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Abstract: A standardized method to evaluate the material properties of surimi gels has to be updated
because of the lack of accuracy and the repeatability of data obtained from conventional ways. To
investigate the relationships between the different texture measurement methods used in surimi gels,
250 batches of different surimi gels were used. The textural properties of surimi gels made with
or without whey protein concentrate (SG-WP), potato starch (SG-PS), or dried egg white (SG-EW)
were measured under torsion, tensile, and penetration tests. The correlation between the textural
properties related to the deformation and hardness of surimi gels without any added ingredients
(SG) was linear (R2 > 0.85). However, the R2 values of the shear strain and tensile strain of SG-WP
and SG-EW were significantly lower than that of SG. The strain distributions of surimi gels with and
without added ingredients were estimated by digital image correlation (DIC) analysis. The results
showed that the local strain concentration in SG-WP and SG-EW was significantly higher than that
of SG in the failure ring tensile test and the torsion test (p < 0.05). DIC analysis was an effective
tool for evaluating the strain distribution characteristics of surimi gels upon fracture from torsion,
penetration, and tension.

Keywords: surimi; fish protein; penetration test; punch test; ring tensile test; torsion test; image
analysis; local strain

1. Introduction

Surimi, stabilized fish myofibrillar protein, is a major ingredient of surimi seafood
products. Surimi seafood products have become increasingly popular due to their unique
textural properties as well as their high nutritional value [1]. With suitable thermal treat-
ment, surimi becomes a highly deformable gel. The textural properties of surimi seafood
products are mainly characterized by elastic and/or viscoelastic properties [2,3]. Several
mechanical tests are used to characterize the textural properties of surimi seafood, such
as the penetration test, torsion test, and ring tensile test [2,4,5]. The penetration test has
been widely used in the surimi industry because of the simplicity of the measuring proce-
dure [4,6–8]. The torsion test is a unique measurement that provides failure shear stress
and failure shear strain, with a high correlation with sensory results [1]. Ring tensile tests
with image analysis have also been used to measure the failure tensile properties of surimi
gels [5]. Measurements from the above three methods may reflect the different textural
characteristics of food gels. Thus, a more comprehensive understanding of surimi gel
properties could be obtained by comparing measurements from all three methods.

The digital image correlation method (DIC) is an emerging non-contact optical technol-
ogy for measuring displacement and strain. DIC works by comparing the digital images of
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a component or test specimen at different strains. By tracking a random speckle pattern, the
system can measure displacement and strain on the surface. Since this technique does not
need a complicated monitoring system, the measurement has been widely used in the fields
of fracture mechanics, wood products, food products, and inverse stress analysis [9–11].
Additionally, compared to other methods that utilize the interference of light waves, the
phase analysis of the fringe pattern and subsequent phase unwrapping process are not
necessary. Another important advantage of the DIC technique compared to mechanical tests
is that it can identify local strain during the mechanical tests while the mechanical tests only
measure the overall strain. Therefore, the DIC technique can provide additional information
to compare three mechanical tests, such as the penetration, torsion, and ring tensile tests.

The structural development of food gels depends on the structure of individual
components and the interactions between the components in the mixture. The textural
properties of surimi seafood are highly associated with the structure and interactions of the
ingredients in the surimi seafood formulation. Most surimi seafood contains egg whites,
whey protein, or potato starch to control the texture and cost of the final product [12–15].
The contribution of the ingredients to the textural properties of surimi gels is evaluated by
measuring fundamental mechanical properties by compressive, tensile, or torsion tests [1].
As a homogenous isotropic material, for example, surimi gels are fundamentally tested,
and the mechanical properties are solely dependent upon the direction of the load applied
for each fundamental mechanical test. Numerous studies have characterized the effect of
ingredients on textural properties by measuring mechanical properties [16–19]. However,
there are no reports of studies evaluating the effect of ingredients on the texture properties of
surimi gels using different fundamental mechanical tests. Therefore, a better understanding
of the effects of the ingredients on penetration, failure ring tensile, and torsion tests for
surimi and surimi seafood is needed.

The objectives of this study were to (1) characterize the relationship between the
penetration test, failure ring tensile test, and torsion test, (2) identify the effects of egg
whites, whey protein, and potato starch on the texture characteristics of surimi gel, and
(3) analyze the different relationships associated with the ingredients using the digital
image correlation method.

2. Materials and Methods
2.1. Materials

A total of 250 batches of surimi with and without ingredients with different moisture
contents were used. Alaska pollock grades SA, KA, and B were purchased from American
Seafoods Co. (Seattle, WA, USA), grades A and KA were purchased from Unisea Inc. (Seat-
tle, WA, USA), grade A was purchased from Trident Seafoods Co. (Seattle, WA, USA), grade
A was purchased from Arctic Storm Inc. (Seattle, WA, USA), and grade FA was purchased
from Alaska Ocean Seafood (Anacortes, WA, USA). Pacific whiting grades AA and A were
purchased from Ilwaco Fish Co. (Ilwaco, WA, USA) and American Seafoods Co. (Seattle,
WA, USA). Surimi was cut into about 1 kg blocks, vacuum-packaged, and stored in a freezer
(−25 ◦C) throughout the experiments. The initial moisture content of each surimi lot was
measured according to the AOAC method [20]. Dried egg whites (Henningsen Foods Inc.,
Omaha, NE, USA), whey protein concentrate (8200, Hilmar Ingredients, Hilmer, CA, USA),
and potato starch (Emsland Group, Emlichheim, Germany) were used as ingredients in
the surimi gels.

2.2. Surimi Gel Preparation

Surimi paste and gel were prepared according to the method of Park et al. [5]. After
thawing at 25 ◦C for 1 h, surimi was cut into 5 cm cubes. A Stephan vacuum cutter UM-5
(Stephan Machinery Corp., Columbus, OH, USA) was used to make surimi paste. In the
first 1 min, frozen cubes were chopped at low speed. Salt (20 g/kg) was sprinkled in,
and chopping was continued at low speed for 1 min. Ice/water (0 ◦C) with or without
ingredients (0–90 g/kg), such as dried egg whites (SG-EW), whey protein concentrate (SG-
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WP), and potato starch (SG-PS), was added to adjust the moisture level to 740–810 g/kg,
and the samples were chopped at low speed for 1 min. For the final 3 min, chopping was
continued at high speed while a vacuum was maintained at 0.4–0.6 bar. During chopping,
a constant cold temperature (<8 ◦C) was maintained using a NesLab chiller (NesLab,
Portsmouth, NH, USA). The surimi paste was stuffed into stainless steel tubes (length,
17.5 cm and inner diameter, 3.0 cm) and dumbbell-shaped tubes (maximum diameter,
19 mm and minimum diameter, 10 mm) using a sausage stuffer (Sausage Maker, Buffalo,
NY, USA). The interior wall of the tubes was coated with a film of PAM cooking spray
(Boyle-Midway, Inc., New York, NY, USA). Then, the tubes were heated in a water bath at
90 ◦C for 30 min. The cooked gels were chilled quickly in ice water (0 ◦C). The gels were
kept refrigerated (4 ◦C) overnight.

2.3. Texture Analysis
2.3.1. Penetration Test

Penetration tests were performed with a TA-XT texture analyzer (Stable Micro Systems,
Surrey, UK) equipped with a spherical plunger (1 mm/sec of crosshead speed and 5 mm of
diameter). Surimi gels at 4 ◦C were placed at 25 ◦C for 3 h prior to gel testing. Cylinder-
shaped surimi gels (25 mm long) were prepared and subjected to fracture by penetration.
The penetration distance and breaking force were measured in mm and g, respectively. All
tests were conducted 10 times.

2.3.2. Ring Tensile Test

A failure ring tensile test was performed using a TA-XT texture analyzer equipped
with 2 pins (diameter 10 mm) according to the method of Park and Yoon [5]. The cylindrical
gels were cut into disk shapes (diameter, 30 mm; length, 10 mm). The ring-shaped samples
were prepared by perforating the gels with a ring cutter. The ring sample dimensions had a
width of 10 mm, an inside diameter of 17 mm, and a thickness of 5 mm. The pin at the top
of the equipment was moved up to fracture the ring-shaped samples by tension (constant
speed of 1 mm/sec). All experiments were conducted 10 times.

In the ring tensile test in this study, failure hoop stress and failure uniaxial tensile
stress were estimated to determine gel hardness (failure ring tensile stress). Failure hoop
stress relates the wall circumferential stress to the internal pressure and the geometry of
the ring specimen. Failure hoop stress was calculated by the following equation [5]:

σh =
F

wD
(1)

where σh is the failure hoop stress, F is the load measured during ring tensile testing, w
is the width of the ring specimen, and D is the inside diameter of the ring specimen. In
failure uniaxial tensile stress, the sample is subjected to tension by opposing forces along
its axis. Failure uniaxial tensile stress is calculated based on the cross-sectional area of the
specimen as follows:

σu =
F

2wT
(2)

where σu is the failure uniaxial tensile stress, and T is the thickness of the ring specimen.
In ring tensile testing, the ring specimen is deformed in the circumferential direction.

Failure ring tensile strain was estimated according to Dieter [21], based on the dimensionless
true strain by using the following equation:

ε = ln
C
C0

(3)

where ε is the failure ring tensile strain, C is the inside circumference of ring specimen, and
C0 is the initial inside circumference of the ring specimen.



Processes 2023, 11, 265 4 of 12

2.3.3. Torsion Test

A torsion test was performed with a torsion gelometer (Gel Consultants, Raleigh,
NC, USA). Cold gels (4 ◦C) were placed at room temperature for 2 h to equilibrate gel
temperatures before testing. Dumbbell-shaped samples were measured in the gelometer
for torsional shear at a rotational rate of 2.5 rpm. All experiments were conducted 10 times.

Shear stress and shear strain at mechanical failure were measured. Shear stress
and shear strain indicate gel hardness and deformability of the gel, respectively [22,23].
Failure shear stress occurs at the boundary of the minimum cross-section for this specimen
geometry. The shear stress value was calculated by the following equation [24,25]:

τ =
MtrminK

J
(4)

where τmax is the shear stress, Mt is the torque, rmin is the radius of the smallest cross-section
of the torsion specimen, K is the shape factor constant, and J is the polar moment of inertia
of the smallest cross-section.

The shear strain is defined as follows [26]:

ψtotal = ψQ + ψU = Q
Mt

G
+ U

Mt

G
(5)

ψQ = ψtotal
ψQ

ψQ + ψU
= ψtotal

Q
Q + U

(6)

γ =
2KψQ

πrmin
3Q

(7)

where ψtotal is the total angular rotation, ψQ is the angular rotation in the Q section, ψU
is the angular rotation in the U section, Q is the specimen shape factor of the Q section,
U is the specimen shape factor of the U section, G is the shear modulus, and γ is the
dimensionless shear strain (Figure 1). Shear strain at the failure point was evaluated based
on the true strain defined according to Nadai [25] using the following equation:

γt = ln

[
1 +

γ2

2
+ γ

(
1 +

γ2

4

)1/2]
(8)
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(c) torsion test.

The material it is based on is elastic. Since the shear strain at failure is desired, if a
material does not behave elastically up to the point of failure, difficulty arises in obtaining
the actual failure shear strain value [21].
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2.4. Digital Image Correlation (DIC)

Digital image correlation is a versatile, non-contact optical technique for displacement
and deformation measurements, and this technique has been used in experimental mechanics
to understand strain fields and whole-field displacement [27]. It compares random speckle
patterns on the surface of specimens. The images of the deformed specimen are compared to
the original speckle pattern of the undeformed specimen. Displacement and local strain are
calculated using a pattern-matching technique. In this study, the speckle patterns of surimi
gel were created by the manual spraying of black ink (Pelikan 4001, Pelikan Inc., Schindellegi,
Switzerland). Each image was divided into different subsets containing multiple pixels for
tracing since it was not practical to compare each pixel in the image.

Pattern matching is based on obtaining a correlation between the subsets of images in
the deformed and undeformed states. The monitored successive frames in this study were
used for DIC analysis in MATLAB (Mathworks ® Inc., Natick, MA, USA). A full description
of this DIC method used to estimate the strain distribution can be found in Jones et al. [28].

2.4.1. Image Acquisition

The image acquisition systems for the penetration test, failure ring tensile test, and
torsion test were developed as shown in Figure 1. A digital compact camera (COOLPIX
S6100, Nikon Co., Tokyo, Japan) with a lens (NIKKOR 5–35 mm f /3.7–5.6 25◦ FOV, Nikon
Co., Tokyo, Japan) was used to record each test at frame rates of up to 30 fps with a resolution
of 0.95 million pixels during each test. For the penetration test, the camera was located to
record the penetration point of the surimi gel at an angle of 15◦ (Figure 1a). To record the
front view of the sample in the failure ring tensile test, the camera was placed horizontally
over the sample at a distance of 140 mm (Figure 1b). For the torsion test, the camera was
placed horizontally over the sample to focus on the center of the bottom part at a distance of
70 mm (Figure 1c). Images were obtained in PNG format from the video frames at each time
interval. The obtained successive images were transferred to the computer for automated
image processing followed by DIC analysis. The white objects (surimi gels) placed on
a contrasting background in the successive images were extracted by a threshold-based
segmentation algorithm [5]. The processed images were used for DIC analysis.

2.4.2. Calculation of Local Strain

For the penetration test, a horizontal, rectangular area of the surimi gel (vertical length
= 100 pixels) was used to calculate local strain, which had a penetration point at the center.
Failure ring tensile strain was calculated using the front side of the ring specimen. To calculate
the local strain of the torsion test, the displacement of the bottom part was used, in which the
top part was rotated (Figure 1c). To evaluate local strain, the local strain concentration degree
was developed based on the deviation concept using the following equation:

Dc =
1
N

N

∑
i=1

[
100
Smax

(Smax − Si)

]
(9)

where Dc is the local strain concentration degree, Si is the average local strain of the subset
line, and Smax is the maximum value of Si.

2.5. Statistical Analysis

All experiments were conducted 10 times. Mean values and standard deviations were
determined. One-way ANOVA and Tukey’s multiple comparison tests were carried out at
the significance level of 0.05 by using SPSS software v27 (SPSS Inc, Chicago, IL, USA).

3. Results and Discussion
3.1. Textural Properties Related to the Hardness of Surimi Gel

The characteristics of the textural properties of surimi gel were identified in 250 batches
of surimi gel. Failure hoop stress and failure uniaxial tensile stress were estimated to
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examine the correlation between different textural properties related to the hardness of
surimi gels, as shown in Figure 2. It should be noted here that breaking force, shear stress,
and failure hoop stress showed linearity regardless of the added ingredient (R2 > 0.90),
whereas the correlation between failure uniaxial tensile stress and breaking force and shear
stress did not show linearity or any other trends (R2 < 0.73). In the ring tensile tests, uniaxial
tensile stress is used to estimate the hardness of ductile materials, such as alloy 690 and
Zircaloy [29,30], while hoop stress is used for elastic materials, such as surimi gel and
tissue [5,31]. Many studies reported a linear relationship between the hardness of food
gels measured by different methods. According to Chung and Lee [32], the compressive
force, penetration force, and tensile force of various surimi gel products tended to increase
proportionally. Park [1] also reported that the correlation between breaking force and shear
stress of surimi gel showed a linear relationship. Similar results were also observed in
texture related to the hardness of food gels [33]. Therefore, the results indicated that the
hardness of surimi gel in the failure ring tensile test should be estimated based on failure
hoop stress.
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3.2. Textural Properties Related to Hardness of Surimi Gels

As shown in Figure 3, the correlation between different textural properties related to
the deformation of SG showed a linear function (R2 > 0.85) regardless of the penetration
distance, failure ring tensile strain, or shear strain. The correlations of SG-PS showed
tendencies similar to those of SG. However, a non-linear correlation between SG-EW and
SG-WP was observed when the penetration distance was compared to failure ring tensile
strain and shear strain. While potato starch granules fill the interstitial spaces of the fish
protein network and swell in the water surrounding the protein matrix [1,34], protein
interactions between surimi and protein additives, such as egg whites and whey protein,
occur during gelation in mixed protein systems, affecting gel structure and texture [35,36].
Such interactions might affect the failure point of the tests, which are dependent upon the
matrix material and loading direction [35–37]. Hamann et al. [33] reported that strain, as
an indicator of protein interactions, was strongly affected by protein functionality. Truong



Processes 2023, 11, 265 7 of 12

and Daubert [38], who compared large strain methods in various food gels, reported that
the correlation between compression, torsion, and vane tests was different in gellan gel,
calcium-sulfate-coagulated tofu, and silken tofu. Truong and Daubert [39] also reported
that the relationship between the vane and the torsion tests differed in various kinds
of cheese. Penetration distance increased as shear strain and failure ring tensile strain
increased, and then penetration distance converged at about 14 mm while shear strain
and failure ring tensile strain increased. When very highly deformable gels are tested, the
penetration distance might be influenced by the extremely compressed gel matrix, resulting
in a converged penetration distance value in contrast to failure ring tensile strain and shear
strain because the magnitude of the displacement in the penetration test is limited by the
height of the specimen in contrast to the failure ring tensile test and torsion test [5,33]. In
this study, 25 mm high surimi gels with a spherical plunger (diameter 5 mm) were used for
the penetration test.
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3.3. Evaluation of Local Strain

Based on the relationship between textural properties related to deformation (Figure 3),
Alaska pollock surimi gels (A grade), which showed a similar penetration range, were
chosen as representative surimi gels to compare the strain properties (Table 1). Surimi
gels were made without (AP) and with 3% dried egg white, whey protein concentrate, or
potato starch (AP-EW, AP-WP, and AP-PS, respectively). Failure ring tensile strain and
shear strain of different surimi gels with or without added ingredients were significantly
different in contrast to the penetration distance results, which showed similar value ranges.
The strain values of AP-EW and AP-WP were lower than that of AP in the failure ring
tensile test and torsion test. These differences related to local strain could be explained
by the different effects of the ingredients in the formation of the network structure of the
surimi gels [1,35–37,40].

The local strain contour plot of the surimi gels in the penetration test, failure ring ten-
sile test, and torsion test was estimated by DIC analysis (Figure 4). DIC analysis of surimi
specimens was conducted until failure of the surimi gels, and the picture was taken at the
failure point of each surimi sample. The failure ring tensile test and the torsion test results
for AP and AP-PS showed that local strain for the entire region increased compared to the
AP-EW and AP-WP results, in contrast to the punch test results, where local strain was
concentrated on the failure point regardless of the ingredients. The maximum local strain
values in the punch test, failure ring tensile test, and torsion test were not significantly dif-
ferent (p > 0.05), at 94.9% (±0.59), 132.5% (±5.3), and 74.2% (±1.8), respectively. In contrast,
textural property results related to the deformation of the gels were significantly different
(p < 0.05) (Table 1). Therefore, the differences in the relationship between penetration,
tension, and torsion could be explained by the local strain concentration.
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Table 1. Strain properties of the surimi gels.

Strain Property Test Method
Surimi Gel

AP AP-EW AP-WP AP-PS

Textural properties
Penetration test (mm) 7.12 ± 0.04 a* 6.97 ± 0.16 ab 6.86 ± 0.21 b 6.94 ± 0.09 b

Failure ring tensile test 0.53 ± 0.04 b 0.41 ± 0.05 c 0.35 ± 0.04 c 0.66 ± 0.07 a

Torsion test 1.58 ± 0.06 a 1.37 ± 0.09 bc 1.35 ± 0.08 c 1.49 ± 0.06 b

Maximum local strain (%)
Penetration test 95.3 ± 3.8 a 94.2 ± 3.3 a 95.4 ± 2.5 a 94.5 ± 2.2 a

Failure ring tensile test 132.9 ± 7.7 a 130.0 ± 9.2 a 127.4 ± 14.2 a 139.6 ± 10.5 a

Torsion test 76.5 ± 5.8 a 74.7 ± 11.8 a 72.8 ± 11.6 a 72.6 ± 5.4 a

Local strain concentration (%)
Penetration test 87.1 ± 0.5 a 86.9 ± 0.8 a 86.8 ± 1.0 a 88.2 ± 1.0 a

Failure ring tensile test 26.2 ± 5.0 bc 35.1 ± 3.0 a 36.5 ± 5.5 ab 24.2 ± 3.2 c

Torsion test 31.3 ± 6.4 b 51.2 ± 4.9 a 49.8 ± 3.5 a 32.2 ± 4.7 b

* Different letters in the same row indicate that values are significantly different (p < 0.05).
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ure ring tensile test, and (c) torsion test at failure points in each surimi gel.

To quantify the local strain of the surimi gels in the penetration, tensile, and torsion
tests, the local strain concentration was evaluated according to Equation (9) (Table 1). As
expected, although significant differences in the failure ring tensile test and torsion test
were observed, there was no significant difference in the degree of local strain concentration
in the penetration test (p > 0.05). Fracture strain is determined by deforming a sample
to the point of abrupt mechanical yield [33]. Consequently, concentrated local strain can
result in the early fracture of gels. Highly elastic materials showed no significant difference
in local strain in the tensile test [5]. Protein interactions between surimi and protein
additives, such as egg whites and whey protein, occur during gelation in mixed protein
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systems [36]. Chaijan et al. [41] and Panpipat et al. [42] reported that increases in protein–
protein interactions decreased water–protein interactions, thereby resulting in a decrease in
elasticity. Wasinnitiwong et al. [18] reported that egg whites reduced elasticity in surimi
gels. Hastings and Currall [43] also reported that the effect of egg whites was to reduce
elasticity in cod surimi gel in contrast to potato starch, which increased the elasticity of
surimi gel. Starch granules act as fillers in the gel matrix [44]. Zhou et al. [45] reported that
the addition of unmodified egg white reduced the elasticity of surimi gels. The granules
produce reinforcement in the gel matrix after they absorb water and swell without protein
interaction [46]. Park and Yoon [5] reported that surimi gels without any added ingredients
showed similar local strain values for the entire region in the failure ring tensile test. The
average local strain concentration of 250 different surimi gels was also evaluated (Figure 5).
The results were similar (Table 1). The local strain concentration of SG-EW and SG-WP
was lower than that of SG, which made a difference in the correlation between penetration,
torsion, and ring tensile tests. The difference increased as textural properties related to
the deformation of surimi gel increased, and then, as mentioned above, the difference
decreased as the penetration distance was increased to the limit, which was about 14 mm.
Thus, our observations demonstrated that SG-EW and SG-WP showed higher local strain
concentration in the failure ring tensile and torsion tests, which could result in the early
fracture of surimi gels during testing. While the penetration test induced concentrated local
strain at the fracture point of surimi gels regardless of the ingredients, the ring tensile test
and torsion test showed different strain distributions of the surimi gels by the addition of
egg whites and whey protein, which might cause changes in elasticity due to the interaction
between the different proteins. Local strain analysis using the DIC technique could help in
understanding the characteristics of the different texture measurement methods [47–49].
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4. Conclusions

This study investigated the fracture properties of surimi gels with and without added
ingredients. The textural properties related to the hardness and the deformation of surimi



Processes 2023, 11, 265 10 of 12

gels were measured by penetration, ring tensile, and torsion tests, which showed a linear
relationship without any ingredients (R2 > 0.85). However, the deformation properties
of SG-EW and SG-WP showed a non-linear relationship when the penetration distance
was compared to failure ring tensile strain and shear strain. When the surimi gels were
extremely compressed during the penetration test, the penetration distance was affected by
the compressed gel matrix. This led to a converged penetration distance value at around
14 mm. Additionally, DIC analysis indicates that the penetration test induced a concentrated
local strain at the fracture point of surimi gels regardless of the addition of ingredients. In
contrast, the addition of EW and WP showed higher local strain concentration in surimi
gels than those in surimi gels without any ingredients in the failure ring tensile test and
torsion test. Therefore, this result indicates that the protein interaction of surimi gels with
egg white and whey protein led to higher local concentrations in the torsion and ring tensile
tests, while the penetration test could not detect that protein interaction in surimi gels.
Local strain analysis using DIC can help in understanding the strain distribution of surimi
gels and how it affects the overall deformation properties of surimi gels in penetration,
tensile, and torsion tests.
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