra-pure H2 (99.99%)
- High operating pressure
- High current density
- Quick response

- High cost
- Acidic environment
- Low durability

High-temperature electrolysis
with solid oxide membranes

(Laboratory scale)

- Energy efficiency is
90–100%

- High operating pressure
- High current density
- Non-metal catalysis

- Large size
- Long start-up
- Low durability

At the second stage, NiOOH decomposes at an elevated (90 ◦C) temperature with
nickel (II) hydroxide regeneration.

Noble metals (Pt, Pd, Ru, Ir, and Rh) demonstrate excellent catalytic activity in the reac-
tion of hydrogen electroreduction and stability when operating in an electrolyzer [320–322].
To optimize diffusion processes and reduce the noble metal amount, they are usually
deposited on supports from nanodispersed carbon materials [323]. Supports based on
carbon nanomaterials doped with heteroatoms are also widely used due to their increased
conductivity [324,325]. An effective strategy for increasing the activity of catalysts based
on noble metals is the formation of alloys or composites with other, more often base, metals
or their compounds [326–330]. In this way, the overvoltage of this process can be reduced
to 10–50 mV [331].

Transition metal compounds can be used for hydrogen electroreduction instead of
platinum-group metals. Thus, the authors of [332,333] concluded that the electronic struc-
ture of some transition metal carbides is similar to platinum in many aspects and can exhibit
similar catalytic properties. These assumptions were confirmed by Vrubel et al. [334], but
the overvoltage of the hydrogen electroreduction reaction turned out to be quite high.
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The properties of molybdenum carbide nanostructures turned out to be even more attrac-
tive [335]. Phosphides [336] and sulfides of a number of transition metals [337–339] exhibit
high catalytic activity in this reaction.

The four-electron oxygen evolution reaction is much more complicated. The following
mechanism is currently proposed [305]. In alkaline media, it involves the sorption of
hydroxyl ions on catalytic metal centers (M) with electron release (Equation (18)) followed
by the formation of oxide centers (M − O) as a result of deprotonation (Equation (19)):

OH− + M→M − OH + e−, (18)

M − OH + OH− →M − O + H2O + e−. (19)

Then, oxide centers transform through the formation of peroxide groups
(Equations (20) and (21)):

M − O + OH− →M − OOH + e−, (20)

M − OOH + OH− → O2 + H2O + e− + M (21)

or direct formation of an oxygen molecule from two oxide centers:

2M − O→ 2M + O2. (22)

Another mechanism of OER that is also widely discussed in the literature involves the
participation of lattice oxygens of catalysts [340–343]. An important step in this mechanism
is the formation of oxygen vacancies [344]. Such a mechanism is often suggested for mixed
oxides with an oxygen-deficient lattice of the La1−xSrxCoO3−δ type. They generally exhibit
high oxygen mobility and rapid oxygen exchange between the gas phase and the lattice.
Oxygen vacancies and a mixed oxidation state of these structures also provide fast oxygen
transfer in such materials.

The lowest OER overvoltage potentials (about 100–200 mV) were achieved for catalysts
based on iridium and ruthenium oxides, which are characterized by an intermediate energy
of binding with oxygen-containing radicals [345–349]. The OER rate can be increased
by doping these oxides with transition metals. These additives also reduce the catalyst
cost [345,350–353]. Among active catalysts, it is also worth noting materials based on
platinum [354] and transition metals [355,356] as well as their compounds, including oxides
and hydroxides [357,358]. Similar to HER, the use of alloys of platinum and transition
metals is effective [354]. Recently, metal–organic frameworks (MOFs) have also been used
as catalysts in water electrolysis [359].

At present, the main challenge is to intensify the electrolysis process and make it more
efficient [360]. In this way, in addition to improving catalysts properties, the possibility of
achieving this through special external force fields is being widely studied. For example,
the effect of a supergravity field [361] and ultrasonic action [362] on the performance of
electrolytic cells has been studied. The magnetic field application can improve both the
mass transfer in the electrolytic cell through increasing the electrolyte convection and the
cell performance [363–365]. Jing et al. improved the electrolyzer characteristics through a
repetitive, pulsed, high magnetic field [366]. The rate of hydrogen production increased
by 15–20% at a magnetic field strength of 10,000 GS [367]. It is important to note that
increasing the voltage on the electrolyzer enables the production of hydrogen under high
pressure [308], which avoids the energy-consuming stage of hydrogen compression before
cylinder filling.

The most widespread PEM electrolyzers contain expensive components such as cata-
lysts based on platinum metals and perfluorinated sulfonic acid membranes. Therefore, the
stability of their operation along with a long service life are extremely important issues. A
serious problem in electrolysis plants is the degradation of both catalysts and membranes.
During the electrolyzer operation, recrystallization of platinum catalyst particles occurs,
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resulting in a gradual decrease in the surface area of the catalyst, along with its activity [368].
Moreover, partial dissolution of the catalyst or bipolar plates occurs due to their interaction
with a corrosive medium of membranes, which is accompanied by the migration of metal
ions incorporated into them by ion-exchange [369,370]. This leads to a significant decrease
in the membrane proton conductivity due to a decrease in both the concentration of protons
and their mobility. The latter is a result of the so-called “polyalkaline” effect: a decrease in
the ion mobility of a compound when there are two types of ions with different mobilities
in conduction channels [371]. In this case, the hydrogen crossover leads to a reduction of
the metal ions formed due to the catalyst dissolution in the membrane matrix [372,373].

Moreover, an important process is the chemical degradation of membranes [374,375] as
the result of the attack of free radicals formed from hydrogen peroxide [376]. In membranes,
hydrogen peroxide interacts with dissolved transition metal ions, generating radicals. The
same processes also occur when the membrane is treated with the Fenton reagent, which is
usually used to study membrane degradation in an accelerated mode [377]:

Fe2+ + H2O2 → Fe3+ + •OH + OH−, (23)

Fe3+ + H2O2 → Fe2+ + •OOH + H+. (24)

Most articles report the degradation of perfluorinated sulfonic acid membranes. The
radicals formed in these processes attack both side and main perfluorinated chains. The
processes with the participation of –OCF2 and C–S bonds, which are most easily attacked
by radicals, are characterized by the highest rate. This is accompanied by a decrease
in membrane conductivity due to the loss of functional groups [378]. The main chains
degrade much more slowly by the gradual elimination of the terminal carboxyl groups.
Moreover, membrane degradation is also catalyzed by noble metal nanoparticles deposited
in the membrane [376]. In this regard, much attention is paid to the selection of oper-
ating conditions of electrolyzers, under which degradation of their components can be
minimized [379,380].

In photoelectrolysis of water, water electrolysis occurs using the solar energy absorbed
by a semiconductor (usually titania) while applying electric current [381,382].

By using reversible hydrogenases, green microalgae or cyanobacteria are able to direct
hydrogen production under special conditions (oxygen-free) in direct biophotolysis while
consuming CO2 [219,383]. In indirect biophotolysis, carbohydrates formed from carbon
dioxide at the first step are processed into hydrogen at the next stage [384]. However, the
use of this interesting technology is limited by its low efficiency [21,385].

Microbial electrolysis is a relatively new approach to biohydrogen production from
organic substances present in biomass, food waste, and/or wastewater [386]. It uses
electrochemically active microorganisms (electrogenic bacteria) that oxidize organic matter,
generating carbon dioxide, protons, and electrons at the anode. The electrons are then
transferred to the cathode to reduce protons, producing hydrogen due to a relatively low
(0.2–0.8 V) potential difference [387]. A significant reduction in voltage and total energy
consumption compared to classical water electrolysis (in the absence of microorganisms)
is achieved due to the fact that the oxidation of water oxygens at the anode is replaced
by organic matter oxidation. However, the presence of microorganisms in the solution
imposes significant restrictions, such as neutral pH and low salinity of the solution, which
causes low electrical conductivity and reduces the hydrogen production efficiency, which
hinders microbial electrolysis cell commercial use [387]. One of the trends is the use of
membraneless single-chamber microbial electrolysis cells, which also provide high process
efficiency [388]. It should be noted that, as well as for other microbial methods of hydrogen
production, microbial electrolysis is characterized by low performance and today remains
only a promising method for hydrogen production.

Thermochemical water splitting is another promising technology of hydrogen pro-
duction [389]. Various photoelectrodes are often used to carry out this process more
effectively [390], while solar power and nuclear reactors are considered the likely energy
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(heat) sources. Today, the construction of such stations requires high costs. This technology
is complex, and reports on its effectiveness vary widely.

10. Conclusions

The rapid development of renewable energy and the stochastic nature of its main
sources dictate the need for energy storage. The hydrogen cycle is the most promising
for mitigation of season fluctuations. According to forecasts, there will be an increase
in hydrogen production and a significant redistribution of its application areas, with the
electric power industry and transport being the major hydrogen consumers. Comparison
of the main hydrogen production processes is given in Table 5.

Table 5. Comparison of the advantages and disadvantages of the main hydrogen production pro-
cesses.

Process Advantages Disadvantages

Steam reforming Existing infrastructure, low-cost
technology

CO and CO2 emission, high temperatures required,
catalyst regeneration required

Partial oxidation Existing infrastructure, low
desulfurization requirement

CO and CO2 emission, high temperatures required,
formation of heavy oils and coke along with H2,

catalyst regeneration required

Auto thermal reforming Existing infrastructure, developed
technology CO and CO2 emission, high-purity O2 required

Biomass gasification
Cheap feedstock, recycling of industrial

waste, neutral CO2 emission, high
biomass conversion efficiency

H2 yield variation due to different biomass
compositions, high operating temperatures, seasonal

availability

Pyrolysis Low CO2 emission
High energy consumption, large carbon amounts,

poor fuel efficiency, hydrogen requires deep
purification

Electrolysis CO2 zero emissions, O2 is a byproduct,
existing infrastructure, high-purity H2

Expensive

Preference is given to methods that produce high-purity hydrogen without significant
emission of carbon oxides. From this point of view, the most promising is water electrolysis
using renewable sources. However, the high cost of such hydrogen dictates the need for
both its improvement and intensification.

Another promising approach is biomass processing with subsequent hydrogen produc-
tion from its fermentation products, in particular, bio-alcohols. In this approach, emissions
of carbon dioxide during hydrogen production are leveled by its absorption during the
biomass cultivation.

At the same time, considerable attention will be paid to the manufacturing of catalysts
that can improve the efficiency of hydrogen production, both by advanced and traditional
methods. It is noteworthy that many methods of hydrogen production use catalysts
of similar composition based on platinum or transition metals and their alloys. This is
especially due to the need to activate the C-H bonds in compounds from which hydrogen
is produced. In this case, catalysts with an intermediate sorption energy of hydrogen
sources exhibit the greatest activity. Increasing attention is also being paid to catalyst
supports, which are designed not only to ensure their high dispersion and surface area
but also to promote hydrogen production and reduce catalyst poisoning, primarily due to
carbon deposition.

One of the promising methods for intensification of high-purity hydrogen produc-
tion is membrane catalysis using membranes based on palladium alloys. Their unique
selectivity produces high-purity hydrogen in a single technological cycle. In this case, the
removal of hydrogen from the reaction zone both reduces the process temperature and
increases the yield of reaction products in excess of the stoichiometric ones determined
by thermodynamics.
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