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Abstract: Manufacturing and energy sectors provide vast amounts of maintenance data and infor-
mation which can be used proactively for performance monitoring and prognostic analysis which
lead to improve maintenance planning and scheduling activities. This leads to reduced unplanned
shutdowns, maintenance costs and any fatal events that could affect the operations of the overall
system. Performance and condition monitoring are among the most used strategies for prognostic
and health management (PHM), in which different methods and techniques can be implemented to
analyse maintenance and online data. Offshore wind turbines (WTs) are complex systems increas-
ingly needing maintenance. This study proposes a performance monitoring system to monitor the
performance of the WT power generation process by exploiting artificial neural networks (ANN)
composed of different network designs and training algorithms, using simulated supervisory control
and data acquisition (SCADA) data. The performance monitoring is based on different operating
modes of the same type of wind turbine. The degradation models were developed based on the
generated active power resulting from different degradation levels of the gearbox, which is a critical
component of the WTs. The deviations of the wind power curves for all operating modes over time
are monitored in terms of the resulting power residuals and are modelled using ANN with a unique
network architecture. The monitoring process uses the recursive form of the cumulative summation
(CUSUM) change detection algorithm to detect the state change point in which the gearbox efficiency
is degraded by evaluating the power residuals predicted by the ANN model. To increase the monitor-
ing effectiveness, a second ANN model was developed to predict the gearbox efficiency to monitor
any failure that could happen once the efficiency degrades below a threshold. The results show a
high degree of accuracy in power and efficiency prediction in addition to monitoring the abnormal
state or deviations of the power generation process resulting from the degraded gearbox efficiency
and their corresponding time slots. The developed monitoring method can be a valuable tool to
provide maintenance experts with alarms and insights into the general state of the power generation
process, which can be used for further maintenance decision-making.

Keywords: maintenance; performance monitoring; prognostic analysis; ANN; wind turbines; gearbox
efficiency; CUSUM

1. Introduction

The costs of operating and maintaining wind turbines (WT) are constantly in need
of reduction as WT are one of the main electricity generation technologies which has the
fastest growth rate in the world [1]. Controlling the wind turbine operations by having
information about the changes in wind state and the turbine position could boost the
efficiency of the generated power from wind turbines [2]. The potential failures of wind
turbines depend on either the instantaneous instances or the age of the components and
the associated failure rates. These failures cause system outages which have significant
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financial consequences [3]. A wind turbine consists of several components: blades, rotor,
yaw motor, tower, generator, controller, Nacelle, and gearbox [4]. The power generation
capacity of wind turbines mostly depends on the gearbox that is constructed of a high-
speed shaft (HSS) and low-speed shaft (LSS), which, together with the generator, makes up
the drive train. Although the gearbox failure rates are typically low, they play a crucial role
in wind turbine operations. Therefore, malfunctions can result in significant downtime and
expensive maintenance costs [5].

Condition monitoring systems (CMS), including performance monitoring, sometimes
known as “health monitoring systems,” are widely used in the literature for diagnosing
faults and monitoring the health of wind turbines. CMSs include sensors, data acquisition,
data processing, cabling, and other installations that provide continuous and real-time
information on the monitored component condition [6,7].

In condition-based maintenance (CBM) and predictive maintenance (PdM), condition
monitoring systems play a crucial role in reducing the costs of occurred failures and
enhancing the functionality of any system because they are widely used as a tool for the
detection of anomalies and failures by providing early warnings [8].

Supervisory control and data acquisition systems (SCADA) are one of the widely used
data sources in CMS due to their cost-effectiveness and high reliability [2,9–11]. Many
research works have used SCADA data to construct CMS of different WT components,
e.g. [12–22]. The real-time condition of a WT component can be indicated through the
measured operational data acquired from the SCADA system, such as temperature, wind
speed, and the generated power, which can be analysed to derive relationships between
these operational data. Subsequently, the condition of the WT can be determined using
various techniques [11,23]. García et al. [24] reported several condition monitoring (CM)
techniques that can be used to monitor the conditions of different WT components, such as
vibration analysis, acoustic emission, ultrasonic testing, oil analysis, strain measurements,
and process parameter and performance monitoring in which the relationships between
different parameters, such as wind speed and the generated power can be employed to
monitor the WT condition through an early detection of the associated faults or anomalies.
Statistical algorithms are one of the most exploited analysis methods in CM of WTs [24],
side by side with different types of machine learning (ML) techniques, such as Artificial
Neural Network (ANN), Standard Classification and Regression Tree (CART), Boosting
Tree Algorithm (BTA), Support Vector Machine (SVM), Random Forest (RF), Decision Tree
(DT) and much more [3,14,15,25–32].

According to Hameed et al. [33], a CMS has three main characteristics; (1) Early warn-
ings that can help avoid sudden shutdowns and improve the planning and scheduling
tasks. (2) Problem identification is useful to have general insights into the health of the WT
and provide the proper maintenance service at the right time. (3) Continuous monitoring
of the different components of the WT and the whole system provides constant informa-
tion indicating that the system is working correctly. These important characteristics help
minimise shutdowns and maintenance costs, prolong component lifetimes, and ensures
quality control of the different processes.

Different tools and methods can be used to monitor the process performance. Cui
et al. [34] used control charts to monitor the shift in lubricant pressure by detecting the
causing anomalies, while Long et al. [22] used them to monitor the performance of the
generated power by analysing different power curve profiles. Similarly, Wang et al. [35]
monitored the residuals of oil temperature to detect gearbox failures. Machine learning
(ML) was used by Hsu et al. [25] to monitor and diagnose different faults of a WT to develop
a PdM strategy to assist in planning the maintenance needs. Likewise, Wang et al. [36]
used ML to monitor and detect bearing faults using SCADA data; this method was able to
assess the general status of the WT with high accuracy. For the same purposes, Dao [19]
developed a model to monitor the WT performance based on real SCADA data by detecting
abnormal issues resulting from the changing temperature of the generator. For process
monitoring and fault detection, Borchersen and Kinnaert [37] developed a fault detection
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and monitoring model of a WT generator cooling system. The CUSUM change detection
algorithm was used to evaluate and monitor the temperature residuals.

This study proposes a performance monitoring system for WTs using ANN and
CUSUM algorithm. ANN models provide accurate predictions for the generated power
and the gearbox efficiency required for the monitoring process. CUSUM is utilised to
develop a monitoring system to track the operational data of different modes once it
deviates as the gearbox efficiency degrades. The developed monitoring system is validated
and tested using simulated SCADA data of a specific WT with a nominal power of 1.25 MW
working in different operational modes.

2. The Proposed Performance Monitoring System Framework

The proposed algorithm for the performance monitoring (PM) process is depicted in
Figure 1.
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The main steps of the proposed methodology are the following:

• Operational SCADA data Acquisition: Simulated data are collected for different
operating modes of the same WT type.

• Data pre-processing: The corresponding data of the transient time are removed from
the generated data sets.

• ML-ANN modelling: Two ANN models have been developed using different types of
ANN training algorithms and structures to predict the gearbox efficiency of the WT in
addition to the generated electrical power in different operating modes.

• After this, power residuals are calculated based on the developed ANN model, to be
used in the monitoring process.

• Monitoring process: The modelled power residuals are analysed using CUSUM
change detection algorithm to monitor the WT performance in different operating
modes and detect any deviations or abnormal states if they exist. In addition, the
gearbox efficiency prediction assists in monitoring the gearbox itself and avoids se-
vere failure that might be caused due to the degradation of the efficiency below the
manufacturer threshold.

2.1. SCADA Data and Operating Modes

The supervisory control and data acquisition (SCADA) system is a crucial component
of wind turbine process performance and condition monitoring systems. SCADA systems
can provide a wide range of measurements, including temperatures, wind speed, wind
directions, rotor speed, pitch angle, and output power. These characteristics are frequently
used to check on the health of wind farm operations. Due to its high availability, SCADA
data has been used in numerous studies to estimate wind speed and power [28]. In addition
to CMS sensors, the SCADA system also uses many sensors to collect data. The SCADA
system monitors signals and alarms at typically ten-minute intervals [3,16].

The used datasets in this study are simulated (artificial) SCADA data using FAST-
NREL simulating tool as it is described in Shaheen et al. [17]. Three operating modes with
different gearbox efficiency degradation levels for the WT “DeWindD6—1250 kW” are
considered in this study, knowing that the gearbox efficiency can be degraded because of a
lack of lubricant, high temperature, and mechanical losses (torque losses) due to the friction
between HSS and LSS. Each operating mode consisted of different percentages of gearbox
efficiency. Moreover, the HSS and LSS torques are computed during the simulation based
on Equations (1) and (2), taking into consideration the gearbox efficiency.

HSS torque =
LSS torque · efficiency

gearbox ratio
(1)

LSS torque =
HSS torque · efficiency

gearbox ratio
(2)

It is important to note that while other factors besides gearbox efficiency may af-
fect power loss or performance degradation, this research focuses solely on monitoring
a WT power generation performance by analysing the effects of the gearbox efficiency
degradation on the power generation performance.

Three data features are considered with different efficiency degradation levels for
three operating modes, as indicated in Table 1. Each operating mode includes one thousand
observations (measurements), of ten minutes average, observing average wind speed per
simulation, and its associated generated active power and one efficiency level percent-
age e.g., 97% or 90%. Figure 2 depicts the simulated ten-minute average wind speed
from 3–18 m/s. In Figure 2, a single data point represents the average wind speed of
ten minutes duration.
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Table 1. Selected input features of SCADA data.

No. Input Feature

1 Average wind speed

2 Gearbox Efficiency%

3 Generated active power
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Figure 3 depicts the main causes of the potential gearbox efficiency degradation
resulting in degraded generated power.
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Figure 3. Simplified cause-and-effect diagram of the main problem considered in this study.

During the data pre-processing, transient time data, outliers, missing values, and
measurements below the cut-in and above the cut-off wind speed (focusing on power
production areas only) of each feature measurement were removed. Figure 4 depicts the
gearbox efficiency degradation levels in addition to the box plot of the simulated power for
each operating mode.

The simulation tools, simulation of meteorological conditions, wind speed averaging
method, and simulation control characteristics of the developed operating modes are
available in detail in [17,38].

A sample scatter plot of wind speed, defined as mean wind speed and its corre-
sponding active power (power curve form) for two different operating modes, is shown in
Figure 5.
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Figure 5. Power curve profiles of a generated measurements sample. Operating modes 2 and 3.

The power curve form is frequently used to show the power generated by the WT.
Table 2 summarises the main parameters and the ideal operating conditions of DeWindD6
WT used in the simulation process of the nominal power curve and the other different
operating modes.
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Table 2. The operating parameters used in the simulation process.

Cut-in
Speed
(m/s)

Cut-out
Speed
(m/s)

Rated
Speed
(m/s)

Rated Power
(kW)

Power Law
Exponent

Air Density
(kg/m3)

Turbulence
Intensity

(%)

Mean Wind Speed
of the Reference

Height (m/s)

Hub Height
(m)

Gearbox
Efficiency

(%)

2.8 23 12.5 1250 0.3 1.225 0–20 2–18 84.672 90–100

Complete technical characteristics of the DeWindD6 WT are available in [39].
The power curve of any wind turbine in real applications is dynamic because of the

constantly changing working conditions, such as the weather, temperature, wind speed,
air density, system controls, and humidity. As a result, the variation in wind speed and
direction affects different parameters, such as rotor speed (the desired speed in RPM), pitch
angle and the generated power [40]. The wind speed and the desired rotor speed of the
WT based on its power curve determine the best pitch angle of the blades; the optimum
wind direction gives the maximum generated power when it is perpendicular to the blades.
Overall, wind speed variations lead to a change in the generated power.

2.2. Artificial Neural Network Prediction Models

Over the past twenty years, artificial neural networks (ANN) have increasingly become
one of the essential machine learning (ML) prediction techniques [41]. ANN algorithms
have demonstrated their ability to operate with high accuracy and minimal error, demon-
strating their suitability for prediction in a variety of applications [42–47].

The purpose of neural networks is to emulate the functions of real biological brain
networks. The neuron is the fundamental component of neural networks, and, depending
on the tasks it performs, it can alter in size and shape. The ANN is made up of node layers,
including an input layer, an output layer, and one or more hidden layers as seen in Figure 6.
The complete procedure of ANN training can be described using the inputs, weights,
summation function, and activation function [48,49]. Each node has a threshold and weight,
and they are all connected. When a node’s value crosses the threshold, it activates, and the
data is sent through it. The inputs are the data gathered from the primary sources offered.
The weights control how the inputs influence the neuron and are constantly adjusted to
improve the input-output relationship. The weighted summation function determines
what the net inputs are. The activation (transfer) function accepts the net input from the
summation function and uses it to calculate the neuron’s output. This is possible because
the activation functions are either linear or non-linear algebraic equations that enable the
network to store the various relationships between the inputs and outputs during training.
Lastly, the outputs take the results provided by the activation function and accept them to
be delivered for additional processing outside the network.
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The multi-layer perceptron (MLP), the most popular ANN architecture, can be em-
ployed with a variety of training algorithms, including gradient descent (GD), Levenberg-
Marquardt (LM), and error backpropagation (EBP) with conventional forward-backward
computing [41,50,51].

On the other hand, to enhance the training process and allow the ANN to train
and model complicated structures like fully connected networks (FCN) and arbitrar-
ily connected networks (ACN), alternative network designs in combination with the
neuron-by-neuron training algorithm (NBN) were developed. This may be used to train
and model systems with complicated structures and handle an infinite number of input
patterns [49,52–55]. It can also be used to represent arbitrary connections in networks.

In this study, the Matlab software tool was mainly used for SCADA data simulation
and analysis in addition to various statistical analysis software for data pre-processing and
data visualisation. The software used for training was the “NBN Trainer 2.08” that was
built using the C++ programming language by Yu et al. [56].

Initial weights for the neural networks are random weights between −1 and 1. Hyper-
bolic tangent (tanh) is the activation function utilised for hidden layers (employed by the
neurons) and the output layer as well, taking into consideration the fact that, in this case,
neurons can produce positive or negative outputs. [55]. Neuron j output is described in
Equation (3).

Outj = tan h
(
gain × netj

)
+ der × netj (3)

where netj is the sum of the weighted inputs to neuron j, and Outj is the output of neuron j.
The “gain” and “der” are parameters of the activation functions. The parameter “der”

is introduced to adjust the slope of the activation function where the slope is approaching
zero [56].

The degradation measurements, which should be the output of the training, are
normalised using the min-max normalisation process using Equation (4).

x′ =
x−min(x)

max(x)−min(x)
(4)

where x′ is the normalised value, and x is the value to be normalised; min(x) and max(x)
are the maximum and minimum values of the range from which x′ has been normalised. It
is worth mentioning that data normalisation in ANN training helps models to converge
faster with higher learning rates.

When the slope of the activation function gets close to zero, the parameter “der” is
provided to adjust it [56]. “Gain” and “der” were set to 0.50 and 0.01, respectively.

In this research, two ANN models were developed to predict the generated power and
the gearbox efficiency of different operating modes of the WT separately. The more accurate
model of the two was selected based on the least error; then, it was used to calculate the
power residuals needed for the performance monitoring process.

2.2.1. Power Prediction ANN Models

Two ANN models were developed to predict the power, ANN-MLP, and ANN-NBN.
The datasets of operating modes 1 and 3 were used to train and test the developed models
with 80%–20% training and testing splitting ratio. While the dataset of operating mode 2
was used to validate the developed models. Table 3 presents a summary of the developed
two ANN models.

The predicted power was modelled in terms of the wind speed and gearbox efficiency
using the ANN architectures depicted in Figure 6.
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Table 3. Summary of the ANN models developed for the prediction of the generated power and
gearbox efficiency.

ANN Model Model I Model II

Variable’s normalisation Min-max normalisation

Architecture MLP 2-2-1 FCN/ACN

No. neurons H3 3

Hidden layers activation function Hyperbolic tangent (tanh)

Outputs activation function Hyperbolic tangent (tanh)

Training algorithm/computations method LM—forward-backward NBN—forward-backward

No. patterns/training (80%) 1600

No. patterns/test (20%) 400

Error function Root mean squared error (RMSE)

2.2.2. ANN Models for Gearbox Efficiency Prediction

The same architecture of the two models explained above was also used to predict the
gearbox efficiency utilising the datasets of operating modes 1 and 3 for testing and training,
while the dataset of operating model 2 was used for validation. Table 3 presents a summary
of these ANN models.

The predicted gearbox efficiencies were modelled in terms of wind speed and power
using the ANN architectures depicted in Figure 7.
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It’s worth mentioning that the developed prediction models are solely based on the
simulated datasets of the three operating modes of the WT type “DeWindD6 1250 kW” and
can be generalised to other types of WTs in future works.

2.3. Model Evaluation

The developed models were evaluated in terms of their prediction accuracy using the
statistical performance measure root mean squared error (RMSE), as Equation (5).

RMSE =

√
∑n

i=1
(ŷi − yi)

2

n
(5)

where n is the number of patterns, ŷi is the predicted value, and yi is the target (measured)
value.
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2.4. Power Residuals

The term “power residual” refers to the difference between the measured power and
the predicted power based on the selected ANN model among the developed ones, as
Equation (6).

Power residual
(

r(i)
)
= Power_measured − Power_ predicted (6)

3. Results and Discussion
3.1. Evaluation, Selection, and Validation of ANN Prediction Models

Table 4 shows the validation metrics based on the performance measure RMSE used
for checking the prediction accuracy of the developed ANN models.

Table 4. Validation metrics using RMSE to evaluate the developed prediction models.

Power Prediction Models Efficiency Prediction Model

ANN Model Model I Model II Model I Model II

Training RMSE—Normalised 0.0222 0.0191 0.0388 0.0359

Testing RMSE—Normalised 0.0219 0.0195 0.0396 0.0367

Validation RMSE—Normalised 0.0212 0.0198 0.0192 0.0230

Average RMSE -Normalised 0.0217 0.0194 0.0325 0.0318

It can be seen that all models have a relatively small RMSE; training, testing, and
validation RMSE values are close to each other. The least RMSE means better prediction
performance. Thus, the best RMSE value was achieved by model II (ANN-NBN) with
slightly lower RMSE values than models I. Model II of power predictions was selected
then to calculate the power residuals and monitor the performance of the WT power
generation process.

It is worth mentioning that the dataset of operating mode 2 was used for further
validation of model II for both the prediction of power and gearbox efficiency. It is known
that for the simulation of this dataset, the efficiency was set to 97%. During validation,
the efficiency of this dataset was predicted at 96.4%, which can be considered as a high
prediction accuracy.

3.2. Prediction Analytical Equations

To provide a practical way to predict the output power of WT with different gearbox
efficiency levels, in addition to predicting the gearbox efficiency itself, two analytical
equations, Equations (9) and (10), were extracted from the ANN models based on their
weights and biases.

Regarding the prediction models, there were 12 estimated weights for each: input
weights (IW) between the inputs and hidden layers and layer weights (LW) between the
hidden layers and the output. Two inputs and one output are included in each model. The
biases are b1 for the input layers and b2 for the output layer. The weights are taken from
the best-trained ANN models based on the lowest RMSE (Model II for both power and
gearbox efficiency prediction).

Referring to Equation (3), substituting the values of “der” and “gain” the activation
function f (x) can be written as:

f (x) = tanh(0.5x) + 0.01x

f (x) =
e0.5x − e−0.5x

e0.5x + e−0.5x + 0.01x
(7)

then,
Power prediction = b2 + LW·tan h(b1 + IW·x) (8)
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Power prediction i = 3.371 + 1.307· e
(1+IW·0.5x) − e−(1+IW·0.5x)

e(1+IW·0.5x) + e−(1+IW·0.5x)
+ 0.01(b1 + IW ·x) (9)

where x is the inputs matrix. Table 5 provides the estimated values of (b1), (b2), (IW), and
(LW) from the best-trained ANN model used for power prediction. Similarly, Table 6 pro-
vides the same estimates from the best-trained ANN model developed for gearbox efficiency.

Gearbox efficiency prediction i = −562.47− 493.266· e
(1+IW·0.5x) − e−(1+IW·0.5x)

e(1+IW·0.5x) + e−(1+IW·0.5x)
+ 0.01(b1 + IW ·x) (10)

Table 5. Weights and biases of the best-trained ANN power prediction model.

b1 b2 IW LW

17.09214 - −18.95625 −6.37007 - -

−0.36432 0.99391 −0.33618 −2.33843 -

- 3.37135 1.53391 0.15928 −2.73824 1.30765

Table 6. Weights and biases of the best-trained ANN gearbox efficiency prediction model.

b1 b2 IW LW

2.37085 - −6.87395 −9.08612 - -

−10.38677 - 0.12185 5.35551 −5.03385 -

- −562.47041 26.5025 705.80450 147.0163 −493.26603

3.3. Importance Analysis

The influence of each input variable of the developed best performance ANN models
for both power and gearbox efficiency prediction was analysed using the predictors’ impor-
tance analysis to order the variable predictors according to their respective “importance”.

Table 7 and Figure 8 show that the most significant input feature is wind speed for
the power prediction model, with around 97%, while the gearbox efficiency has the lowest
effect, with only 3%. Similarly, both power and wind speed are influential input features
with respect to gearbox efficiency prediction, with 90% and 100%, respectively.

Table 7. Importance analysis for all operating modes in terms of wind speed.

Power Predictions ANN Model II Gearbox Efficiency Predictions ANN Model II

Feature Variable Rank % Importance Order Variable Rank % Importance Order

Wind speed 97 0.971 1 90 0.9013 2

Power - 100 1 1

Gearbox efficiency 3 0.029 2 -

In practice, the gearbox efficiency is also an influential input in terms of power predic-
tion; the decreased level of gearbox efficiency causes a decrement in the generated power
in a manner that the power curve is shifted downwards. In this study, the importance
of efficiency resulted in a small portion compared to the wind speed due to the limited
exploited efficiency degradation levels (three operating modes).
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3.4. Power Residuals Calculation

The power residuals based on the ANN model II predictions were calculated using
Equation (6).

The statistical summary of the power residuals based on the predictions by the ANN
model II used in the monitoring process is presented in Table 8.

Table 8. Statistical summary of the calculated power residuals of each operating mode.

Operating Mode Mean Standard Deviation Variance Range Min Max

1 1.078 22.498 506.164 144.217 −59.175 85.043

2 −2.403 23.390 547.085 146.479 −70.241 76.239

3 −2.110 22.881 523.526 147.682 −77.040 70.642

A sample of the normalised measured and predicted power and their calculated
residuals are presented in Figure 9.

It can be noticed from Figure 9 and Table 4 that the prediction error (RMSE) is relatively
small for both power prediction models; the training and testing RMSEs are relatively close
to each other.

To sum up, the validation of the developed prediction models was based on two
measures: the performance metrics of the models (RMSE) and the prediction accuracy,
using the dataset of operating mode 3, which showed reasonable and accurate results as
discussed before.

Figure 10 shows the probability plot of power residuals for the three operating modes.
From Table 8 and Figure 9, it can be observed that the values of the power residuals for the
operating modes 1–3 resulting from the ANN model predictions have significant variations.
Thus, the mean of each operating mode has indicated that all residuals are shifted toward
the negative side due to the increased degradation in the gearbox efficiency.
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Figure 10 shows the power residuals probability density function (PDF) predicted by
ANN model II for all operating modes, from which we can observe that operational modes
2 and 3 have a small negative shift in their means due to the degradation in both gearbox
efficiency and the affected power generation.

Processes 2023, 11, x FOR PEER REVIEW 15 of 23 
 

 

 

Figure 10. Power residual distributions for all operating modes using ANN model II. 

3.5. Performance Monitoring using CUSUM Change Detection Algorithm 
The cumulative summation (CUSUM) algorithm is usually utilised for state change 

detection and performance monitoring. It is known for its robustness in detecting small 
changes in the mean of the time series which is stationary between two changepoints. 

The ANN-NBN model II of the power prediction, as shown in Table 4, has a small 
error. Hence, the power prediction model II and its related power curve can be used as a 
baseline for the monitoring process. Once the WT is operating as the baseline (normal 
state), the model can provide accurate predictions of the power output along with minor 
power residuals between the measured and the predicted power. When the WT has ab-
normal operating conditions, the output variables deviate from the baseline model, and 
then the model produces increasingly shifted predicted power residuals. Using the ANN 
model II as a baseline, the performance of each operating mode in terms of the produced 
power is monitored. The monitoring process aims at detecting any abnormal state change 
related to the power residuals. The CUSUM change detection algorithm test is performed 
for that purpose as shown in Figure 11. 

 

Figure 10. Power residual distributions for all operating modes using ANN model II.



Processes 2023, 11, 269 14 of 21

3.5. Performance Monitoring Using CUSUM Change Detection Algorithm

The cumulative summation (CUSUM) algorithm is usually utilised for state change
detection and performance monitoring. It is known for its robustness in detecting small
changes in the mean of the time series which is stationary between two changepoints.

The ANN-NBN model II of the power prediction, as shown in Table 4, has a small
error. Hence, the power prediction model II and its related power curve can be used as a
baseline for the monitoring process. Once the WT is operating as the baseline (normal state),
the model can provide accurate predictions of the power output along with minor power
residuals between the measured and the predicted power. When the WT has abnormal
operating conditions, the output variables deviate from the baseline model, and then the
model produces increasingly shifted predicted power residuals. Using the ANN model II
as a baseline, the performance of each operating mode in terms of the produced power is
monitored. The monitoring process aims at detecting any abnormal state change related to
the power residuals. The CUSUM change detection algorithm test is performed for that
purpose as shown in Figure 11.
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The main goal of the CUSUM test is to compare two hypotheses H0 andH1, which
represent the normal and abnormal states of the different operating modes, respectively, to
see which one best fits the given datasets.

A scalar set of the ANN predicted power residuals r(i) = {r(1), r(2) . . . . . . r(k)} is
used as an input. Assuming that the power residuals have a Gaussian (normal) distribution,
then the hypotheses are as follows:

H0 : r(i) ∼ N
(
µ0, σ2) f or i = (1, . . . , k)

H1 : r(i) ∼ N
(
µ0, σ2) f or i = (1, . . . , k0), r(i) ∼ N

(
µ1, σ2) f or i = (k0, . . . , k)

where:
k0 is the unknown change time;
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µ0 and µ1 are the means of the ANN power residuals before and after the potential
change, respectively;

k is the number of measuring points.
The corresponding log-likelihood ratio s(i) for detecting a change in the mean of

the ANN power residuals from µ0 (normal state—operating mode 1) and µ1 (abnormal
state—operating mode 2 and 3) can be obtained with Equation (11).

s(i) =
µ1 − µ0

σ2

(
r(i)− µ1 + µ0

2

)
(11)

The recursive form of the CUSUM algorithm is an efficient method for performing the
CUSUM test. The recursive form of the decision function is calculated as Equation (12).

The log-likelihood ratio s(i) has a negative value before the change resulting from the
degradation in the gearbox efficiency, and then it has a positive drift after the change along
with the change occurrence time k̂0 and the stopping time ka, as can be seen in Figure 12.

g(k) = max (0; g(k− 1) + s(k)) (12)
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The alarm function is presented in Equation (13).

d(k) =
{

1, i f g(k) > h
0, otherwise

(13)

A user-defined threshold h is used to make a reasonable balance between a quick-
change detection and a low false alarm rate; h is always positive; only the contributions to
the cumulative sum that add up to a positive number must be considered to determine the
decision function [57].
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To avoid or reduce the false alarms and missed change detections caused by the
parameter variations, the h must consider the maximum magnitudes of residuals under
the normal state of the operating mode, and then the threshold can be calculated as
Equation (14).

h = 1.5× {max g(k) : k < ka} (14)

The stopping time ka, which can be called alarm time as well, is the time instant at
which g(k) crosses the h.

ka = min{k : g(k) ≥ h} (15)

The change occurrence time k0 can be estimated as the time instant k̂0 at which s(k)
changes from negative to positive slope as indicated by Equation (16).

k̂0 = ka − N(ka) (16)

N(k) is the number of successive observations in which the decision function remains
positive, as expressed in Equation (17).

N(k) = N(k− 1)1{g(k−1)>0} + 1 (17)

where 1{g(k−1)>0} is the indicator of event g(k− 1) > 0, namely, 1{g(k−1)>0} = 1 when
g(k− 1) > 0 is true, otherwise 1{g(k−1)>0} = 0.

Figure 13 shows the recursive CUSUM decision function of the ANN power residuals
for the three operating modes, in which the first operating mode is considered normal and
the others as abnormal states in terms of the degraded gearbox efficiency. The upper chart
presents the recursive CUSUM without re-initialisation, where h = 3.459. While the lower
chart presents the recursive CUSUM with re-initialisation once h is crossed (g(k) > h). The
stopping time (alarm) ka = 1018 is also shown there.

R-control chart as in Figure 14 is used to simplify the representation of the CUSUM
results depicted in Figure 13 (lower chart).

As depicted in Figure 13 (upper chart), during the state change occurrence, the CUSUM
of the log-likelihood ratio (g(k)) start increasing. Larger efficiency degradation indicates a
higher slope. On the other hand, it can be seen in Figure 13 (lower chart) and Figure 14 that
eight points are located in the out-of-control region (out of the upper control limit—UCL);
these points represent the stopping alarms detected using the CUSUM. The first stopping
alarm is triggered when the first state change is detected using the CUSUM; the other
alarms indicate the continuous degradation in the gearbox efficiency as the slope increases,
as shown in Figure 13 (upper chart).

The threshold h was selected to avoid false alarms. However, a change detection
time delay D might occur accordingly, as seen in Equation (18). Thus, there is a trade-off
between the false alarms and the detection time.

D = ka − k (18)
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Table 9 below summarises the performance monitoring results of the evaluated ANN
power residuals for the three operating modes based on the gearbox efficiency degradation.

Table 9. Parameters description and performance monitoring results based on CUSUM algorithm.

Parameter Description Value

µ0 Normal state mean (Operating mode 1) 1.078

µ1 Abnormal state mean (Operating modes 2 and 3) −2.263

σ2 Normal state standard deviation 22.498

h User-defined threshold (Equation (14)) 3.459

ka Stopping time (first alarm) (Equation (15)) 1018

k̂0 Change occurrence time (Equation (16)) 969

D Change detection time delay (Equation (18)) 18

The monitoring method based on ANN predictions and CUSUM algorithm devel-
oped for the state change detection of gearbox efficiency offers a reliable analysis of the
power generation process. This methodology also provides an early warning system for
performance and condition monitoring, which helps prevent severe failure occurrences that
might lead to long shutdowns of the WT. It is worth mentioning that triggering early alarms
in advanced stages (k̂0) is an important indicator that can be used by the maintenance crew
for better maintenance action decision-making. The process state based on the triggered
alarms should be further investigated by the maintenance expert to eliminate the root
causes of the detected state change. In our case, the detected state change resulted from the
degraded gearbox efficiency leading to a degraded power generation process.

As indicated in the performance monitoring results, the first state change alarm ka
and the estimated state change occurrence time (early warning) k̂0 helps the maintenance
expert to respond effectively and make decisions; accordingly, this helps in reducing the
effects of unexpected shutdowns and maintenance costs as well

In summary, the monitoring results of the power prediction ANN model can be used
as an efficient tool to monitor the performance of the WT by analysing the triggered alarms
and the existing power residuals, which probably indicate abnormal variations of the WT
performance. Moreover, the monitoring results can be used for further analysis, such as
fault detection and prediction. On the other hand, the results of the gearbox efficiency
prediction ANN model can be used in two ways. First, comparing the predicted gearbox
efficiency in a specific time frame with a threshold provided by the manufacturer to monitor
the efficiency degradation over time. Secondly, the remaining useful life of the gearbox
based on its efficiency over several time cycles can be estimated based on the predicted and
expected efficiencies and the efficiency threshold provided by the manufacturer. This helps
in performing better maintenance plans and schedules.

4. Conclusions and Future Work

In this study, two ANN models were developed with different network architectures,
designs and training algorithms. These models were able to predict the generated power of
a WT based on the wind speed and gearbox efficiency, in addition to predicting the level of
degradation in the gearbox efficiency based on the input wind speed and generated power.

Power residuals were calculated from the selected power prediction ANN model
with the smallest average RMSE value of 0.0194. A methodology of power residuals
prediction combined with a CUSUM change detection algorithm was proposed, analysed
and presented to monitor the change of operating modes. This methodology is based on
the power residuals resulting from the prediction ANN model and the available SCADA
data of other operational modes having different gearbox efficiencies resulting in different
degradation levels of power generation and different power curve profiles. The importance
analysis approach was used to evaluate the importance of each input variable on the
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outputs for both prediction cases; wind speed is the most influential variable with 97%
and 54% importance for the two models, respectively. Without real data, simulation
procedures were used to generate SCADA data (power and wind speed). Combined with
the developed ANN models, the recursive form of the CUSUM algorithm demonstrated
an efficient way to monitor the performance of the WT and assist in detecting efficiency
degradation changes. The results show that the proposed method is efficient and accurate
in monitoring and detecting the state changes of operating modes. The monitoring results
can be integrated and visualised using an appropriate graphical user interface (GUI) to
facilitate the monitoring process of the early warnings, alarms, and the general status of the
WT by the maintenance experts, which can then respond promptly to any observed change
in the state of the monitored WT component without affecting the overall operations. One
of the contributions of this work is modelling the SCADA data of wind speed and the
gearbox efficiency to predict the generated power using an ANN-NBN model, which can
train networks with full connections and arbitrary connections rather than the traditional
MLP network design; this allows effective modelling of a component or even a system with
complex structures of connections providing a huge amount of maintenance data. Future
research could be carried out by utilising tools for developing failure detection, prediction
and identification models using other appropriate types of real SCADA data towards the
full implementation of the PdM strategy. Additionally, the output of the monitoring process
can be used for failure classification problems.
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2. Benbouzid, M.; Berghout, T.; Sarma, N.; Djurović, S.; Wu, Y.; Ma, X. Intelligent condition monitoring of wind power systems:

State of the art review. Energies 2021, 14, 5967. [CrossRef]
3. Abd-Elwahab, K.T.; Hassan, A.A. SCADA data as a powerful tool for early fault detection in wind turbine gearboxes. Wind Eng.

2020, 1, 1317–1326. [CrossRef]
4. Feng, J.; Shen, W.Z. Design optimization of offshore wind farms with multiple types of wind turbines. Appl. Energy 2017, 205,

1283–1297. [CrossRef]
5. Fu, J.; Chu, J.; Guo, P.; Chen, Z. Condition Monitoring of Wind Turbine Gearbox Bearing Based on Deep Learning Model. IEEE

Access 2019, 7, 57078–57087. [CrossRef]
6. Tchakoua, P.; Wamkeue, R.; Ouhrouche, M.; Slaoui-Hasnaoui, F.; Tameghe, T.; Ekemb, G. Wind Turbine Condition Monitoring:

State-of-the-Art Review, New Trends, and Future Challenges. Energies 2014, 7, 2595–2630. [CrossRef]
7. Abichou, B.; Flórez, D.; Sayed-Mouchaweh, M.; Toubakh, H.; François, B.; Girard, N. Fault Diagnosis Methods for Wind Turbines

Health Monitoring: A Review. In Proceedings of the European Conference of the Prognostics and Health Management Society,
Nantes, France, 8–10 July 2014; pp. 1–8. [CrossRef]

https://www.iea.org/reports/world-energy-outlook-2019
http://doi.org/10.3390/en14185967
http://doi.org/10.1177/0309524X20969418
http://doi.org/10.1016/j.apenergy.2017.08.107
http://doi.org/10.1109/ACCESS.2019.2912621
http://doi.org/10.3390/en7042595
http://doi.org/10.13140/2.1.1150.6563


Processes 2023, 11, 269 20 of 21

8. Stetco, A.; Dinmohammadi, F.; Zhao, X.; Robu, V.; Flynn, D.; Barnes, M.; Keane, J.; Nenadic, G. Machine learning methods for
wind turbine condition monitoring: A review. Renew. Energy 2019, 133, 620–635. [CrossRef]

9. Butler, S.; O’Connor, F.; Farren, D.; Ringwood, J. A feasibility study into prognostics for the main bearing of a wind turbine. In
Proceedings of the 2012 IEEE International Conference on Control Applications, Dubrovnik, Croatia, 3–5 October 2012. [CrossRef]

10. Salameh, J.P.; Cauet, S.; Etien, E.; Sakout, A.; Rambault, L. Gearbox condition monitoring in wind turbines: A review. Mech. Syst.
Signal Process. 2018, 111, 251–264. [CrossRef]

11. Jin, X.; Xu, Z.; Qiao, W. Condition monitoring of wind turbine generators using SCADA data analysis. IEEE Trans. Sustain. Energy
2021, 12, 202–210. [CrossRef]

12. Schlechtingen, M.; Santos, I.; Achiche, S. Wind turbine condition monitoring based on SCADA data using normal behavior
models. Part 1: System description. Appl. Soft Comput. J. 2013, 13, 259–270. [CrossRef]

13. Schlechtingen, M.; Santos, I.F. Wind turbine condition monitoring based on SCADA data using normal behavior models. Part 2:
Application examples. Appl. Soft Comput. J. 2014, 14, 447–460. [CrossRef]

14. Zaher, A.; McArthur, S.; Infield, D.; Patel, Y. Online wind turbine fault detection through automated SCADA data analysis. Wind
Energy 2009, 12, 574–593. [CrossRef]

15. Zhang, Z.Y.; Wang, K.S. Wind turbine fault detection based on SCADA data analysis using ANN. Adv. Manuf. 2014, 2, 70–78.
[CrossRef]

16. Yang, W.; Court, R.; Jiang, J. Wind turbine condition monitoring by the approach of SCADA data analysis. Renew. Energy 2013, 53,
365–376. [CrossRef]

17. Shaheen, B.W.; Hanieh, A.; Németh, I. Fault detection of a wind turbine’s gearbox, based on power curve modeling and an on-line
statistical change detection algorithm. Acta Polytech. Hung. 2021, 18, 175–196. [CrossRef]

18. Cabus, J.E.U.; Cui, Y.; Tjernberg, L.B. An Anomaly Detection Approach Based on Autoencoders for Condition Monitoring of
Wind Turbines. In Proceedings of the 2022 17th International Conference on Probabilistic Methods Applied to Power Systems,
PMAPS, Manchester, UK, 12–15 June 2022. [CrossRef]

19. Dao, P.B. Condition monitoring and fault diagnosis of wind turbines based on structural break detection in SCADA data. Renew.
Energy 2022, 185, 641–654. [CrossRef]

20. Wang, K.S.; Sharma, V.; Zhang, Z.Y. SCADA data based condition monitoring of wind turbines. Adv. Manuf. 2014, 2, 61–69.
[CrossRef]

21. Hu, A.; Xiang, L.; Zhu, L. An engineering condition indicator for condition monitoring of wind turbine bearings. Wind Energy
2020, 23, 207–219. [CrossRef]

22. Long, H.; Wang, L.; Zhang, Z.; Song, Z.; Xu, J. Data-Driven Wind Turbine Power Generation Performance Monitoring. IEEE Trans.
Ind. Electron. 2015, 62, 6627–6635. [CrossRef]

23. Chen, B.; Zappalá, D.; Crabtree, C.; Tavner, P.J. Survey of Commercially Available SCADA Data Analysis Tools for Wind Turbine Health
Monitoring; Technical Report; Durham University School of Engineering and Computing Sciences: Durham, UK, 2014.

24. García Márquez, F.P.; Tobias, A.M.; Pinar Pérez, J.M.; Papaelias, M. Condition monitoring of wind turbines: Techniques and
methods. Renew. Energy 2012, 46, 169–178. [CrossRef]

25. Hsu, J.Y.; Wang, Y.; Lin, K.; Chen, M.; Hsu, J.H.Y. Wind turbine fault diagnosis and predictive maintenance through statistical
process control and machine learning. IEEE Access 2020, 8, 23427–23439. [CrossRef]

26. Kusiak, A.; Li, W. The prediction and diagnosis of wind turbine faults. Renew. Energy 2011, 36, 16–23. [CrossRef]
27. Godwin, J.L.; Matthews, P.C. Classification and detection of wind turbine pitch faults through SCADA data analysis. Int. J.

Progn. Health Manag. Spec. Issue Wind Turbine PHM 2013, 4. Available online: http://dro.dur.ac.uk (accessed on 28 March 2020).
[CrossRef]

28. Tao, L.; Siqi, Q.; Zhang, Y.; Shi, H. Abnormal Detection of Wind Turbine Based on SCADA Data Mining. Math. Probl. Eng. 2019,
2019, 5976843. [CrossRef]

29. Yuan, T.; Sun, Z.; Ma, S. Gearbox fault prediction of wind turbines based on a stacking model and change-point detection. Energies
2019, 12, 4224. [CrossRef]

30. Li, G.; Wang, C.; Zhang, D.; Yang, G. An Improved Feature Selection Method Based on Random Forest Algorithm for Wind
Turbine Condition Monitoring. Sensors 2021, 21, 5654. [CrossRef]

31. Corley, B.; Koukoura, S.; Carroll, J.; McDonald, A. Combination of Thermal Modelling and Machine Learning Approaches for
Fault Detection in Wind Turbine Gearboxes. Energies 2021, 14, 1375. [CrossRef]

32. Amruthnath, N.; Gupta, T. A Research Study on Unsupervised Machine Learning Algorithms for Early Fault Detection in
Predictive Maintenance. In Proceedings of the 2018 5th International Conference on Industrial Engineering and Applications,
ICIEA, Singapore, 26–28 June 2018; pp. 355–361. [CrossRef]

33. Hameed, Z.; Hong, Y.; Cho, Y.; Ahn, S.; Song, C.K. Condition monitoring and fault detection of wind turbines and related
algorithms: A review. Renew. Sustain. Energy Rev. 2009, 13, 1–39. [CrossRef]

34. Cui, Y.; Bangalore, P.; Bertling Tjernberg, L. A fault detection framework using recurrent neural networks for condition monitoring
of wind turbines. Wind Energy 2021, 24, 1249–1262. [CrossRef]

35. Wang, F.; Xiao, X.; Zhao, H. Wind turbine gearbox failure prediction based on Time Series analysis and Statistical Process Control.
Adv. Mater. Res. 2012, 347–353, 2236–2240. [CrossRef]

http://doi.org/10.1016/j.renene.2018.10.047
http://doi.org/10.0/Linux-x86_64
http://doi.org/10.1016/j.ymssp.2018.03.052
http://doi.org/10.1109/TSTE.2020.2989220
http://doi.org/10.1016/j.asoc.2012.08.033
http://doi.org/10.1016/j.asoc.2013.09.016
http://doi.org/10.1002/we.319
http://doi.org/10.1007/s40436-014-0061-6
http://doi.org/10.1016/j.renene.2012.11.030
http://doi.org/10.12700/APH.18.6.2021.6.10
http://doi.org/10.1109/PMAPS53380.2022.9810575
http://doi.org/10.1016/j.renene.2021.12.051
http://doi.org/10.1007/s40436-014-0067-0
http://doi.org/10.1002/we.2423
http://doi.org/10.1109/TIE.2015.2447508
http://doi.org/10.1016/j.renene.2012.03.003
http://doi.org/10.1109/ACCESS.2020.2968615
http://doi.org/10.1016/j.renene.2010.05.014
http://dro.dur.ac.uk
http://doi.org/10.36001/ijphm.2013.v4i3.2146
http://doi.org/10.1155/2019/5976843
http://doi.org/10.3390/en12224224
http://doi.org/10.3390/s21165654
http://doi.org/10.3390/en14051375
http://doi.org/10.1109/IEA.2018.8387124
http://doi.org/10.1016/j.rser.2007.05.008
http://doi.org/10.1002/we.2628
http://doi.org/10.4028/www.scientific.net/AMR.347-353.2236


Processes 2023, 11, 269 21 of 21

36. Wang, H.; Wang, H.; Jiang, G.; Li, J.; Wang, Y. Early fault detection of wind turbines based on operational condition clustering
and optimized deep belief network modeling. Energies 2019, 12, 984. [CrossRef]

37. Borchersen, A.B.; Kinnaert, M. Model-based fault detection for generator cooling system in wind turbines using SCADA data.
Wind Energy 2016, 19, 593–606. [CrossRef]

38. Shaheen, B.W. Model-Based Fault Detection in Wind Turbines. MSc. Thesis, Université Libre de Bruxelles and Birzeit University,
Bruxelles, Belgium, Birzeit, Palestine, 2017.

39. Main Characteristics of DeWindD6. Available online: https://en.reselite.de/wind-turbine/used-for-sale/de-wind-d6-1250kw-1.
25mw-1 (accessed on 27 October 2020).

40. Guo, P.; Infield, D. Wind Turbine Power Curve Modeling and Monitoring with Gaussian Process and SPRT. IEEE Trans. Sustain.
Energy 2020, 11, 107–115. [CrossRef]

41. Paturi, U.M.R.; Cheruku, S. Application and performance of machine learning techniques in manufacturing sector from the past
two decades: A review. Mater. Today Proc. 2020, 38, 2392–2401. [CrossRef]

42. Ak, R.; Li, Y.; Vitelli, V.; Zio, E. A genetic algorithm and neural network technique for predicting wind power under uncertainty.
Chem. Eng. Trans. 2013, 33, 925–930. [CrossRef]

43. Javed, K.; Gouriveau, R.; Zemouri, R.; Zerhouni, N. Improving data-driven prognostics by assessing predictability of features.
Progn. Health Manag. Soc. 2011, 3, 555–560.

44. Mahamad, A.K.; Saon, S.; Hiyama, T. Predicting remaining useful life of rotating machinery based artificial neural network.
Comput. Math. Appl. 2010, 60, 1078–1087. [CrossRef]

45. Medjaher, K.; Tobon-Mejia, D.; Zerhouni, N. Remaining useful life estimation of critical components with application to bearings.
IEEE Trans. Reliab. 2012, 61, 292–302. [CrossRef]

46. Ramasso, E.; Placet, V.; Gouriveau, R.; Boubakar, L.; Zerhouni, N. Health assessment of composite structures in unconstrained
environments using partially supervised pattern recognition tools. In Proceedings of the Annual Conference of the Prognostics
and Health Management Society 2012, PHM 2012, Minneapolis, MN, USA, 23–27 September 2012; pp. 17–27.

47. Yan, J.; Lee, J. Degradation assessment and fault modes classification using logistic regression. J. Manuf. Sci. Eng. Trans. ASME
2005, 127, 912–914. [CrossRef]

48. Carvalho, T.P.; Soares, F.A.A.M.N.; Vita, R.; Francisco, R.d.P.; Basto, J.P.; Alcala, S.G.S. A systematic literature review of machine
learning methods applied to predictive maintenance. Comput. Ind. Eng. 2019, 137, 106024. [CrossRef]

49. Cotton, N.; Wilamowski, B.; Yu, H. NBN Algorithm. In Industrial Electronics Handbook, 2nd ed.; Intelligent Systems CRC Press:
Boca Raton, FL, USA, 2011; pp. 1–24.

50. Yu, H.; Wilamowski, B.M. Fast and Efficient and Training of Neural Networks. In Proceedings of the 3rd International Conference
on Human System Interaction, Rzeszow, Poland, 13–15 May 2010; pp. 175–181.

51. Shaheen, B.; Németh, I. Machine Learning Approach for Degradation Path Prediction Using Different Models and Architectures
of Artificial Neural Networks. Period. Polytech. Mech. Eng. 2022, 66, 244–252. [CrossRef]

52. Wilamowski, B.M.; Yu, H. Improved Computation for Levenberg—Marquardt Training. IEEE Trans. Neural Netw. 2010, 21,
930–937. [CrossRef] [PubMed]

53. Wilamowski, B.M. Advanced Learning Algorithms. In Proceedings of the International Conference on Intelligent Engineering
Systems, Barbados, 16–18 April 2009; pp. 9–17.

54. Wilamowski, B.M. Neural network architectures and learning algorithms. IEEE Ind. Electron. Mag. 2009, 3, 56–63. [CrossRef]
55. Wilamowski, B.M.; Cotton, N.J. Method of computing gradient vector and Jacobean matrix in arbitrarily connected neural

networks. In Proceedings of the 2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain, 4–7 June 2007.
[CrossRef]

56. Yu, H.; Wilamowski, B.M. C++ implementation of neural networks trainer. In Proceedings of the 2009 International Conference
on Intelligent Engineering Systems, INES 2009, Barbados, 16–18 April 2009; pp. 257–262. [CrossRef]

57. Blanke, M.; Kinnaert, M.; Lunze, J.; Staroswiecki, M. Diagnosis and Fault-Tolerant Control; Springer: Berlin/Heidelberg,
Germany, 2003.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/en12060984
http://doi.org/10.1002/we.1852
https://en.reselite.de/wind-turbine/used-for-sale/de-wind-d6-1250kw-1.25mw-1
https://en.reselite.de/wind-turbine/used-for-sale/de-wind-d6-1250kw-1.25mw-1
http://doi.org/10.1109/TSTE.2018.2884699
http://doi.org/10.1016/j.matpr.2020.07.209
http://doi.org/10.3303/CET1333155
http://doi.org/10.1016/j.camwa.2010.03.065
http://doi.org/10.1109/TR.2012.2194175
http://doi.org/10.1115/1.1962019
http://doi.org/10.1016/j.cie.2019.106024
http://doi.org/10.3311/PPme.20145
http://doi.org/10.1109/TNN.2010.2045657
http://www.ncbi.nlm.nih.gov/pubmed/20409991
http://doi.org/10.1109/MIE.2009.934790
http://doi.org/10.1109/ISIE.2007.4375144
http://doi.org/10.1109/INES.2009.4924772

	Introduction 
	The Proposed Performance Monitoring System Framework 
	SCADA Data and Operating Modes 
	Artificial Neural Network Prediction Models 
	Power Prediction ANN Models 
	ANN Models for Gearbox Efficiency Prediction 

	Model Evaluation 
	Power Residuals 

	Results and Discussion 
	Evaluation, Selection, and Validation of ANN Prediction Models 
	Prediction Analytical Equations 
	Importance Analysis 
	Power Residuals Calculation 
	Performance Monitoring Using CUSUM Change Detection Algorithm 

	Conclusions and Future Work 
	References

