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Abstract: Multi-response optimization problems investigation is a crucial element in initiatives
designed to enhance quality and overall productivity for manufacturing processes. Since no particular
algorithm can be employed for all multi-response problems, defining the method that is utilized
as a problem-solving technique is a vital step in the process factors optimization. Identifying a
formal procedure of implementing the improvement approach in a multi-criteria decision-making
problem is a critical need to ensure the consistency and sustainability of the enhancement methods.
In this study, a Plan–Do–Check–Act (PDCA) framework is implemented for a case study in the
food industry under which a multi-response optimization problem is investigated. The design of
experiment (DOE) is used to examine the effect of process parameters on the quality responses by
using the Taguchi method to find the optimal setting for each parameter. An orthogonal array (OA)
and signal-to-noise (SNR) ratio is employed to investigate the performance characteristics. Each
performance characteristic is then converted into a signal-to-noise ratio, and all the ratios are then fed
into a fuzzy model to produce a single comprehensive output measure (COM). The average COM
values for various factor levels are calculated, and the level that maximizes the COM value for each
factor is identified as the optimal level. Results indicated the effectiveness of the applied method to
find the optimal factor levels for the multi-response optimization problem under study. The global
optimal factor levels that are driven from the fuzzy logic for the studied parameters are 1250, 40, 7.5,
and 1:2, for the speed, frying time, cooking time, and the coating ratio, respectively. Means of all
the studied quality characteristics were closer to the target values when compared with the initial
factors’ settings.

Keywords: fuzzy logic; optimization; multi response; quality

1. Introduction

Improving systems performance and enhancing process efficiency are key interests
for companies in efforts made towards product and process quality development. Design
of Experiment (DOE) is a helpful tool used in identifying the key variables that influence
quality characteristics in a process. Designed experiment is a systematic approach to change
the controllable factors (inputs) in a process and define the effect of these inputs on the
parameters (the outputs) of the process. For DOE, it is vital to set the operating conditions
of the process variables that will result in the best process performance; this can achieve
the target value of the mean and minimize the variability of the quality characteristics
(outputs) of the process [1–3]. Several studies have investigated the use of DOE in different
applications. Alagumurthi et al. investigated and optimized the process parameters of a
grinding process, to obtain the optimal factor levels that deliver a superior quality and pro-
ductivity while considering the economic factors. The DOE principles were implemented
in the optimality procedures using the Taguchi method [4]. Al Athamneh et al. explored
the fatigue properties of SAC305 solder joints at different operating conditions. Since the
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reliability of the final product is one of the eight dimensions of quality, DOE rules were
used in constructing a robust reliability model for solder joint fatigue life, as a function
of the process parameters [5]. In addition, Durakovic provided a formal guideline for the
planning and execution of the experiments and for the analysis and interpretation of the
results for different applications [6].

The use of the Design of Experiment in the food industry has been examined in
numerous studies. Ahmadabadi et al., in their study, investigated the use of DOE and
Quality Function Deployment (QFD) for developing new food products. The study used
several parameters for process improvement to satisfy the customer needs, and the results
indicated the effectiveness of the use of DOE and QFD [7]. Cucuz et al., in their study, found
satisfactory results using DOE to optimize the process parameters in the food industry for
grape pomace extracts, using the ultrasound-assisted extraction to produce a satisfactory
yield of phenols and anthocyanins [8]. Kumar et al. developed models of DOE and
simulation to maximize the output of tomato concentrated pulp; the results highlighted
the practical application of DOE to increase the throughput rate and the productivity in
the food industry [9]. In addition, other studies highlighted the impact of DOE for process
improvement in different applications. Olveira et al. proposed a full factorial design in
natural fibers as reinforcement in polymers, and they investigated the impact of some
parameters on the physical properties of the coir fiber [10–12]. Beg et al. proposed the
application of DOE in pharmaceutical product and process optimization [13]. Other case
studies investigated the machinability performance during the various processes using
DOE [14,15]. Moreover, other studies used fractional factorial designs. Moreira et al. found
that the fractional design can be applied to optimizing an acid–alkaline pretreatment in
rice husks [16]. Rezende et al. used DOE to optimize milling time, temperature, double
treatment, chemical concentration, and pretreatment time in acid–alkali (EA) and acid–
organosolv (EO) pretreatments [17].

Numerous optimization techniques are commonly used in optimizing the process
parameters. Under the Taguchi method, various parameters can be examined simulta-
neously with a minimum number of experimental conditions [18,19]. The local optimal
settings can be obtained with a reasonable number of experiments, and it is more powerful
than fractional factorial because it has its orthogonal array. Moreover, it considers the
mean and variance by using the signal-to-noise ratio (SNR). SNR has three main categories:
larger-the-better, smaller-the-better, and nominal-the-best. Each of these categories has a
special equation to calculate SNR, and this ratio is defined so that a maximum value of
the ratio minimizes variability transmitted from the noise variables. In most manufactur-
ing processes, several quality characteristics must be considered for process parameter
optimization; this means that more than one response characteristic must be optimized
at the same time. To obtain the overall optimal setting of process parameters concerning
all the responses, an optimization strategy is required. The strategy that can deal with
this type of problem is the multi-response optimization technique [20–23]. The approach
seeks to modify the design parameters (known as control factors) such that the system
response is robust; that is, insensitive to noise elements that are difficult or impossible to
control. The Taguchi method contains system design, parameter design, and tolerance
design procedures to achieve a robust process [24]. The main thrust of Taguchi’s technique
is the use of parameter design to determine the parameter (factor) settings, providing the
optimum levels of a quality characteristic (performance measure) with the least variation.
The process has three stages: System design, Parameter design and Tolerance design [25].
Taguchi’s (SNR), which are log functions, are based on Orthogonal Array (OA) experiments
that result in considerably reduced “variance” for the experiment with “optimal settings”
of control parameters. Thus, the Taguchi Method combines the Design of Experiments
with optimization of control parameters to reach the best outcomes. Orthogonal Arrays
give a set of well-balanced (minimum) experiments and desired outputs, act as objective
functions for optimization, improve data analysis, and forecast optimal results [26,27].
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The Taguchi method has been efficient in optimizing the process performance in
many applications [28–31]. For example, in the manufacturing field, Fratila and Caizar
used the fractional orthogonal with the Taguchi method to optimize the lubrication and
cutting parameters of a face-milling process. The examined quality responses in their
study were surface roughness and power consumption. The contributions of the process
parameters were determined using ANOVA analysis [32]. A biodiesel production process
was demonstrated by Esmaeili et al., where the reaction time, temperature, methanol-to-oil
ratio and catalyst concentration were considered as process parameters for investigation.
The Taguchi method was applied to obtain the factor levels that provide the optimal
production performance [33].

The Taguchi method also has many applications in the food industry; for example, in
the study implemented by Patidar et al. DOE methodology using Taguchi orthogonal array
(OA) was used to evaluate the influence of several factors on the pectinase production.
The results indicated that Taguchi’s method is efficient for optimizing the experiments for
the investigated case study [34]. Noorwali, in his study, introduced a model based on the
Taguchi method (along with applying the lean principles) to reduce the variability in the
food processing industry, and found significant results [35].

The Taguchi and DOE approaches showed a significant deficiency when the multi-
criteria problem optimization was presented. There has been a lot of research undertaken on
the various methods for dealing with multi-response problems, such as artificial neural net-
works (ANNs), fuzzy logic, fuzzy Taguchi method, neural fuzzy Taguchi method, genetic
algorithm, utility method, goal programming, grey fuzzy method, principal component
analysis, fuzzy regression, and response surface methodology [36–42]. The principles of
fuzzy logic are used to deal with ambiguous and uncertain data. Different case studies used
fuzzy logic, fuzzy Taguchi method, grey fuzzy method, neural fuzzy Taguchi method, and
fuzzy regression, and found significant results that the fuzzy measured values were in good
agreement with the experimental values. Furthermore, confirmation tests were carried
out to ensure that the Taguchi optimized levels and fuzzy-developed models accurately
represent the measured responses [43–46].

In the presented study, a case study in the food industry is investigated under which a
multi-response problem is considered. The main aim is to achieve high quality in terms
of (piece/product) best flavor, surface texture, dimensional accuracy, color, and high
production rate. This will also consider reducing variability between (pieces/products),
and machining economy in terms of cost savings. Moreover, other considerations will
include increasing the performance and productivity (of the lines/machines) with the
best utilization and the least amount of required rework, which comes in accordance with
increasing customer satisfaction. The Taguchi-Fuzzy model has been used to optimize the
process and to find the optimal settings of the controllable factors that achieve a target
value of the mean and minimize the variability of all quality characteristics.

2. Materials and Methods
2.1. PDCA framework

The PDCA (also known as Deming cycle, Shewhart cycle) is well known as a simple
lean manufacturing tool, enabling companies to focus on continuous improvement. Thus,
it is considered as an approach to developing process improvement at the organizational
level. This, in turn, will affect the companies’ practices for solving problems, managing
changes, and updating their working procedures and practices accordingly [47].

Figure 1 illustrates the four stages of the PDCA cycle: Plan: where problems are
identified, the current state of the process is evaluated using related data, and solutions
are proposed to improve the process performance and assign priorities. Do: where several
experiments, along with statistical tools, are used to analyze the data and obtain results.
Check: where an analysis of the results obtained from the previous phases and comparisons
are implemented to check for improvements and goals achievement. Act: where techniques
are implemented if the target is achieved in the efforts made to standardize improvements.
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New data might be gathered to retest the improvement if conditions are changed, and the
proof is repeated if effective improvements were not achieved.
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2.2. Taguchi Method

The Taguchi method is a robust statistical design method under which the process
parameters are optimized to minimize the variation. This method is commonly used to
improve the quality of the manufactured goods. The Taguchi method uses special designs
of orthogonal arrays to minimize the number of experiments, while considering all design
factors. It includes several steps, which start by creating the Taguchi Design. Orthogo-
nal arrays are established to investigate the effect of the process factors on the process
performance. After the proposed experiments are performed the SNRs are calculated for
each response, based on the quality characteristic category. The quality responses can
be classified into three categories: larger-the- better (LTB), smaller-the-better (STB) and
nominal-the-best (NTB). The SNR is classified in the LTB category, regardless of the original
category of the quality response [48]. The conversion equations from the original form of
the quality responses to SNR from are shown in Equations (1)–(3):

SNRSTBi = 10 ∗ log [(1/K) ∑K
K=1 yik ˆ2

]
(1)

SNRNTBi = −10 ∗ log[
Y2

s2
i
] (2)

SNRLTBi = −10 ∗ log [(1/K) ∑K
K=1 1/yik ˆ2

]
(3)

where K represents the number of replicates, yik represents the quality response value at
experiment i and replicate k, and Yi-bar is the average value of the quality response for
different replicates at experiment i. After determining the SNR values for all responses, the
optimal factor settings were found for each quality response individually by calculating
the average SNR at each factor level. The optimal factor setting represents the factor levels
that have the largest SNR. Since the optimal factor settings for each quality response are
different, other optimization tools need to be implemented to deal with multi-response
problems. In the current study, the fuzzy logic technique was employed as an optimization
tool where the SNR values for each response were utilized as inputs for the fuzzy system.

2.3. Fuzzy Logic

Fuzzy logic is a method of processing variables that enables the estimation of several
potential truth values through a single variable. It tries to resolve issues using an open,
imperfect spectrum of facts and heuristics that enables the production of a variety of exact
conclusions. Fuzzy logic is intended to solve problems by considering all available data
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and selecting the optimal course of action given the input. In this study, the fuzzy logic
(Mamdani-style fuzzy inference) is utilized to convert multiple quality characteristics into
a single response (COM) value. Linear function was implemented for inputs and output
membership functions (MFs). The Mamdani-style fuzzy inference procedure consists of
four phases: Fuzzification of the inputs under which the SNRs are used to define the MF
for each quality characteristic by defining values to represent the fuzzy subsets. The fuzzy
rules are then evaluated, depending on the inputs, output measure, and the rules that
connect the input to the output. Aggregation of the rule outputs is then implemented,
where the fuzzy rules are used to identify the MFs of the output. The fuzzy reasoning of
the rules and max–min composition operation is used to produce the output where the
minimum operation is used in the AND fuzzy operation, and the maximum operation
is used in the OR fuzzy operation. Defuzzification is then used to convert the inference
output into a nonfuzzy COM value. The center of gravity method (COG) is utilized as
a Defuzzification method, which is applied to convert the fuzzy value into a non-fuzzy
(COM) value where higher COM values indicate a better performance. Average COM
values at each factor level are then computed, and the level with the highest COM value
will indicate the optimal level for the factor [49].

3. Results and Discussion
3.1. Plan Step

In this phase, the product and the production line under investigation are identified,
and a process flowchart is created to provide insights about the process under consideration.
Data are also collected to identify factors affecting the quality characteristics of interest, and
their levels. Outputs of interest were also determined, and a systematic plan for process
optimization was established. The product selected for investigation is the pre-cooked
chicken fillet. The product passes through several processes, each of which includes several
inputs and a number of both controllable and uncontrollable factors. According to the
standard operating procedure, the product passes through the receipt of raw materials,
preparation, forming, and packaging, as shown in Figure 2. A thorough research revealed
that the forming process—which also includes coating, frying, cooking, and freezing—is
the major process of interest. Moreover, the investigation indicated the factors of interest,
which include production speed, frying time, cooking time and coating ratio. The response
variables considered for improvement include weight, color, final temperature, pick up
and waste.
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The Optimization Procedure

The systematic approach used for the optimization is established as shown in Figure 3.
The orthogonal array is built for the Taguchi technique, where the rows correspond to the
combination of experimentally utilized factor levels and the columns that correspond to
the factors to be examined. Table 1 shows the levels for the studied factors. The quality
characteristics are classified into three categories: smaller-the-better (STB), larger-the-better
(LTB), and nominal-the-best (NTB). The levels are determined for each controllable factor
within the specification limit, as shown in Table 1.
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Table 1. Levels for the controllable factors.

Factors Speed (unit/hour) Frying Time (min) Cooking Time (min) Ratio

Level 1 1250 30 7.5 1:02
Level 2 1300 35 8.5 01:02.5
Level 3 1350 40 9.5 1:03

Quality characteristics considered include Weight (g), Color, Final Temperature (◦C),
Waste (Loss amount of Coating in g) and pick up (coating gain ratio), as defined by
Equation (4):

Pick up (Coating Gain Ratio) =
Final weight − Initial weight

weight
% (4)

3.2. Do Step

To ensure that the process is in statistical control, twenty samples of size 10 were
taken for each quality response, at different intervals of the production time. Table 2 shows
a sample of the temperature response. Both the normality tests and the capability tests
were performed to ensure that the data follow a normal distribution, and that the process
meets the specifications. Figure 4 shows the Xbar-S control chart for the temperature
response. Based on the control chart, the process is in control and the DOE method can
be implemented. The OA of the Taguchi method is then constructed to represent the
controllable factors and their combination levels, as shown in Table 3. The experimental
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setup is based on the OA, where each experiment was repeated for four runs. Samples
studied represent 1 kg of the chicken pieces, as for each experiment 200 kg of chicken pieces
was used. The five outputs were measured in the first experiment on four runs. A sample
of the Experimental data is shown in Table 4.

Table 2. Samples of the temperature response (ºC).

Sample No. 1 2 3 4 5 6 7 8 9 10

1 25.2 23.5 23 22.3 22.4 22.9 23.1 23.1 24.8 25.1
2 23.4 23.6 24.6 24.9 25.2 23.6 23 24.3 23.8 24.1
...

...
...

...
...

...
...

...
...

...
...

19 22.5 25 24 22.4 23.5 22.1 25.3 23.1 25.7 22.8
20 24.3 23.4 25.7 22.2 23.7 25.5 24.8 22.8 23.7 24.9
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Table 3. Orthogonal Array (OA).

Exp. (i) Speed (unit/hour) Frying Time (min) Cooking Time (min) Ratio

1 1250 30 7.5 1:2

2 1250 35 8.5 1:2.5

3 1250 40 9.5 1:3

4 1300 30 8.5 1:3

5 1300 35 9.5 1:2

6 1300 40 7.5 1:2.5

7 1350 30 9.5 1:2.5

8 1350 35 7.5 1:3

9 1350 40 8.5 1:2
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Table 4. Responses for the first run, based on Taguchi L9.

First Run Weight 1 (g) Color 1 Temp 1 (ºC) Pick up 1 (%) Waste 1 (g)

1 1024.57 5 82.3 19.44% 7424
2 1349 5 93.2 19.19% 3400
3 1154 3 92.6 16.30% 960
4 1254 4 83.9 18% 1582
5 1238 5 82.5 18.47% 7800
6 1146 3 84.5 18.39% 3800
7 1062 5 75.3 16.88% 4600
8 1108 2 73.3 13.02% 2600
9 1298.7 4 88.4 17.85% 10,500

3.3. Check Step

The responses are classified into the proper categories to calculate the SNR. These
categories are Smaller-The-Better (STB), the Larger-The-Better (LTB), and the Nominal-
The-Best (NTB) [25]. For example, weight, temperature, color and pick up were set as
nominal-the-best, whereas waste is set as smaller-the-better. The SNR analyzes the mean of
the responses and calculates the responses’ deviations from the target. Thus, the SNR will
determine the optimal factor levels. For the studied responses, the SNRs were computed
based on the four runs of the L9 experiment. Table 5 shows a sample of the SNR for the
weight response. Table 6 shows the SNR values chosen for each response, where the larger
the value is, the better is the performance.

Table 5. SNR for the 4 runs of the 9 experiments for the weight (g) response.

Exp. (i) Weight 1 Weight 2 Weight 3 Weight 4 Ybar2 SD2 SNR (NTB)

1 1024.57 1183.44 1240.60 1315.80 1,418,725.165 15,263.752 45.320

2 1349 1260 1171.13 1089.13 1217.32 12,575.798 −23.351

3 1154 1231 1206.8 1056 1161.95 6022.676 −16.454

4 1254 1218 1248 1066 1196.50 7817.000 −18.769

5 1238 1240 1179.7 1278.3 1234.00 1654.326 −2.931

6 1146 1113 1176.7 1103.98 1134.92 1102.034 0.2940

7 1062 1328 1303.236 1199 1223.06 14,653.267 −24.833

8 1108 1177 1124.4 1166 1143.85 1084.356 0.534

9 1298.7 1228 1060.6 1257.5 1211.20 10,920.846 −21.990

Table 6. The largest value of SNR is chosen, which is a better performance response for each output.

Response The Larger Value of SNR

Weight 45.320
Color 28.332
Temperature 33.707
Pick up 86.897
Waste 184.920

3.4. Act Step
3.4.1. Optimal Factor Levels for a Single Response

The optimal settings for the factors were chosen based on the largest value of the
average SNR, where the average SNR is computed for each factor level. The optimal
settings were obtained for each response as shown in Tables 7 and 8. Table 9 shows a
summary of the optimal factors setting at each response.
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Table 7. Levels for the controllable factors.

Factors Speed (unit/hour) Frying Timze (min) Cooking Time (min) Ratio

Level 1 1250 30 7.5 1:02

Level 2 1300 35 8.5 01:02.5

Level 3 1350 40 9.5 1:03

Table 8. The average SNR for weight response.

Avg-SNR (Weight)

Level 1 Level 2 Level 3

Speed (unit/hour) 1.84 −7.14 −15.43

Frying time (min) 0.57 −5.21 −12.72

Cooking time (min) 15.38 −21.37 −14.74

Ratio 6.80 −11.56 −15.96

Table 9. The optimal settings for each response.

Speed
(unit/hour) Frying Time (min) Cooking Time (min) Ratio

Weight 1250 30 7.5 1:2
Color 1250 40 9.5 1:2
Temp 1250 40 7.5 1:3

Pick up 1250 40 9.5 1:2
Waste 1350 35 7.5 1:2

3.4.2. The Optimal Factor Levels for the Multi-Response Problem

The responses are combined into a one single response using fuzzy inference in the
Mamdani method; they served as inputs for the fuzzy system, as depicted in Figure 5. The
fuzzification of the inputs shown in Table 10 requires the identification of three MFs as
Low, Mid, and High, for each input. The MFs for the five quality responses are displayed
in Figure 6. Then, the 243 rules were developed based on the quantity of fuzzy inputs, as
indicated in Table 11. The rule aggregation is used to define the output MFs, as illustrated
in Figures 7 and 8. Seven MFs were used by the fuzzy system (Lowest, Low, Mid-low, Mid,
Mid-high, High, and Highest). Each one of the output MFs has a different rule combination.
For example, the Highest output MF has the rule that contains five High input MFs. On the
other hand, the Lowest output MF has five Low input MFs. Table 12 represents the input
combinations versus the targeting output MF. The defuzzification step includes converting
the fuzzy values into a COM value, using the center of gravity method (COG). The COM
values for the experimental combinations are shown in Table 13. After determining the
COM values at the experimental combinations, the average COM values were found at
each factor level as shown in Table 14, based on the highest COM value for each factor,
where they represent level 1 for factor 1 (speed), level 3 for factor 2 (frying time), level 1 for
factor 3 (cooking time), and level 1 for factor 4 (ratio).

Table 10. The largest and smallest values in High, Mid and Low MFs of SNR for each response.

Response High Mid Low

Weight 45.32 10.25 −24.83

Color 28.33 19.66 10.99

Temp. 33.71 18.67 3.62

Pick up 86.90 71.76 56.62

Waste 184.92 161.14 137.36
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Table 11. The Fuzzy rules for the five responses.

Rule Weight Color Temp Pick up Waste Output

1 Low Low Low Low Low Lowest

2 Low Low Low Low Mid Lowest

3 Low Low Low Mid Low Lowest

4 Low Low Mid Low Low Lowest

5 Low Mid Low Low Low Lowest

6 Mid Low Low Low Low Lowest

7 Low Low Low low High Low

8 Low Low low High Low Low

9 Low Low High Low Low Low

...
...

...
...

...
...

241 High Low High High High High

242 Low High High High High High

243 High High High High High Highest

Table 12. The rules combination with output MFs.

Combination
Inputs MFs

Output MF
Low (count) Mid (count) High (count)

1 5 0 0 Lowest
2 4 1 0 Lowest
3 3 2 0 Low
4 2 3 0 Low
5 1 4 0 Mid-Low
6 0 5 0 Mid
7 0 0 5 Highest
8 0 1 4 Highest
9 0 2 3 High
10 0 3 2 High
11 0 4 1 Mid-High
12 4 0 1 Low
13 3 0 2 Mid-Low
14 2 0 3 Mid-High
15 1 0 4 High

Table 13. The COM value at each experimental condition.

Exp. (i) SNR Weight SNR Color SNR Temp SNR Pick Up SNR Waste COM

1 45.32 26.02 15.13 86.89 177.3 0.756

2 −23.35 26.02 6.89 71.18 161.8 0.467

3 −16.45 23.51 33.71 84.62 137.63 0.534

4 −18.77 10.99 −2.64 60.31 147.59 0.224

5 −2.93 26.03 1.93 73.34 178.49 0.529

6 0.29 17.92 23.6 63.23 164.09 0.479

7 −24.83 17.92 3.62 77.6 168.09 0.433

8 0.53 15.04 17.4 56.62 154.88 0.412

9 −21.99 28.33 32.33 77.22 184.92 0.714
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Table 14. The average of the COM values at each factor level.

Avg. COM

Level 1 Level 2 Level 3

Speed 0.586 0.411 0.520

Frying time 0.471 0.469 0.576

Cooking time 0.549 0.468 0.499

Ratio 0.666 0.460 0.390

After obtaining the optimal factor settings, those were implemented in the production
line and data were collected to ensure that the process was in control and the improvement
was achieved. At various points during the production process, twenty samples of size
10 were taken for each quality response. Table 15 displays a sample of the temperature
response data. Figure 9 displays the X-bar and S control charts for the temperature response,
indicating that the process is under control. Based on the Taguchi approach, the analysis
findings suggested the ideal factor values for each quality response. For example, Table 16
shows that to optimize the weight as a single response, the factors studied including the
speed, frying time, cooking time, and the ratio should be set at 1250, 30, 7.5, and 1:2,
respectively. On the other hand, the use of the fuzzy system provided an average COM
value for each factor level, and the highest value for the average COM represented the
optimal level for the studied factors. Based on the results, the optimal factor levels including
the speed, frying time, cooking time, and the ratio should be set at 1250, 40, 7.5, and 1:2,
respectively, to optimize all quality responses as shown in Table 17. Figure 10 shows the
surface charts that help to clarify how each input parameter on the fuzzy system relates to
the others. The mean for the analyzed quality responses shifted closer to the target after
applying the best factor settings, demonstrating the success of the applied optimization
strategy for the examined case study. For example, at the initial setting for the pick up, the
mean of the pick up collected data was 23.79%, whereas this value changed to 23.6% after
implementing the optimal factor settings. The anticipated results of the improvement index
were 0.0039 and 0.00305, respectively.

Table 15. Samples for temperature response after applying the optimization method.

Sample No. 1 2 3 4 5 6 7 8 9 10

1 72.8 74.4 74.0 75.0 77.6 75.1 76.6 74.2 71.9 74.8
2 72.9 74.9 75.7 75.7 73.4 72.4 74.6 75.0 71.4 75.1
...

...
...

...
...

...
...

...
...

...
...

19 75.1 77.4 75.0 74.3 76.1 74.9 73.4 72.2 75.5 74.1
20 74.5 75.0 75.8 75.1 76.4 72.9 74.8 73.8 77.6 73.8

Table 16. Results for the optimization of a single response.

Avg (SNR) Setting

Factors Weight color temp pick up Waste Weight color Temp pick up waste

Speed 1.838 25.189 18.580 80.902 169.294 1250 1250 1250 1250 1350

Frying time 0.572 23.254 29.880 75.027 165.053 30 40 40 40 35

Cooking time 15.382 22.486 18.792 78.522 165.429 7.5 9.5 7.5 9.5 7.5

Ratio 6.799 26.790 16.235 79.153 180.243 1:2 1:2 1:3 1:2 1:2
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Table 17. Results for the optimization of the multi-response problem.

Factors Avg (COM) COM Setting

Speed 0.586 1250

Frying time 0.576 40

Cooking time 0.549 7.5

Ratio 0.666 1:2
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Several studies have explored the effects of process parameters on the output quality
characteristics, using multi-criteria decision-making techniques and fuzzy logic in the food
industry. In similar applications, some studies examined the optimization of process per-
formance for other quality responses. For example, Hosseinpour and Martnenko evaluated
the food quality by implementing multi-dimensional fuzzy sets. In their study, the authors
investigated a shrimp production line. A total of 27 quality responses were considered in
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the study, which were combined in nine orthonormal vectors. The artificial neural networks
approach was employed to convert the real time data into a multi-dimensional fuzzy infer-
ence system. Finally, a Multi-dimensional kinetic model was introduced to predict the food
quality [50]. Vivek et al. proposed a new methodology for evaluating the food products
quality, based on sensory quality responses. Five quality attributes (color, aroma, taste,
mouthfeel, and texture) were merged, using a fuzzy inference system (additive rule models
and non-additive rule models). The outcome from the fuzzy logic was extensively utilized
to enhance the classification of the products into accepted and rejected products, along with
weak and strong quality performance for both the existing and new food products [51].

4. Conclusions

The presented study investigated a multi-response optimization problem case study
in the food industry using the Taguchi optimization method. The signal-to-noise (SNR)
was used, along with a special design of orthogonal arrays (OA). In SNR, the optimal factor
levels for each quality response can be obtained. The single response (COM) value can be
obtained by using the Mamdani fuzzy inference method, under which the SNR values were
used as inputs to generate the COM values. Three MFs were defined for each input variable,
and seven MFs were established for the output variable. The fuzzy rules were generated
based on the input and output MFs, and COG was utilized as a defuzzification method.
The average COM values were then determined for each factor level to determine the
optimal factor settings. Results indicated the effectiveness of the applied method, to find
the optimal factor levels for the multi-response optimization problem under investigation.
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