
Citation: Shi, Y.; Yuan, Z.; Zhu, X.;

Zhu, H. An Adaptive Routing

Algorithm for Inter-Satellite

Networks Based on the Combination

of Multipath Transmission and

Q-Learning. Processes 2023, 11, 167.

https://doi.org/10.3390/pr11010167

Academic Editor: Olympia Roeva

Received: 8 December 2022

Revised: 30 December 2022

Accepted: 2 January 2023

Published: 5 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

An Adaptive Routing Algorithm for Inter-Satellite Networks
Based on the Combination of Multipath Transmission
and Q-Learning
Yuanji Shi , Zhiwei Yuan, Xiaorong Zhu and Hongbo Zhu *

College of Telecommunications and Information Engineering, Nanjing University of Posts and
Telecommunications, Nanjing 210003, China
* Correspondence: zhb@njupt.edu.cn

Abstract: In a satellite network, the inter-satellite link can facilitate the information transmission and
exchange between satellites, and the packet routing of the inter-satellite link is the key development
direction of satellite communication systems. Aiming at the complex topology and dynamic change
in LEO satellite networks, the traditional single shortest path algorithm can no longer meet the
optimal path requirement. Therefore, this paper proposes a multi-path routing algorithm based on
an improved breadth-first search. First, according to the inter-satellite network topology information,
the improved breadth-first search algorithm is used to obtain all the front hop node information of
the destination node. Second, all the shortest paths are obtained by backtracking the path through
the front hop node. Finally, according to the inter-satellite network, the bandwidth capacity of the
traffic and nodes determines the optimal path from multiple shortest paths. However, due to the high
dynamics of low-orbit satellite networks, the topology changes rapidly, and the global topology of
the network is often not available. At this time, in order to enhance the adaptability of the algorithm,
this paper proposes an inter-satellite network dynamic routing algorithm based on reinforcement
learning. Verified by simulation experiments, the proposed algorithm can improve the throughput of
the inter-satellite network, reduce the time delay, and the packet loss rate.

Keywords: inter-satellite network; multi-path routing; Q-learning

1. Introduction

In recent years, countries around the world have been planning and building a Low-
Earth-Orbit (LEO) satellite mobile communication system. The satellites in LEO have been
moving at a high-speed relative to the ground, and seamless coverage requires a large
number of satellites to be deployed in LEO, so the interconnection between satellites has
become one of the key requirements of LEO satellite communication systems. On the other
hand, since the control and measurement of the ground gateway station is required for
the satellite communication system operation, and a large number of satellites are always
moving at high speed, the interconnection between satellites is particularly important in
order to ensure that the high-speed moving satellites can always maintain a link with the
gateway station in the fixed area on the ground. As one of the key development directions
in satellite communication systems, inter-satellite link technology can interconnect multiple
satellites through inter-satellite links to realize information transmission and exchange
between satellites and form a space communication with satellites as exchange nodes.
The inter-satellite link refers to the link used for communication between satellites, which
can reduce the number of inter-satellite hops and communication delay. In this kind of
network, as the wireless coverage of nodes is limited, the data communication function is
completed by single-hop communication or multi-hop forwarding. Within the maximum
communication distance, network nodes communicate directly with neighbor nodes, and if
the distance exceeds the maximum communication distance, routing technology is used to

Processes 2023, 11, 167. https://doi.org/10.3390/pr11010167 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11010167
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-8181-5740
https://doi.org/10.3390/pr11010167
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11010167?type=check_update&version=2

Processes 2023, 11, 167 2 of 21

find the optimal path for forwarding communication. The mainstream routing technology
is distributed, and each communication node is used as a communication terminal and has
the function of routing forwarding. In order to reduce the network transmission traffic and
improve the system efficiency, the path with the shortest number of hops between the two
nodes will be selected as the optimal path.

Literature [1] divides modern satellite routing algorithms into three strategies: central-
ized, distributed and hybrid. Early satellite networks used connection-based centralized
routing algorithms. Ref. [2] proposed a finite state machine (Finite State Automata, FSA)
routing algorithm which discretized and modeled the dynamic topology of the satellite net-
work as a finite state machine, and allocated different routing tables for different network
topologies in different states. However, it ignores the dynamic variability of inter-satellite
links. The Flow Deviation (FD) proposed in [3] aims to find the path with the smallest
end-to-end delay, and it is suitable for inter-satellite links with a small number of nodes.
However, it is easy to cause packet loss and delay problems because static routing algo-
rithms cannot perceive link state information. The proposed QoS routing algorithm MPQR
in [4] uses a genetic algorithm and a simulated annealing algorithm at the source node to
find the optimal path that satisfies the constraints of Quality of Service (QoS), which can
simultaneously improve the end-to-end network delay, packet loss rate and link utilization.
Different from centralized routing, each satellite node acts as an independent routing
decision in distributed routing strategy. The Delay-oriented Adaptive Routing Algorithm
(DOAR) proposed in [5] is used to solve the multipath load balancing and delay problems,
while it is only for delay-sensitive services. Ref. [6] proposed Service-Oriented Routing
with Markov Spacetime Graph (SOR-MSG) based on Markov Spacetime Graph. First, an
MSG model is constructed through the connection duration and connection probability
between satellite nodes. The satellites in the link autonomously select the next hop node
based on the established MSG and QoS constraints, and finally determine the optimal path,
but ignore the stability and reliability of the system. Hybrid satellite routing combines
the characteristics of centralized routing and distributed routing. One of the ideas is to
adopt a semi-distributed routing strategy, that is, there are nodes in the forwarding path
that can independently determine the next hop node and nodes that are only responsible
for transparent forwarding node. Ref. [7] proposed a weighted semi-distributed routing
algorithm (Weighted Semi-Distributed Routing Algorithm, WSDRA). WSDRA divides
satellite nodes into Routing Satellite (RS) and Messenger Satellite (MS). RS is responsible
for routing path selection. It determines the next hop and the hop after the next for the
packet forwarding. MS only transmits the packet according to the two-hop routing infor-
mation carried by the packet. Hybrid routing combines the characteristics of centralized
routing and distributed routing algorithms. Although it can improve the shortcomings of
centralized routing and distributed routing, the algorithm has a high degree of complexity
and is difficult to implement.

Nowadays, there are some articles on the research of satellite routing algorithms based
on machine learning. In the intelligent routing algorithm of LEO satellite network based on
reinforcement learning proposed by [8], the satellite node can adaptively select the next
hop according to the reinforcement learning model, which has better delay characteristics
than the traditional distributed routing algorithm. Ref. [9] combines Software-Design
Networking (SDN) with deep reinforcement learning to solve the real-time optimization
problem of the network, and the network delay is significantly reduced. Ref. [10] proposed
an integrated adaptive routing algorithm ISTNQR (Integrated Satellite-Terrestrial Infor-
mation Network based Q-Learning Routing Algorithm) based on the machine learning
algorithm branch Q-Learning. With the help of the characteristics of the centralized control
network of the controller under the SDN architecture, the disadvantage of the traditional
Q-Learning algorithm that the distributed computing achieves long routing convergence
time is improved.

In order to improve the reliability of inter-satellite network transmission and reduce
congestion, this paper firstly proposes an inter-satellite network multi-path routing al-

Processes 2023, 11, 167 3 of 21

gorithm based on load balancing. First, use the BFS (Breadth First Search) algorithm to
search for all nodes with a distance of k from the source node, and then search for other
nodes with a distance of k + l from the source node. According to the inter-satellite link
load, the link with the least data occupancy of neighbor nodes and the lowest load of the
entire path is selected as the transmission link from all the shortest paths to the destination
node. In addition, in order to adapt to the dynamic nature of the network, when some
network topology information cannot be achieved, an inter-satellite network dynamic
routing algorithm based on reinforcement learning is proposed. The simulation results
show the effectiveness of the algorithm.

2. Multipath Routing Algorithm for Inter-Satellite Links Based on Load Balancing
2.1. Inter-Satellite Network Topology

The network model examined in this research, seen in Figure 1, is an inter-satellite
network made up of N satellite nodes, expressed as G =

{[
Vi, Vj

]
, . . . }. Vi, Vj are neighbor

nodes. Define AdjMatr[i][j] as an adjacency matrix in which the subscript i and j map the
node address and if a link exists between the nodes, the element value is 1; otherwise, it
is 0.

Processes 2023, 10, x FOR PEER REVIEW 3 of 22

In order to improve the reliability of inter-satellite network transmission and reduce
congestion, this paper firstly proposes an inter-satellite network multi-path routing algo-
rithm based on load balancing. First, use the BFS (Breadth First Search) algorithm to search
for all nodes with a distance of k from the source node, and then search for other nodes
with a distance of k + l from the source node. According to the inter-satellite link load, the
link with the least data occupancy of neighbor nodes and the lowest load of the entire
path is selected as the transmission link from all the shortest paths to the destination node.
In addition, in order to adapt to the dynamic nature of the network, when some network
topology information cannot be achieved, an inter-satellite network dynamic routing al-
gorithm based on reinforcement learning is proposed. The simulation results show the
effectiveness of the algorithm.

2. Multipath Routing Algorithm for Inter-Satellite Links Based on Load Balancing
2.1. Inter-Satellite Network Topology

The network model examined in this research, seen in Figure 1, is an inter-satellite
network made up of N satellite nodes, expressed as 𝐺 = {ൣ𝑉௜, 𝑉௝൧, …}. 𝑉௜, 𝑉௝ are neighbor
nodes. Define 𝐴𝑑𝑗𝑀𝑎𝑡𝑟[𝑖][𝑗] as an adjacency matrix in which the subscript i and j map
the node address and if a link exists between the nodes, the element value is 1; otherwise,
it is 0.

Figure 1. Schematic diagram of inter-satellite link.

The inter-satellite network nodes update the topology information of the entire net-
work periodically, and calculate the current link adjacency matrix according to the link
connection status between nodes in the entire network. We define 𝑨𝒅𝒋𝑴𝒂𝒕𝒓[𝑖][𝑗] to show
the link connection status between node i and j. If there is a link between any two mobile
nodes, it means that the two nodes are neighbor nodes, and the two-nodes adjacent matrix
value is marked as m, otherwise the value is n.

𝑨𝒅𝒋𝑴𝒂𝒕𝒓[𝑖][𝑗] =
⎣⎢⎢
⎢⎢⎢
⎡ 𝑛 𝑚 ⋯ 𝑛 ⋯ 𝑛 𝑛𝑚 𝑛 ⋯ 𝑚 ⋯ 𝑛 𝑛⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮𝑛 𝑛 ⋯ 𝑚 ⋯ 𝑛 𝑛⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮𝑛 𝑛 ⋯ 𝑛 ⋯ 𝑛 𝑚𝑛 𝑛 ⋯ 𝑛 ⋯ 𝑚 𝑛 ⎦⎥⎥

⎥⎥⎥
⎤
 (1)

Figure 1. Schematic diagram of inter-satellite link.

The inter-satellite network nodes update the topology information of the entire net-
work periodically, and calculate the current link adjacency matrix according to the link
connection status between nodes in the entire network. We define AdjMatr[i][j] to show
the link connection status between node i and j. If there is a link between any two mobile
nodes, it means that the two nodes are neighbor nodes, and the two-nodes adjacent matrix
value is marked as m, otherwise the value is n.

AdjMatr[i][j] =



n m · · · n · · · n n
m n · · · m · · · n n
...

...
. . .

...
. . .

...
...

n n · · · m · · · n n
...

...
. . .

...
. . .

...
...

n n · · · n · · · n m
n n · · · n · · · m n


(1)

Processes 2023, 11, 167 4 of 21

2.2. Multipath Routing Algorithm for Inter-Satellite Network

All of the neighbor nodes of the head node are sequentially added to the queue based
on the adjacency matrix data of the nodes in the intersatellite network. Calculate the
shortest paths between each neighbor node and record front nodes of the source node
while traversing the neighbor nodes. The head node of the team will be dequeued when
all the neighbor nodes have been traversed. Until the queue is empty, keep creating new
queue head nodes sequentially. Finally, we can obtain the shortest paths and front node
information between the source node to all nodes in the whole network.

HeadAddr is the address of the head node of the team, AdjAddr is the address of the
neighbor node, and the variable Enqueue records whether the node in the network has
joined the team. The variable Dequeue records whether the node in the network has been
dequeued, and if it is true, it indicates that the node has been dequeued. Queue is used to
store the queue of neighbor nodes. HopCount[i] is used to count the shortest hops from the
node i to the source node. FrontPoint[i] is used to store the front node of the destination
node while FrontCount store the total number of front nodes of the node.

Figure 2 is the algorithm flow chart, and the technical process is realized as follows:
Processes 2023, 10, x FOR PEER REVIEW 5 of 22

head node

traverse neighbor
node

Enqueue = True

minimum routing
hop count

update front node and
hop count

Enqueue = False Dequeue = True

record front node,
hop count

enqueue the
neighbor node jump out of the circle

Yes

No

all the neighbor nodes
have been traversed

dequeue the
head node

No

Yes

queue is empty

End

create new
head node

Yes

No

Figure 2. Flow chart of multipath algorithm.

2.3. Multipath Backtracking
All the shortest pathways from the source node to other nodes are traced layer by

layer in accordance with the front nodes, starting with the source node as the root node.
To determine the number of hops from every node in the entire network to the source
node, follow the steps in Figure 3: first, trace back the path of the one-hop node, then trace
back the path of the two-hop node, until the shortest path of the farthest node in the net-
work is determined.

Figure 2. Flow chart of multipath algorithm.

Processes 2023, 11, 167 5 of 21

Step 1: When the algorithm is started, first put the source node into the queue
as the head node and then initialize the number of hops away from the source node
HopCount[HeadAddr] as 0, traverse all the neighbor nodes which are represented by
AdjMatr[i][j] = 1, and set the network address of one hop neighbor nodes as AdjAddr;

Step 2: If the Enqueue of the AdjAddr is False, then HopCount[AdjAddr] of the short-
est hops between the neighbor node and the source node equal HopCount[HeadAddr] add
1. Secondly, put the head node of the queue traversed this time as the front node into the
front node container FrontPoint[i] = HeadAddr, i = 0, 1, . . . n, and add 1 to the front node
counter FrontCount. Finally, put the neighbor node into the queue and mark the Enqueue
of the neighbor node as true;

Step 3: If the Enqueue of the neighbor node is True, which means that the neighbor
node is also a neighbor node of other nodes and has been enqueued, then compare whether
the shortest hop count of this cycle is the minimum value or not. If the shortest hops
calculated by this loop are the smallest, indicating that this link is the optimal path, then
update the shortest distance of the neighbor node to the shortest distance calculated this
time, and update the front node to the current head node, keep the Frontcount unchanged;
otherwise, the path obtained in this cycle is not optimal, and jump out of this cycle directly;

Step 4: If the Dequeue of the neighbor node is True, it means that the neighbor node
has been dequeued. In order to avoid double counting, no information will be recorded for
the dequeued nodes until all neighbor nodes have been traversed, and setting the Dequeue
of the head node at the team is True.

At this point, the first round of traversal process of the head node of the queue has
ended, the current first node of the team will be dequeued, and the next new head node of
the team will be generated from the queue in turn. The above operations will be repeated
until the number of nodes in the queue is empty, in the end the shortest paths from the
source node to all other nodes and the front nodes of all other nodes have been obtained.

2.3. Multipath Backtracking

All the shortest pathways from the source node to other nodes are traced layer by
layer in accordance with the front nodes, starting with the source node as the root node. To
determine the number of hops from every node in the entire network to the source node,
follow the steps in Figure 3: first, trace back the path of the one-hop node, then trace back
the path of the two-hop node, until the shortest path of the farthest node in the network
is determined.

Processes 2023, 10, x FOR PEER REVIEW 6 of 22

traverse one-hop
node

the routing table of one-hop
node is itself

output routing
table of one-hop

node

traverse muti-hops
node

if the front node is not
unique, choose the path with

low data usage

output routing
table of muti-hops

node

Figure 3. Multipath backtracking.

2.4. Optimal Path Selection for Inter-Satellite Links
After obtaining multiple paths, if there is only one shortest path, this path is selected

for data transmission. If there are multiple shortest paths, the entire path and the path
with the largest bandwidth capacity of neighboring nodes are selected first from all the
shortest paths, which can avoid using a highly congested path to improve the system
transmission throughput and balance the load. Choosing neighbor nodes with less data
usage can avoid the situation where a complete path has the least load, but a single node
has a very high data usage rate or even reaches the threshold, and the data usage rate of
other nodes on the path is extremely low. If it only relies on the variable with the lowest
occupancy rate of all data on the path, data congestion is very likely to occur. In order to
avoid this situation as much as possible, we consider the neighbor nodes of the source
node as the target, and according to experience, the neighbor nodes, as the first hop node
for the source node to transmit services to the distant destination node, often carry a rela-
tively important role. Especially when the source node has business transmission require-
ments to multiple long-distance destination nodes, if there are multiple neighbor nodes,
choosing a suitable neighbor node can not only quickly complete the business needs of
each destination node, balance the load, improve the throughput of the entire system, but
also realize shunting, which can avoid multiple business needs choosing the same neigh-
boring nodes, affecting the transmission requirements of multiple services, the through-
put of the entire system and the delay.

Use s to record the number of transmission connections of inter-satellite network
nodes, w is the weight to represent the node bandwidth capacity, the greater the node
bandwidth capacity, the greater the corresponding weight. When there is a data service
demand, the link data usage value of the node is increased by 1. If the node fault or is
congested, the node weight is set to 0, and the node is no longer used for data transmis-
sion. Assuming that the total number of nodes in the network is m, the number of shortest
paths obtained is n, and a link with the smallest ratio of node connection number to weight
is selected from n links as the optimal path. Use c to represent the number of links, w to
represent the weight, s to represent the selected node, and sn to represent the unselected
node. We use c(s)/w(s) to measure the link state and then the selected node link S must
satisfy: c(s)/w(s) < c(sn)/w(sn).

Figure 3. Multipath backtracking.

Processes 2023, 11, 167 6 of 21

2.4. Optimal Path Selection for Inter-Satellite Links

After obtaining multiple paths, if there is only one shortest path, this path is selected
for data transmission. If there are multiple shortest paths, the entire path and the path with
the largest bandwidth capacity of neighboring nodes are selected first from all the shortest
paths, which can avoid using a highly congested path to improve the system transmission
throughput and balance the load. Choosing neighbor nodes with less data usage can avoid
the situation where a complete path has the least load, but a single node has a very high
data usage rate or even reaches the threshold, and the data usage rate of other nodes
on the path is extremely low. If it only relies on the variable with the lowest occupancy
rate of all data on the path, data congestion is very likely to occur. In order to avoid this
situation as much as possible, we consider the neighbor nodes of the source node as the
target, and according to experience, the neighbor nodes, as the first hop node for the source
node to transmit services to the distant destination node, often carry a relatively important
role. Especially when the source node has business transmission requirements to multiple
long-distance destination nodes, if there are multiple neighbor nodes, choosing a suitable
neighbor node can not only quickly complete the business needs of each destination node,
balance the load, improve the throughput of the entire system, but also realize shunting,
which can avoid multiple business needs choosing the same neighboring nodes, affecting
the transmission requirements of multiple services, the throughput of the entire system
and the delay.

Use s to record the number of transmission connections of inter-satellite network
nodes, w is the weight to represent the node bandwidth capacity, the greater the node
bandwidth capacity, the greater the corresponding weight. When there is a data service
demand, the link data usage value of the node is increased by 1. If the node fault or is
congested, the node weight is set to 0, and the node is no longer used for data transmission.
Assuming that the total number of nodes in the network is m, the number of shortest paths
obtained is n, and a link with the smallest ratio of node connection number to weight is
selected from n links as the optimal path. Use c to represent the number of links, w to
represent the weight, s to represent the selected node, and sn to represent the unselected
node. We use c(s)/w(s) to measure the link state and then the selected node link S must
satisfy: c(s)/w(s) < c(sn)/w(sn).

3. Dynamic Routing Algorithm for Inter-Satellite Network Based on Q-Learning

The multi-path routing technique suggested in the second part is no longer appropriate
since many satellites are constantly moving at a rapid speed and occasionally it is impossible
to obtain the global topology of the inter-satellite network. There are many studies on
service networks using machine learning and reinforcement learning, including service
category, routing decision, service function chain scheduling and resource optimization,
etc. [11–17]. This section suggests a Q-learning-based dynamic routing technique for
inter-satellite networks as a result.

3.1. Q-Learning

In Q-learning, which belongs to the field of reinforcement learning, agents/decision
makers try to interact with the environment by learning the behavior of dynamic systems.
In this chapter, the agent receives the current state and rewards of the dynamic system,
and then performs corresponding actions based on its experience to increase long-term
revenue through state transitions. States and rewards represent data the agent receives
from the system, while actions are the only input to the system. Unlike supervised learning,
in Q-learning, the agent must find the optimal action to maximize the reward while the
agent’s actions not only affect the current reward, but also affect future rewards.

A trade-off exists in Q-learning between exploitation and exploration. Unknown
actions are investigated in order to avoid missing better candidate actions, but because they
are unpredictable, they may worsen network performance. On the other hand, if action is

Processes 2023, 11, 167 7 of 21

dependent on the present best action choice, it may result in a local optimal solution even
when other as yet undiscovered actions might offer more advantages.

Figure 4 describes the basic Q-learning algorithm flow, and its specific execution steps
are described as follows:

Processes 2023, 10, x FOR PEER REVIEW 8 of 22

initialize Q matric

execute action a, transfer
to state s+1

from state s, choose an
action a from the set of

optional actions

evaluate the
reward

update Q matric

Figure 4. Q-learning algorithm flow chart.

3.2. Q-Learning Routing System Model
Various services in the satellite network have specific requirements, such as band-

width, jitter, delay, etc. In order to better meet the QoS requirements of diverse services,
intelligent path selection and traffic distribution are crucial. There are multiple optional
paths between the source node and the destination node based on service requests, and
each path in the network may have different bandwidth and inherent delay. Therefore,
the introduction of an SDN controller can intelligently provide a suitable transmission
path for each service flow.

Figure 5 shows the structural framework of SDN based on Q-learning. The SDN con-
trol plane contains the intelligent decision-making module of Q-learning. The intelligent
decision-making module effectively generates network policies and realizes global, real-
time and customizable network control and management. Specifically, when a service re-
quest arrives, the SDN controller obtains the global network state, and according to the
link state in the current network, coupled with Q-learning action learning, constantly ex-
plores various optional paths. Therefore, the intelligent decision-making module gener-
ates the optimal path decision, and sends the forwarding rules to the nodes. At this time,
the node can forward the data packet according to the routing table. Through this archi-
tecture, routing can be intelligently and rationally selected according to network resources
to improve network performance.

Figure 4. Q-learning algorithm flow chart.

Step 1: Initialize the Q value. This stage constructs a Q-table, where the rows represent
the state space and the columns represent the action space, and are initialized to 0.

Step 2: Throughout the lifetime, repeat Step 3–Step 5 until the set number of stop
training is reached.

Step 3: Based on the current Q value estimation state, select an action from the
optional action space, which involves the trade-off between exploration and exploitation
in Q-learning. The most commonly used strategy, for example, ε − greedy, adopts an
exploration rate as the random step size. It can be set larger initially, because the Q value
in the Q-table is unknown, and a large amount of exploration needs to be performed by
randomly selecting actions. Generate a random number and if it is greater than ε, the action
will be selected using known information, otherwise, it will continue to explore. As the
agent becomes more confident in the estimated Q value, ε can be gradually reduced.

Step 4–5: Take action α and observe the output state, evaluate the reward, then use
the Bellman equation to update the Q(s, a) function.

3.2. Q-Learning Routing System Model

Various services in the satellite network have specific requirements, such as band-
width, jitter, delay, etc. In order to better meet the QoS requirements of diverse services,
intelligent path selection and traffic distribution are crucial. There are multiple optional

Processes 2023, 11, 167 8 of 21

paths between the source node and the destination node based on service requests, and
each path in the network may have different bandwidth and inherent delay. Therefore, the
introduction of an SDN controller can intelligently provide a suitable transmission path for
each service flow.

Figure 5 shows the structural framework of SDN based on Q-learning. The SDN
control plane contains the intelligent decision-making module of Q-learning. The intelli-
gent decision-making module effectively generates network policies and realizes global,
real-time and customizable network control and management. Specifically, when a service
request arrives, the SDN controller obtains the global network state, and according to the
link state in the current network, coupled with Q-learning action learning, constantly ex-
plores various optional paths. Therefore, the intelligent decision-making module generates
the optimal path decision, and sends the forwarding rules to the nodes. At this time, the
node can forward the data packet according to the routing table. Through this architec-
ture, routing can be intelligently and rationally selected according to network resources to
improve network performance.

Processes 2023, 10, x FOR PEER REVIEW 9 of 22

Figure 5. SDN routing framework based on Q-learning.

In this section, the inter-satellite routing model in the SDN network is established to
provide the best transmission path for business flows, meet its QoS requirements, and
reduce the utilization rate of the link with the highest load and transmission delay in the
network as much as possible.

3.2.1. Network Model
The network data plane in SDN is represented as an undirected graph of n nodes,

each node represents a satellite, and n nodes are connected by undirected links. The net-
work topology is represented by a graph G = (V, E), where V represents a set of nodes
with |V| = n, and E represents a set of links connecting nodes in the network. Assuming
that G is a connected graph without any isolated nodes, the link bandwidth capacity,
transmission delay and packet loss rate are expressed as 𝑏௜௝, 𝑑௜௝ and 𝑙௜௝.

3.2.2. Business Characteristics
The business 𝑆௞ mainly includes the following characteristics, the source node 𝑠௞

(the node entering the network), the destination node 𝑡௞ (the node leaving the network),
the bandwidth requirement is set to 𝑏௞, other QoS requirements include transmission de-
lay and packet loss rate, which are represented by 𝐷௞ and 𝐿௞, respectively, referring to
the highest acceptable delay and packet loss thresholds for this service.

Let 𝑥௜௝௞ denote whether the SDN controller assigns the link to transmit the service
flow, if the service flow passes through the link, then set 𝑥௜௝௞ to 1, otherwise it is 0.

The optimization goal is to balance the link load in the network and reduce the trans-
mission delay as much as possible on the basis of ensuring the QoS requirements, that is,
to minimize the Formula (2a).

 𝜆 𝑚𝑎𝑥(௜,௝)∈ா𝑙𝑜𝑎𝑑௜௝ + (1 − 𝜆) ∑ ∑ 𝑥௜௝௞ ⋅ 𝑑௜௝ (௜,௝)∈ா௞∈௄ (2a)

Figure 5. SDN routing framework based on Q-learning.

In this section, the inter-satellite routing model in the SDN network is established
to provide the best transmission path for business flows, meet its QoS requirements, and
reduce the utilization rate of the link with the highest load and transmission delay in the
network as much as possible.

3.2.1. Network Model

The network data plane in SDN is represented as an undirected graph of n nodes, each
node represents a satellite, and n nodes are connected by undirected links. The network
topology is represented by a graph G = (V, E), where V represents a set of nodes with
|V| = n, and E represents a set of links connecting nodes in the network. Assuming that G
is a connected graph without any isolated nodes, the link bandwidth capacity, transmission
delay and packet loss rate are expressed as bij, dij and lij.

3.2.2. Business Characteristics

The business Sk mainly includes the following characteristics, the source node sk (the
node entering the network), the destination node tk (the node leaving the network), the

Processes 2023, 11, 167 9 of 21

bandwidth requirement is set to bk, other QoS requirements include transmission delay
and packet loss rate, which are represented by Dk and Lk, respectively, referring to the
highest acceptable delay and packet loss thresholds for this service.

Let xk
ij denote whether the SDN controller assigns the link to transmit the service flow,

if the service flow passes through the link, then set xk
ij to 1, otherwise it is 0.

The optimization goal is to balance the link load in the network and reduce the
transmission delay as much as possible on the basis of ensuring the QoS requirements, that
is, to minimize the Formula (2a).

λ max
(i,j)∈E

loadij + (1− λ)∑k∈K ∑(i,j)∈E xk
ij · dij (2a)

where loadij is the bandwidth utilization of the link (i, j), loadij =
∑kεK xk

ij∗b
k

bij
× 100%,

∑(i,j)∈E xk
ij · dij denotes the cumulative delay of the selected path, parameter λ ∈ [0, 1] used

to adjust the proportion of link load and delay.
The main constraints under this model are as follows:

∑
(i,j)∈E

xk
ij − ∑

(j,i)∈E
xk

ji =


1, i = sk

0, i 6= sk, tk

−1, i = tk
(2b)

xk
ij · bk ≤ min(bij −∑k0∈K,k0 6=k xk0

ij · b
k0), ∀k ∈ K (2c)

∑(i,j)∈E ∑k∈K xk
ij · bk ≤ bij (2d)

∑(i,j)∈E xk
ij · dij ≤ Dk, ∀k ∈ K

∑(i,j)∈E xk
ij · lij ≤ Lk, ∀k ∈ K

(2e)

Constraint (2b) represents the flow conservation in the traffic network link, For-
mula (2c) means that the current available bandwidth of the link meets the transmission
rate requirements of its business flow, and constraint Formula (2d) means that the traffic
carried by the link does not exceed its link bandwidth capacity. The following constraint
expression shows that in addition to meeting the transmission rate requirements, other
QoS requirements of the business must also be met. Based on the routing framework of
SDN, the Q-learning algorithm is further introduced into the routing problem, the reward
function is designed, and a dynamic routing algorithm based on Q-learning is proposed.

3.3. Dynamic Routing Algorithm Based on Q-Learning

In this section, a Markov decision process is established for the path selection problem
of the inter-satellite link. The arrival and departure of business flows are regarded as ran-
dom processes, and different types of business flows have different statistical characteristics.
We assume that business flow requests arrive independently. Furthermore, the probability
of the business type follows a pre-specified Poisson distribution. The SDN controller must
make a decision at each discrete time interval to accept or reject new service requests based
on the current system state. In the case of acceptance, it is decided to allocate the best
transmission path for the traffic flow. If declined, there is no need to allocate resources
for it.

The Markov decision process (MDP) provides a mathematical framework for modeling
Q-learning systems, represented by a quadruple (S, A, P, R), where S represents a finite
state set, A a finite action set, P the state transition probability, and R a reward set. The
relationship among state, action and reward function can be expressed by Equation (2f).
The state transition function: S× A→ P(s) , where P(s) is the probability distribution for
state s, and the reward function returns a reward R(s, a) after a given action a ∈ A(s),
where A(s) is the set of available actions for state s. The learning task in MDP is to find
the policy π: maximizing the cumulative reward. To maximize the reward received across

Processes 2023, 11, 167 10 of 21

all interactions, the agent must choose each action according to a strategy that balances
exploration (acquisition of knowledge) and exploitation (use of knowledge). Store the
value function (or Q value) of each state-action pair in the MDP. Q(s, a) is the expected
discounted reward when executing action a in state s following policy π.

S× A→ R (2f)

In addition to agents/decision makers and dynamic systems, Q-learning also includes
decision functions, value functions, long-term rewards, etc. [18]. The decision function
refers to the policy that the agent will take, which maps from the perceived system state to
the corresponding action, guiding the action of Q-learning. The exploration strategy we
use in this chapter is ε− decreasing, where the probability of choosing a random action
(exploration) is ε ∈ [0, 1] and choosing the best action (exploitation) is 1− ε. In this way, at
the beginning, maintain a high exploration rate, and each subsequent episode τ ∈ Λ will

decrease according to ετ =
√

1− [τ/(4× |Λ|)]2.
The state-action value function characterizes the value of a state-action pair, indicating

the difference between the current state and the stable state. The Q value function is
updated as shown in Formula (2g).

Q(st, at) = (1− α)Q(st, at) + α
[

R(st, at) + γmax
a

Q(st+1, at+1)
]

(2g)

α ∈ [0, 1) is the learning factor of Q-learning, which represents the rate of the newly
acquired training information covering the previous training, and R(st, at) is the reward at
time t. γ ∈ [0, 1] is the discount factor that determines the importance of future rewards.
In Equation (2g), specifically, at time t, the agent performs action at on the current state
st of the routing optimization model and then reaches state st+1, and at the same time,
the feedback loop will report the reward function R(st, at) to the agent, and update the
action value function Q(st, at) and Q matrix accordingly. Then, the agent repeats the above
operation for the state st+1, and so on until the optimal action value Q∗(st, at) is reached,
the agent selects the optimal strategy πQ

∗ according to the rewards of each strategy in
Q∗(st, at), and the optimal strategy can be expressed as Formula (2h);

Q∗(st, at) = E
[

R(st, at) + γmax
a∈A

Q∗(st+1, at+1)

]
(2h)

Long-term rewards indicate the total reward an agent can expect to accumulate over
time for each system state.

The key to planning a path for a service flow is to select an appropriate path for packet
forwarding according to the service requirements and the real-time status of each link in
the network. The key to flexible selection of the best transmission path is that there are
multiple optional paths in the network, and the states of links are different. In order to
avoid data traffic congestion during inter-satellite network communication, data packets
re-plan another optional path. This optional path may not be the shortest, but its link
utilization rate is low, while for delay-sensitive services, the impact of link delay cannot be
ignored, so the reward function is set as an index of comprehensive link states as shown in
Formula (2i), in which α1, α2, α3 are the adjustment factors of link bandwidth, delay and
packet loss rate respectively.

In this chapter, we divide the link bandwidth into three levels, the link load above
80% is regarded as excessive use, the link between 30% and 80% is regarded as moderate
load, and the rest is less than 30% as the link load is light. In this way, the state set is
roughly classified, but considering that there are differences in link utilization at each level,
for example, it is obviously unreasonable to directly regard 40% and 70% link bandwidth
utilization as the same level, so when designing the bandwidth part of the reward function
R of Q-learning, the link load of the moderate level ([30–80%]) is divided more finely to
reflect the difference.

Processes 2023, 11, 167 11 of 21

According to the above analysis, the bandwidth part of the reward function is set
based on the sigmoid function, as shown in Figure 6. The abscissa represents the remaining
link bandwidth ratio (inversely proportional to the link load), while the ordinate represents
the immediate reward of the link bandwidth part delayij. It is characterized in that when
the link utilization rate is overloaded, the reward value of the bandwidth part tends to
almost 0, and the mid-term transition is smooth, but the gradient value is getting higher and
higher, until the link is idle (occupancy rate is lower than 30%), its reward value approaches
100. delayij and lossij represent the ratio of the delay and packet loss rate of link (i, j) to
the maximum delay and packet loss in the global link, respectively, thus, the values are all
between (0,100]. Finally, the reward function is shown in formula (2i). Specifically, if the
selected link is in a better state, the reward value will be greater after the agent acts.

Ri→j= R
(

i, j|st ,at

)
= − cos t + α1BWij − α2delayij − α3lossij (2i)

Processes 2023, 10, x FOR PEER REVIEW 12 of 22

link (𝑖, 𝑗) to the maximum delay and packet loss in the global link, respectively, thus, the
values are all between (0,100]. Finally, the reward function is shown in formula (2i). Spe-
cifically, if the selected link is in a better state, the reward value will be greater after the
agent acts. 𝑅௜→௝ = R(𝑖, 𝑗|௦೟,௔೟) = − 𝑐𝑜𝑠 𝑡 + 𝛼ଵ𝐵𝑊௜௝ − 𝛼ଶ𝑑𝑒𝑙𝑎𝑦௜௝ − 𝛼ଷ𝑙𝑜𝑠𝑠௜௝ (2i)

Figure 6. Reward function curve based on link bandwidth remaining.

In this chapter, the routing system based on Q-learning is composed of SDN control-
ler and satellite nodes. The SDN controller acts as an agent to interact with the environ-
ment and obtain three signals: state, action and reward. Among them, the state space is
represented by the traffic matrix of the nodes and the links between the nodes, which
represents the current network link traffic load. The agent takes which node to forward
the data packet to as an action space. The reward function is related to the type of business.
If a business is delay-sensitive, the reward function will increase the weight of the delay
part, so that the agent can change the path of the data flow, and the corresponding flow
table will be sent to the corresponding nodes. The reward function R for the agent to per-
form an action is related to the operation and maintenance strategy of the satellite net-
work. It can be a single performance parameter, such as delay, throughput, or compre-
hensive parameters [19].

The routing algorithm proposed in this chapter is based on the classic reinforcement
learning technique Q-learning for finding the optimal state-action policy for MDP. Under
certain conditions, Q-learning has been shown to be optimal [20]. On the other hand, in
the Q-routing algorithm, the decision strategy 𝜀-decreasing is a reasonable exploration
and utilization strategy, which also meets the requirement of optimality, so the Q-routing
algorithm proposed in this chapter can converge and approach the optimal solution. Re-
garding the convergence efficiency, it has been proved in [21] that Q-learning will suffi-
ciently converge to the 𝜉 neighborhood of the optimal value after (𝑁 𝑙𝑜𝑔(1/𝜉)/𝜉ଶ)(𝑙𝑜𝑔 𝑁 + 𝑙𝑜𝑔𝑙𝑜𝑔(1/𝜉)) iterations, where N represents the number of states in the
MDP, which also ensures that the algorithm proposed in this chapter can converge in a
finite number of steps.

In this chapter, the routing problem is reduced to let the agent learn a path from the
source node to the destination node. In the routing problem, according to the established

Figure 6. Reward function curve based on link bandwidth remaining.

In this chapter, the routing system based on Q-learning is composed of SDN controller
and satellite nodes. The SDN controller acts as an agent to interact with the environment
and obtain three signals: state, action and reward. Among them, the state space is repre-
sented by the traffic matrix of the nodes and the links between the nodes, which represents
the current network link traffic load. The agent takes which node to forward the data packet
to as an action space. The reward function is related to the type of business. If a business is
delay-sensitive, the reward function will increase the weight of the delay part, so that the
agent can change the path of the data flow, and the corresponding flow table will be sent
to the corresponding nodes. The reward function R for the agent to perform an action is
related to the operation and maintenance strategy of the satellite network. It can be a single
performance parameter, such as delay, throughput, or comprehensive parameters [19].

The routing algorithm proposed in this chapter is based on the classic reinforcement
learning technique Q-learning for finding the optimal state-action policy for MDP. Under
certain conditions, Q-learning has been shown to be optimal [20]. On the other hand, in the
Q-routing algorithm, the decision strategy ε−decreasing is a reasonable exploration and uti-
lization strategy, which also meets the requirement of optimality, so the Q-routing algorithm
proposed in this chapter can converge and approach the optimal solution. Regarding the
convergence efficiency, it has been proved in [21] that Q-learning will sufficiently converge
to the ξ neighborhood of the optimal value after (N log(1/ξ)/ξ2)(log N + loglog(1/ξ))
iterations, where N represents the number of states in the MDP, which also ensures that the
algorithm proposed in this chapter can converge in a finite number of steps.

In this chapter, the routing problem is reduced to let the agent learn a path from the
source node to the destination node. In the routing problem, according to the established

Processes 2023, 11, 167 12 of 21

strategy π, the agent can get a path connecting the source node to the destination node.
Next, we introduce the Q-routing algorithm proposed in this chapter in detail.

When the SDN controller plans the transmission path for the business flow, it will
search the global space to obtain the best action. The MDP model is as follows: any switch
node v ∈ V in the SDN network can be regarded as a state s. Each state s ∈ S has an
optional action set A(s), which is composed of links connecting the state of s, and the
reward function is given in the previous section.

The SDN network contains many loops. In order to reduce the search step of the
algorithm from the source node to the destination node as much as possible, the maxi-
mum execution time of the agent’s action is set to tmax. Therefore, the SDN controller
is required to plan an optimal path for the service flow within a time interval tmax, oth-
erwise the path allocation is terminated. Although the termination search strategy be-
longs to the invalid strategy set ∏useless, it is still used as an option for the agent (SDN
controller) to search for actions. On this basis, the feasible strategy set under the algo-
rithm is defined as ∏use f ul =

{
πs,t

i,j (ti)
}∣∣∣i = 1, 2, . . . , M; j = 1, . . . , Ni , where M represents

the current time interval, and Ni indicates the total amount of policies from the source
node to the destination node. Correspondingly, the invalid strategy set is defined as

∏useless =
{

π
s,Vti
i,j
(
t′i
)}∣∣∣i = 1, 2, . . . , M′; j = 1, . . . , N′i , where M′ represents the current time

interval, N′i is the sum of all strategies from source node to node Vti . Then the set of all
possible strategies is ∏(s,t,tmax) = ∏useless ∏use f ul . Algorithm 1 gives the pseudo cod e of
this algorithm.

Algorithm 1 Dynamic Routing Algorithm Based on Q-learning (Q-routing)

Input: Network topology information G = (V, E), Business request information
Output: Q matric, Path policy

1. Initialize

2. learning factor α, discount factor γ, maximum execution time tmax,

set Q matric to 0, reward R0

3. for Sk in business set S

4. while t≤tmax

5. current state st

6. for all optional actions at in the state st , form the action set Ac;

7. while Ac 6= 0

8. choose an action a ∈ Ac based on ε− decreasing, shift to next state st+1

9. calculate the reward Rt and feedback it to the agent

10. if state st+1 == Goal state

11. Rt = Rt(st , at)+100;

12. else

13. proceed to step 6 to select the action for the next moment t + 1

14. update Q matric based on the formula 4.8

15. end if

16. end while

17. t = t + 1, update learning factor αt

18. end while

19. end for

Processes 2023, 11, 167 13 of 21

4. Simulation Experiment and Analysis
4.1. Performance Evaluation of Multipath Routing Algorithms

In order to verify that the multi-path routing algorithm of the inter-satellite link system
proposed in this paper can realize shunting and improve system performance, we carried
out simulation experiments on waiting delay, packet loss rate, and network throughput
indicators. In the simulation experiment, the sending rate of business data packets increased
from 10 packets/s to 100 packets/s, and the simulation time was set to 1 h. Taking the
16-node inter-satellite network shown in Figure 7 as an example, assuming the following
topology, it is required to calculate the routing table from node V7 to other nodes, and
select the optimal path according to the path load.

Processes 2023, 10, x FOR PEER REVIEW 14 of 22

throughput indicators. In the simulation experiment, the sending rate of business data
packets increased from 10 packets/s to 100 packets/s, and the simulation time was set to 1
h. Taking the 16-node inter-satellite network shown in Figure 7 as an example, assuming
the following topology, it is required to calculate the routing table from node V7 to other
nodes, and select the optimal path according to the path load.

Figure 7. Simulate the network connection of inter-satellite nodes.

According to the above inter-satellite network connection conditions, a total of 16
paths from the source node V7 to destination nodes V0, V9, V11, V3, V12, and V13, were
selected for service transmission testing. All the paths obtained by the algorithm in this
paper are as follows: [V7->V1->V0], [V7->V2->V0], [V7->V8->V9], [V7->V10->V9], [V7-
>V2->V11], [V7->V10->V11], [V7->V1->V0->V3], [V7->V2->V0->V3], [V7->V2->V6->V3],
[V7->V8->V9->V12], [V7->V10->V9->12], [V7->V2->V11->V12], [V7->V10->V11->V12], [V7-
>V2->V6->V13], [V7->V2->V11->V13], [V7->V10->V11->V13].

The paths obtained by the breadth-first search algorithm were [V7->V1->V0]、[V7-
>V8->V9], [V7->V2->V11], [V7->V1->V0->V3], [V7->V8->V9->V12], [V7->V2->V6->V13].
There is only one path to the destination node V0, V9, V11, V3, V12, and V13.

We tested the business packets from node V7 to node V0, V9, V11, V3, V12, and V13,
respectively, and recorded the arithmetic mean value of waiting delay, packet loss rate,
and network throughput of each pair of nodes using traditional routing and the routing
algorithm proposed in this paper.

4.1.1. Waiting Delay
With packet filling for a single path, as the service data packet sending rate increases,

the available bandwidth margin becomes less and less, resulting in waiting delay conflicts.
The experimental data in Figure 8 shows that the larger the data packet sending rate, the
longer the waiting delay. When there is a demand for data package business, the algo-
rithm first chooses a path with the least amount of business. As the rate of data package
sending increases to a certain threshold, the algorithm chooses the path with less business
consumption among the other shortest links as the transmission path to disperse the busi-
ness packets to different neighbor nodes, decreasing the wait conflicts that occur as the
rate of sending business packets increases.

Figure 7. Simulate the network connection of inter-satellite nodes.

According to the above inter-satellite network connection conditions, a total of 16 paths
from the source node V7 to destination nodes V0, V9, V11, V3, V12, and V13, were selected
for service transmission testing. All the paths obtained by the algorithm in this paper are
as follows: [V7->V1->V0], [V7->V2->V0], [V7->V8->V9], [V7->V10->V9], [V7->V2->V11],
[V7->V10->V11], [V7->V1->V0->V3], [V7->V2->V0->V3], [V7->V2->V6->V3], [V7->V8-
>V9->V12], [V7->V10->V9->12], [V7->V2->V11->V12], [V7->V10->V11->V12], [V7->V2-
>V6->V13], [V7->V2->V11->V13], [V7->V10->V11->V13].

The paths obtained by the breadth-first search algorithm were [V7->V1->V0], [V7->V8-
>V9], [V7->V2->V11], [V7->V1->V0->V3], [V7->V8->V9->V12], [V7->V2->V6->V13]. There
is only one path to the destination node V0, V9, V11, V3, V12, and V13.

We tested the business packets from node V7 to node V0, V9, V11, V3, V12, and V13,
respectively, and recorded the arithmetic mean value of waiting delay, packet loss rate,
and network throughput of each pair of nodes using traditional routing and the routing
algorithm proposed in this paper.

4.1.1. Waiting Delay

With packet filling for a single path, as the service data packet sending rate increases,
the available bandwidth margin becomes less and less, resulting in waiting delay conflicts.
The experimental data in Figure 8 shows that the larger the data packet sending rate,
the longer the waiting delay. When there is a demand for data package business, the
algorithm first chooses a path with the least amount of business. As the rate of data
package sending increases to a certain threshold, the algorithm chooses the path with less
business consumption among the other shortest links as the transmission path to disperse
the business packets to different neighbor nodes, decreasing the wait conflicts that occur as
the rate of sending business packets increases.

Processes 2023, 11, 167 14 of 21Processes 2023, 10, x FOR PEER REVIEW 15 of 22

Figure 8. Average business wait delay comparison chart.

4.1.2. Packet Loss Rate
The simulation results in Figure 9 show that before the sending rate is less than 40

packets/s, both packet loss rates are extremely low because the amount of data does not
reach the bandwidth capacity. With the increase in the service sending rate, the loss rate
of both algorithms increases, but the loss rate of multipath algorithm is significantly lower
than single-path algorithm, because the increase of data volume puts pressure on band-
width capacity, and single-path transmission is difficult to guarantee the delivery of data
and is prone to large-scale loss of packets.

Figure 9. Packets loss comparison chart.

4.1.3. Network Throughput
The network throughput is measured by the service reception rate of the destination

node. From the simulation data Figure 10, it can be seen that the throughput increases
with the increase of the service packet transmission rate in both cases. However, the
throughput performance of this algorithm proposed in this paper is significantly better
than that of other algorithms.

Figure 8. Average business wait delay comparison chart.

4.1.2. Packet Loss Rate

The simulation results in Figure 9 show that before the sending rate is less than
40 packets/s, both packet loss rates are extremely low because the amount of data does
not reach the bandwidth capacity. With the increase in the service sending rate, the loss
rate of both algorithms increases, but the loss rate of multipath algorithm is significantly
lower than single-path algorithm, because the increase of data volume puts pressure on
bandwidth capacity, and single-path transmission is difficult to guarantee the delivery of
data and is prone to large-scale loss of packets.

Processes 2023, 10, x FOR PEER REVIEW 15 of 22

Figure 8. Average business wait delay comparison chart.

4.1.2. Packet Loss Rate
The simulation results in Figure 9 show that before the sending rate is less than 40

packets/s, both packet loss rates are extremely low because the amount of data does not
reach the bandwidth capacity. With the increase in the service sending rate, the loss rate
of both algorithms increases, but the loss rate of multipath algorithm is significantly lower
than single-path algorithm, because the increase of data volume puts pressure on band-
width capacity, and single-path transmission is difficult to guarantee the delivery of data
and is prone to large-scale loss of packets.

Figure 9. Packets loss comparison chart.

4.1.3. Network Throughput
The network throughput is measured by the service reception rate of the destination

node. From the simulation data Figure 10, it can be seen that the throughput increases
with the increase of the service packet transmission rate in both cases. However, the
throughput performance of this algorithm proposed in this paper is significantly better
than that of other algorithms.

Figure 9. Packets loss comparison chart.

4.1.3. Network Throughput

The network throughput is measured by the service reception rate of the destination
node. From the simulation data Figure 10, it can be seen that the throughput increases with
the increase of the service packet transmission rate in both cases. However, the throughput
performance of this algorithm proposed in this paper is significantly better than that of
other algorithms.

It can be seen from the above that this algorithm can obtain all the shortest paths from
source nodes to other nodes, avoiding the limitation of only one shortest path, and is able
to choose the best path according to the load of neighboring nodes and their links. It can

Processes 2023, 11, 167 15 of 21

improve link utilization, avoid data packet loss problems caused by link congestion or
failure, and have a smaller wait delay and better network throughput performance.

Processes 2023, 10, x FOR PEER REVIEW 16 of 22

Figure 10. Network Throughput Comparison Chart.

It can be seen from the above that this algorithm can obtain all the shortest paths from
source nodes to other nodes, avoiding the limitation of only one shortest path, and is able
to choose the best path according to the load of neighboring nodes and their links. It can
improve link utilization, avoid data packet loss problems caused by link congestion or
failure, and have a smaller wait delay and better network throughput performance.

4.2. Q-Learning Routing Algorithm Performance Evaluation
In addition, take the 16-node inter-satellite network topology shown in the previous

section as an example. In order to comprehensively evaluate the validity of the model
proposed in this paper and the feasibility of the algorithm, this chapter takes the load of
the service transmission path and the average transmission delay of the service as the
main performance index. This chapter compares the proposed Q-routing routing algo-
rithm with Dijkstra’s shortest path forwarding algorithm.

Firstly, the proposed Q-learning based routing algorithm is explored with learning
factor α and discount factor γ. According to the Formula (2g), it can be seen that the larger
the learning factor α, the less the previous training results are retained, and the larger the
discount factor γ, the greater the effect of considering future rewards. Figure 11a,b, re-
spectively describe the comparison of Q value fluctuation (Euclidean distance) when α is
set to 0.6 and 0.9, respectively, under different search steps with different discount factors.

Figure 10. Network Throughput Comparison Chart.

4.2. Q-Learning Routing Algorithm Performance Evaluation

In addition, take the 16-node inter-satellite network topology shown in the previous
section as an example. In order to comprehensively evaluate the validity of the model
proposed in this paper and the feasibility of the algorithm, this chapter takes the load of
the service transmission path and the average transmission delay of the service as the main
performance index. This chapter compares the proposed Q-routing routing algorithm with
Dijkstra’s shortest path forwarding algorithm.

Firstly, the proposed Q-learning based routing algorithm is explored with learning
factor α and discount factor γ. According to the Formula (2g), it can be seen that the larger
the learning factor α, the less the previous training results are retained, and the larger
the discount factor γ, the greater the effect of considering future rewards. Figure 11a,b,
respectively describe the comparison of Q value fluctuation (Euclidean distance) when α is
set to 0.6 and 0.9, respectively, under different search steps with different discount factors.

The simulation results in Figure 11 show that when the α remains unchanged, the Q
value fluctuation decays faster as the γ increases. When α = 0.6 and γ is 0.3, it is about
30 steps that the Q value can be converged. When γ is 0.6 and 0.9, the convergence speed
is accelerated, but there are still different degrees of oscillation. When the learning factor
increases to 0.9, it can be seen that the convergence speed of the Q matrix is significantly
accelerated, and the fluctuation is smaller, and the effect is better.

However, speeding up the convergence rate of Q-routing routing needs further study.
At the beginning of training, a larger learning factor can improve the convergence speed
of Q matrix. However, as the training level increases, a larger learning factor causes the
Q-matrix to move back and forth on both sides of the optimal point. Therefore, at the
beginning of training, the learning factor can be set to a larger value, and with the increase
of the number of iterations, the learning factor gradually decreases, that is, to achieve
dynamic control of the learning factor. The learning factors are updated dynamically, and
the update strategy is shown in Figure 12.

Processes 2023, 11, 167 16 of 21
Processes 2023, 10, x FOR PEER REVIEW 17 of 22

(a)

(b)

Figure 11. The comparison between the degree of convergence of the Q matrix and the number of
search steps under different values of α and γ. (a) α = 0.6, under different γ, the comparison chart
of the convergence degree of Q matrix. (b) α = 0.9, under different γ, the comparison chart of the
convergence degree of Q matrix.

The simulation results in Figure 11 show that when the α remains unchanged, the Q
value fluctuation decays faster as the γ increases. When α = 0.6 and γ is 0.3, it is about 30
steps that the Q value can be converged. When γ is 0.6 and 0.9, the convergence speed is
accelerated, but there are still different degrees of oscillation. When the learning factor
increases to 0.9, it can be seen that the convergence speed of the Q matrix is significantly
accelerated, and the fluctuation is smaller, and the effect is better.

Figure 11. The comparison between the degree of convergence of the Q matrix and the number of
search steps under different values of α and γ. (a) α = 0.6, under different γ, the comparison chart
of the convergence degree of Q matrix. (b) α = 0.9, under different γ, the comparison chart of the
convergence degree of Q matrix.

Processes 2023, 11, 167 17 of 21

Processes 2023, 10, x FOR PEER REVIEW 18 of 22

However, speeding up the convergence rate of Q-routing routing needs further
study. At the beginning of training, a larger learning factor can improve the convergence
speed of Q matrix. However, as the training level increases, a larger learning factor causes
the Q-matrix to move back and forth on both sides of the optimal point. Therefore, at the
beginning of training, the learning factor can be set to a larger value, and with the increase
of the number of iterations, the learning factor gradually decreases, that is, to achieve dy-
namic control of the learning factor. The learning factors are updated dynamically, and
the update strategy is shown in Figure 12.

Figure 12. Learning Factors α Dynamic Change Curve with Training Step.

Figure 13 depicts the comparison of convergence before and after Q-routing algo-
rithm updates the learning factor. The results show that after setting the dynamic learning
factor, due to the initial α value is larger, the learning rate is faster, and then decreases
gradually. A lot of previous training results are retained, that is, using the previous expe-
rience, so that the convergence rate of Q-matrix is improved to some extent.

Figure 13. Q-matrix convergence before and after updating learning factors dynamically.

Figure 12. Learning Factors α Dynamic Change Curve with Training Step.

Figure 13 depicts the comparison of convergence before and after Q-routing algorithm
updates the learning factor. The results show that after setting the dynamic learning factor,
due to the initial α value is larger, the learning rate is faster, and then decreases gradually.
A lot of previous training results are retained, that is, using the previous experience, so that
the convergence rate of Q-matrix is improved to some extent.

Processes 2023, 10, x FOR PEER REVIEW 18 of 22

However, speeding up the convergence rate of Q-routing routing needs further
study. At the beginning of training, a larger learning factor can improve the convergence
speed of Q matrix. However, as the training level increases, a larger learning factor causes
the Q-matrix to move back and forth on both sides of the optimal point. Therefore, at the
beginning of training, the learning factor can be set to a larger value, and with the increase
of the number of iterations, the learning factor gradually decreases, that is, to achieve dy-
namic control of the learning factor. The learning factors are updated dynamically, and
the update strategy is shown in Figure 12.

Figure 12. Learning Factors α Dynamic Change Curve with Training Step.

Figure 13 depicts the comparison of convergence before and after Q-routing algo-
rithm updates the learning factor. The results show that after setting the dynamic learning
factor, due to the initial α value is larger, the learning rate is faster, and then decreases
gradually. A lot of previous training results are retained, that is, using the previous expe-
rience, so that the convergence rate of Q-matrix is improved to some extent.

Figure 13. Q-matrix convergence before and after updating learning factors dynamically. Figure 13. Q-matrix convergence before and after updating learning factors dynamically.

Next, we compare the Q-routing algorithm with the Dijkstra algorithm and the Q-
learning algorithm proposed in [22]. The Q-learning routing algorithm can be regarded
as a combination of the Dijkstra algorithm and the Q-learning algorithm. It predicts the
link load and switches to Q-learning algorithm after reaching 80%. The reward function is
relatively simple. When reaching the target node, it obtains 30 immediate rewards. When
reaching the neighbor node of the target node, it obtains 20 rewards. This routing algorithm
converges faster. It can also alleviate link congestion to some extent.

Processes 2023, 11, 167 18 of 21

4.2.1. Path Load

Figure 14 depicts the maximum load of the selected business transmission path under
different algorithms, where the reward function parameter in the Q-routing algorithm
is a1 for 0.8, a2 for 0.2, a3 for 0. Figure 14a indicates that services are generated at two
fixed nodes in a satellite network, while Figure 14b indicates requests for services between
random source and destination node pairs. As shown in Figure 14a,b, when the number
of services is small, the Q-routing routing algorithm has the lowest load, while for the
Q-learning algorithm and the Dijkstra algorithm, the link load increases rapidly. This is
because the link load is added to the reward function of the Q-routing algorithm as an
important parameter, which allows the agent to consider the link load when exploring the
optimal path, thus optimizing the overall traffic balance. The Dijkstra algorithm prefers the
shortest path for packet forwarding, and the shortest path increases the link load due to
its frequent use. The performance of the Q-learning algorithm is consistent with that of
the Dijkstra algorithm before the link load reaches the threshold of 80%. As the business
intensity increases, the Q-learning algorithm searches for other alternative paths to avoid
the shortest path, so the link load it chooses later is between the Q-routing algorithm
and the Dijkstra algorithm. From Figure 14, it can be seen that the Q-routing algorithm
can optimize the link load and significantly increase the link resource utilization, thereby
improving the service request acceptance rate.

Processes 2023, 10, x FOR PEER REVIEW 19 of 22

Next, we compare the Q-routing algorithm with the Dijkstra algorithm and the Q-
learning algorithm proposed in [22]. The Q-learning routing algorithm can be regarded as
a combination of the Dijkstra algorithm and the Q-learning algorithm. It predicts the link
load and switches to Q-learning algorithm after reaching 80%. The reward function is rel-
atively simple. When reaching the target node, it obtains 30 immediate rewards. When
reaching the neighbor node of the target node, it obtains 20 rewards. This routing algo-
rithm converges faster. It can also alleviate link congestion to some extent.

4.2.1. Path Load
Figure 14 depicts the maximum load of the selected business transmission path under

different algorithms, where the reward function parameter in the Q-routing algorithm is 𝑎ଵ for 0.8, 𝑎ଶ for 0.2, 𝑎ଷ for 0. Figure 14a indicates that services are generated at two
fixed nodes in a satellite network, while Figure 14b indicates requests for services between
random source and destination node pairs. As shown in Figure 14a,b, when the number
of services is small, the Q-routing routing algorithm has the lowest load, while for the Q-
learning algorithm and the Dijkstra algorithm, the link load increases rapidly. This is be-
cause the link load is added to the reward function of the Q-routing algorithm as an im-
portant parameter, which allows the agent to consider the link load when exploring the
optimal path, thus optimizing the overall traffic balance. The Dijkstra algorithm prefers
the shortest path for packet forwarding, and the shortest path increases the link load due
to its frequent use. The performance of the Q-learning algorithm is consistent with that of
the Dijkstra algorithm before the link load reaches the threshold of 80%. As the business
intensity increases, the Q-learning algorithm searches for other alternative paths to avoid
the shortest path, so the link load it chooses later is between the Q-routing algorithm and
the Dijkstra algorithm. From Figure 14, it can be seen that the Q-routing algorithm can
optimize the link load and significantly increase the link resource utilization, thereby im-
proving the service request acceptance rate.

(a)

Processes 2023, 10, x FOR PEER REVIEW 20 of 22

(b)

Figure 14. Comparison of service transmission path loads under different routing algorithms. (a)
The source node and target node are fixed. (b) The source node and target node are random.

4.2.2. Average Transmission Delay of Service
Figure 15 describes the average transmission delay curves for delay-sensitive services

under different algorithms. At this time, set the parameters in the Q-routing algorithm
take 𝑎ଵ to 0, 𝑎ଶ to 1, and 𝑎ଷ to 0. As shown in the figure, with the increase in service
flow, the average transmission delay continues to rise, and the delay of the Q-routing
routing algorithm is lower than that of the Dijkstra algorithm. Because for services with
high delay requirements, when designing the reward function, the proportion of the re-
ward for the delay is increased. Therefore, in the training phase, the transmission path
with the lowest delay is tended to be selected. Before the link load reaches 80%, the trans-
mission delay of the Q-learning algorithm and the Dijkstra algorithm are the same. Alt-
hough it always forwards the data packet with the shortest number of hops, the link delay
of each hop may not be the lowest, so the cumulative transmission delay is slightly higher
than that of the Q-routing algorithm.

Figure 15. Comparison of transmission delays of delay-sensitive services under different routing
algorithms.

Through the above comparison, we found that by setting the reward function in Q-
routing, we can approach the optimal solution very well. In the process of comparing with

Figure 14. Comparison of service transmission path loads under different routing algorithms. (a) The
source node and target node are fixed. (b) The source node and target node are random.

Processes 2023, 11, 167 19 of 21

4.2.2. Average Transmission Delay of Service

Figure 15 describes the average transmission delay curves for delay-sensitive services
under different algorithms. At this time, set the parameters in the Q-routing algorithm
take a1 to 0, a2 to 1, and a3 to 0. As shown in the figure, with the increase in service flow,
the average transmission delay continues to rise, and the delay of the Q-routing routing
algorithm is lower than that of the Dijkstra algorithm. Because for services with high delay
requirements, when designing the reward function, the proportion of the reward for the
delay is increased. Therefore, in the training phase, the transmission path with the lowest
delay is tended to be selected. Before the link load reaches 80%, the transmission delay
of the Q-learning algorithm and the Dijkstra algorithm are the same. Although it always
forwards the data packet with the shortest number of hops, the link delay of each hop may
not be the lowest, so the cumulative transmission delay is slightly higher than that of the
Q-routing algorithm.

Processes 2023, 10, x FOR PEER REVIEW 20 of 22

(b)

Figure 14. Comparison of service transmission path loads under different routing algorithms. (a)
The source node and target node are fixed. (b) The source node and target node are random.

4.2.2. Average Transmission Delay of Service
Figure 15 describes the average transmission delay curves for delay-sensitive services

under different algorithms. At this time, set the parameters in the Q-routing algorithm
take 𝑎ଵ to 0, 𝑎ଶ to 1, and 𝑎ଷ to 0. As shown in the figure, with the increase in service
flow, the average transmission delay continues to rise, and the delay of the Q-routing
routing algorithm is lower than that of the Dijkstra algorithm. Because for services with
high delay requirements, when designing the reward function, the proportion of the re-
ward for the delay is increased. Therefore, in the training phase, the transmission path
with the lowest delay is tended to be selected. Before the link load reaches 80%, the trans-
mission delay of the Q-learning algorithm and the Dijkstra algorithm are the same. Alt-
hough it always forwards the data packet with the shortest number of hops, the link delay
of each hop may not be the lowest, so the cumulative transmission delay is slightly higher
than that of the Q-routing algorithm.

Figure 15. Comparison of transmission delays of delay-sensitive services under different routing
algorithms.

Through the above comparison, we found that by setting the reward function in Q-
routing, we can approach the optimal solution very well. In the process of comparing with

Figure 15. Comparison of transmission delays of delay-sensitive services under different routing
algorithms.

Through the above comparison, we found that by setting the reward function in
Q-routing, we can approach the optimal solution very well. In the process of comparing
with other algorithms, the Q-routing routing algorithm can effectively balance the load and
improve the request acceptance rate to a certain extent. It also has better performance than
other algorithms for delay-sensitive services.

5. Conclusions

Routing technology is very important in inter-satellite link technology. Traditional
algorithms can obtain only one shortest path, and is difficult to guarantee that a randomly
discovered shortest path can meet the requirements of the service. The improved inter-
satellite multipath algorithm combined with reinforcement learning, not only can obtain
multiple shortest paths from the source node to all nodes in the wireless network, but also
can adapt to the network dynamics in time and select the optimal path from all the shortest
paths according to the load condition of the neighbor node when the global topology
information of the network cannot be obtained. Simulation experiments show that the
multipath routing algorithm for inter-satellite links based on load balancing can disperse
network traffic pressure, avoid data traffic congestion during inter-satellite network sys-
tem communication, have low latency and low packet loss rate, and have better network
throughput performance. In addition, when the topology information cannot be obtained,
the Q-routing algorithm with the link state considered, has obvious advantages in improv-
ing link utilization, and can better balance link bandwidth utilization and transmission
delay compared to other algorithms.

Processes 2023, 11, 167 20 of 21

Author Contributions: Writing—original draft preparation, Y.S.; writing—original draft, Z.Y.; su-
pervision, X.Z., supervision, H.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data that support the findings are available on request from the
corresponding authors. The data are not publicly available due to privacy.

Acknowledgments: This work was supported by Natural Science Foundation of China (92067101,
92067201), Program to Cultivate Middle-aged and Young Science Leaders of Universities of Jiangsu
Province and Key R&D plan of Jiangsu Province (BE2021013-3).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ni, S.; Yue, Y.; Zuo, Y.; Liu, W.; Xiao, W.; Ye, X. The Status Quo and Prospect of Satellite Network Routing Technology. Electron.

Inf. Technol. 2022, 44, 1–13. [CrossRef]
2. Chang, H.S.; Kim, B.W.; Lee, C.G.; Min, S.L.; Choi, Y.; Yang, H.S.; Kim, D.N.; Kim, C.S. FSA-based link assignment and routing in

low-earth orbit satellite networks. IEEE Trans. Veh. Technol. 1998, 47, 1037–1048. [CrossRef]
3. Gragopoulos, I.; Papapetrou, E.; Pavlidou, F.N. Performance study of adaptive routing algorithms for LEO satellite constellations

under Self-Similar and Poisson traffic. Space Commun. 2000, 16, 15–22.
4. Rao, Y.; Wang, R. Performance of QoS routing using genetic algorithm for Polar-orbit LEO satellite networks. AEU-Int. J. Electron.

Commun. 2011, 65, 530–538. [CrossRef]
5. Liu, L.; Zhang, T.; Lu, Y. A novel adaptive routing algorithm for delay-sensitive service in multihop LEO satellite network. KSII

Trans. Internet Inf. Syst. 2016, 10, 3551–3567. [CrossRef]
6. Dai, C.; Liao, G.; Chen, Q. Service-oriented routing with Markov space-time graph in low earth orbit satellite networks. Trans.

Emerg. Telecommun. Technol. 2021, 32, e4072. [CrossRef]
7. Guo, Z.; Yan, Z. A weighted semi-distributed routing algorithm for LEO satellite networks. J. Netw. Comput. Appl. 2015, 58, 1–11.

[CrossRef]
8. Zuo, P.; Wang, C.; Jiang, H. An Intelligent Routing Algorithm for LEO Satellites Based on Deep Reinforcement Learning. J. Beijing

Electron. Sci. Technol. Inst. 2022, 30, 35–43.
9. Wang, H. Research on low-orbit satellite routing strategy based on deep reinforcement learning. Master’s Thesis, Beijing

University of Posts and Telecommunications, Beijing, China, 2020. [CrossRef]
10. Luo, Z. Research on Routing Technology Based on Machine Learning in Space-Ground Integrated Network. Master’s Thesis,

University of Electronic Science and Technology of China, Chengdu, China, 2021. [CrossRef]
11. Sharma, D.K.; Dhurandher, S.K.; Woungang, I.; Srivastava, R.K.; Mohananey, A.; Rodrigues, J.J. A Machine Learning-Based

Protocol for Efficient Routing in Opportunistic Networks. IEEE Syst. J. 2018, 12, 2207–2213. [CrossRef]
12. Qin, F.; Zhao, Z.; Zhang, H. Optimizing routing and server selection in intelligent SDN-based CDN. In Proceedings of the

International Conference on Wireless Communications and Signal Processing, Chennai, India, 23–25 March 2016.
13. Bao, K.; Matyjas, J.D.; Hu, F.; Kumar, S. Intelligent Software-Defined Mesh Networks With Link-Failure Adaptive Traffic Balancing.

IEEE Trans. Cogn. Commun. Netw. 2018, 4, 266–276. [CrossRef]
14. Azzouni, A.; Boutaba, R.; Pujolle, G. NeuRoute: Predictive dynamic routing for software-defined networks. In Proceedings of the

Conference on Network and Service Management, Tokyo, Japan, 26–30 November 2017; pp. 1–6.
15. Grunitzki, R.; Bazzan, A.L. Comparing Two Multiagent Reinforcement Learning Approaches for the Traffic Assignment Problem.

In Proceedings of the Brazilian Conference on Intelligent Systems, Uberlândia, Brazil, 2–5 October 2017; pp. 139–144.
16. Zhou, L.; Feng, L.; Gupta, A.; Ong, Y.S.; Liu, K.; Chen, C.; Sha, E.; Yang, B.; Yan, B.W. Solving dynamic vehicle routing problem

via evolutionary search with learning capability. In Proceedings of the Congress on Evolutionary Computation, Donostia/San
Sebastian, Spain, 5–8 June 2017; pp. 890–896.

17. Yu, S.; Zhou, J.; Li, B.; Mabu, S.; Hirasawa, K. Q value-based Dynamic Programming with SARSA Learning for real time route
guidance in large scale road networks. In Proceedings of the International Symposium on Neural Networks, Shenyang, China,
11–14 July 2012; pp. 1–7.

18. Lin, S.C.; Akyildiz, I.F.; Wang, P.; Luo, M. QoS-Aware Adaptive Routing in Multi-layer Hierarchical Software Defined Networks:
A Reinforcement Learning Approach. In Proceedings of the 2016 IEEE International Conference on Services Computing (SCC).
IEEE Computer Society, Francisco, CA, USA, 27 June–2 July 2016.

19. Yu, C.; Lan, J.; Guo, Z.; Hu, Y. DROM: Optimizing the Routing in Software-Defined Networks with Deep Reinforcement Learning.
IEEE Access 2018, 6, 64533–64539. [CrossRef]

http://doi.org/10.11999/EIT211393.2022
http://doi.org/10.1109/25.704858
http://doi.org/10.1016/j.aeue.2010.08.008
http://doi.org/10.3837/tiis.2016.08.007
http://doi.org/10.1002/ett.4072
http://doi.org/10.1016/j.jnca.2015.08.015
http://doi.org/10.26969/d.cnki.gbydu.2020.002677
http://doi.org/10.27005/d.cnki.gdzku.2021.004622
http://doi.org/10.1109/JSYST.2016.2630923
http://doi.org/10.1109/TCCN.2018.2790974
http://doi.org/10.1109/ACCESS.2018.2877686

Processes 2023, 11, 167 21 of 21

20. Zhang, Z.; Ma, L.; Leung, K.K.; Tassiulas, L.; Tucker, J. Q-Placement: Reinforcement-Learning-Based Service Placement in
Software-Defined Networks. In Proceedings of the 2018 IEEE 38th International Conference on Distributed Computing Systems
(ICDCS). IEEE Computer Society, Vienna, Austria, 2–6 July 2018.

21. Kearns, M.J.; Singh, S.P. Finite-Sample Convergence Rates for Q-Learning and Indirect Algorithms. In Proceedings of the
Conference on Advances in Neural Information Processing Systems 11, Denver, CO, USA, 30 November–5 December 1998; MIT
Press: Cambridge, MA, USA, 1999; pp. 996–1002.

22. Kim, S.; Son, J.; Talukder, A.; Hong, C.S. Congestion prevention mechanism based on Q-leaning for efficient routing in SDN. In
Proceedings of the International Conference on Information Networking, Kota Kinabalu, Malaysia, 13–15 January 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Multipath Routing Algorithm for Inter-Satellite Links Based on Load Balancing
	Inter-Satellite Network Topology
	Multipath Routing Algorithm for Inter-Satellite Network
	Multipath Backtracking
	Optimal Path Selection for Inter-Satellite Links

	Dynamic Routing Algorithm for Inter-Satellite Network Based on Q-Learning
	Q-Learning
	Q-Learning Routing System Model
	Network Model
	Business Characteristics

	Dynamic Routing Algorithm Based on Q-Learning

	Simulation Experiment and Analysis
	Performance Evaluation of Multipath Routing Algorithms
	Waiting Delay
	Packet Loss Rate
	Network Throughput

	Q-Learning Routing Algorithm Performance Evaluation
	Path Load
	Average Transmission Delay of Service

	Conclusions
	References

