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Abstract: Sustainable blank dimension design is the key to the implementation of green industrial
development. However, blank dimension design only considers the blank production factor of the
blank dimension design stage, which cannot guarantee the blank production stage and the use stage’s
overall goal. In this paper, based on the guiding thinking of a business compass, a low-carbon
and low-energy consumption blank dimension optimization design model was proposed. Taking
the process parameters of the production and the use of the blank as the variables, the grey wolf
optimization algorithm was adopted to solve the problem. Taking the gear blanks dimension as an
example, the optimized blank dimension is 98.6, compared with the standard blank dimension of
100, 105, the energy consumption is 95.7% and 93.1%, the carbon emission is 92.6% and 90.2%, and
the material consumption is 96.5% and 87.5%, respectively. The sustainable blank dimension design
has obvious advantages in terms of low energy consumption and low carbon, and it can save a lot of
materials; it can also promote product sustainability.

Keywords: sustainable blank dimension design; energy-saving; low-carbon; business compass; grey
wolf algorithm

1. Introduction

Modern industrial civilization has created unprecedented wealth for humankind and
greatly liberated human productivity [1]. However, excessive industrialization and over-
draft of resources have seriously damaged the natural environment on which human beings
depend for survival, leading to the worsening of global climate change and environmental
pollution, as well as the increasing consumption of resources. It poses a threat to the sur-
vival of human beings and triggers global thinking on resource use [2,3]. Blank dimension
is a key element which to a great degree can decide blank production and use processes’
energy consumption and carbon emission. The blank design stage is very important, and
more than 80% of the blank process energy consumption can be determined [4–6]. The
dimension design of the blank is of great significance to the energy saving and green
development of the industry.

Many scholars have studied the blank dimension design. Wan et al. used the forge, a
forging simulation software, to conduct finite element analysis of rolling of flange rings,
and gave the optimal dimension of the ring blank before the workpiece was rolled [7].
Li et al. designed the blank dimension according to the forging process characteristics, the
work hardening characteristics of the material, the mechanical properties of the blank, the
wall thickness before and after the blank forging, and the relationship between the inner
and outer diameters, it is verified by the case of automobile swaging shaft [8]. Xu et al.
established an intelligent derivation model of rolling ring blank dimension based on the
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BP neural network algorithm. The reliability of the intelligent derivation scheme was
verified by finite element simulation and physical experiments [9]. Zhang et al. proposed
a node mesh mapping method to design a blank and optimize the shape of the blank
according to the mapping relationship between the formed part and the target part and the
flow trend of the material point. The method was validated through the forming process
of square box parts and automotive pillars [10]. Akinnuli et al. formed a global model
based on the deep-drawn shell model to predict the optimal blank diameter required for
each determined geometry. The model was validated by comparing the results of the
four models with those corresponding to the same model [11]. Xiao et al. proposed the
concept of step element based on the processing characteristics of complex box blanks and
optimized the process route. The method is verified by the processing of emulsion box
blank [12]. Gharehchahi et al. used an iterative numerical simulation method to optimize
the boundary shape of the blank through continuous iteration [13].

In terms of machining parameter optimization, Li et al. proposed an energy-saving
optimization method for NC turning batch machining process parameters considering
tool wear. They used a multi-objective simulated annealing algorithm to optimize. The
effectiveness of the method was verified compared with empirical schemes [14]. Liu et al.
proposed a process parameter optimization decision-making method based on processing
process sample prediction and multi-objective genetic optimization algorithm, which was
solved by an improved multi-objective genetic algorithm and genetic-backpropagation
(GABP) neural network [15]. Tian et al. established a comprehensive optimization model
based on tool selection and cutting parameters and took carbon emissions as the optimiza-
tion objective. The validity of the model was verified by a turbo machining case. [16].
Li et al. proposed a method to comprehensively optimize process planning and cutting
parameters to reduce the total energy consumption of machining and balance the machine
workload in the workshop; particle swarm optimization was used to solve it [17]. Khan et al.
investigated a holistic analysis of surface quality, energy, cost, and carbon emissions and
used a Haynes 25 alloy external cylindrical turning process to analyze trade-offs among
multiple objectives [18]. Josh et al. conducted a comparative study on the performance
of NSGA-II, MOALO, and MODA in micromachining applications [19]. Zhou et al. pro-
posed a cutting parameter optimization method with a carbon emissions objective. They
developed NG-NSGA-II to solve the model and used cylindrical turning as an example to
verify the method [20]. Xiao et al. proposed a knowledge-driven energy efficient turning
optimization method to minimize specific energy consumption and machining time. Com-
pared with the three algorithms of GA, ACA, and PSO, it showed the superiority of this
method. [21]. Shin et al. proposed a toolpath-based energy modeling method to optimize
energy consumption online and in real-time, which was validated by milling [22].

The above studies have been well verified. However, these studies only consider the
optimization of the forming dimension in the blank production stage or the parameter
optimization in the blank use stage, respectively. The blank dimension design needs
to consider the production and use process as a whole; the optimality of a single stage
cannot guarantee the overall optimality. This paper used the business compass as the top-
level design model of enterprise sustainable development to guide the blank dimension
design and effectively combined design and management. It comprehensively considered
the production and use stages of the blank and constructed a five-factor framework of
“environment, human, method, material, and machine” for sustainable blank design based
on the business compass. And the “method” in the five elements was the focus of research,
a blank dimension optimization design model based on energy-saving and low-carbon
was established, and the grey wolf algorithm was used to solve it. It was verified with
the example of gear blank to enrich the theoretical research on the sustainable design of
blank dimension. This method can take into account the energy consumption and carbon
emissions of the blank at each stage of its life cycle and help enterprises quickly design the
blank dimension that meets the requirements, which is most conducive to the sustainable
development of society.
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2. Sustainable Blank Dimension Design Method under the Guidance of the
Business Compass
2.1. The Guidance of the Business Compass to Business Operations

The business compass is a multidisciplinary and interdisciplinary theoretical frame-
work for the top-level design of enterprise sustainable development. Business compass
organically integrates Chinese philosophy and Western management science based on the
people-oriented development concept, refer to the five elements “wood, fire, earth, metal
and water” in Chinese Taoist philosophy [23], as shown in Figure 1, it proposes five core
elements of “trend, path, skill, tool and profit” for the sustainable development of the
enterprise, and progressively constructs fifteen sections, including policy, industry, market,
mission, vision, value, strategy, tactics, organization, technology, product, service, internal
benefit, external benefit, and society, as well as 119 corporate sustainable development man-
agement modules, including economic policy, industrial trends, corporate responsibility,
strategic goals, corporate ecology, technological innovation, product development, blank
procurement, quality management, company achievements, and entrepreneurship, which
is a new multidisciplinary cross-theoretical framework for the top-level design of enter-
prise sustainable development [24]. The business compass guides all aspects of enterprise
operation and has important guiding significance for personnel operation management,
equipment operation management, financial operation management, product operation
management, etc.
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2.2. The Blank Dimension Sustainable Design Framework Based on Business Compass

The guidance of the business compass for product design management can guide the
adjustment and optimization of process elements. The essence of sustainable design of
blank dimension is to make full use of various scientific and technological design methods,
economic management, and other aspects of knowledge according to people’s objective
needs [25,26], market forecasts, and multi-channel information materials. Through the
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creative thinking of technical personnel, after repeated deliberation and judgment, the
management will make decisions to convert various design models into prototypes, thereby
further obtaining blank products with good performance, high economic benefits, creativity,
and sustainable environmental protection [27–29].

The business compass can provide guidance for the sustainable development of enter-
prises. In terms of blank dimension sustainable design, the “trend” is the environment in
which a company conducts blank design. In recent years, the manufacturing industry has
been developing in the direction of low-carbon and green manufacturing, and enterprise
production must keep up with the development trend. The “path” is the purpose of the
blank design, the goal of the enterprise is to produce a product, and the blank should be
designed according to the product characteristics. The “technology” is choosing the appro-
priate blank dimension, which needs to be judged according to the product and the current
technical level. The “tool” is production equipment, and the performance, parameters, and
processing links of production equipment must be considered. The “benefit” is the profit of
the product. The product benefits that the blank can bring and the problems it can solve.
The business compass is a new way of integrating Chinese and Western management ideas
to guide the top-level design of an enterprise. Its five elements of “trend, path, skill, tool,
and profit” correspond to the five elements of blank dimension development “environment,
human, method, material, and machine.” According to the business compass thinking—the
concept of sustainable development of blank dimension—the internal connection of circu-
lar economy, the framework of sustainable design of blank dimension has been established,
as shown in Figure 2.
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The framework of sustainable design of blank dimension based on business compass
thinking is a theoretical framework of sustainable development of blank dimension that
fully reflects the concept of circular economy development according to the strategic goal
of sustainable human development. Its basic idea is to make full use of modern scientific
and technological means during the entire life cycle of the blank dimension, whether it is
the government, society, enterprises, or individuals within a certain period and a certain
range. While meeting the performance of the blank products, natural resources and energy
should be positively, actively, and efficiently used, with no pollution or less pollution to
the ecological environment, friendly to manufacturers and users, and the final discarded
products should be able to be recycled. The wastes that cannot be reused should be properly
disposed of to achieve the purpose of cherishing precious natural resources and protecting
the ecological environment, thereby promoting the development of a circular economy, and
realizing sustainable human development.

More than 80% of the energy consumption and carbon emissions of product processing
can be determined in the product design stage. Product design has become an important
basis for sustainable design and an important prerequisite for realizing a circular economy.
Product design has become an urgent question needed to solve the development of the
circular economy. To solve this problem, this paper takes the sustainable design of gears
as an example and proposes a blank dimension optimization design model based on low
carbon and energy saving.

3. Blank Dimension Optimal Design Model Based on Low-Carbon and
Low-Energy Consumption

The blank dimension appears at the last moment of rolling and begins to disappear
during the use of the blank, which is a procedural element and has a short existence time.
The blank dimension is the sum of back cutting depth and the workpiece dimension. The
workpiece dimension is generally known, and the back-cutting depth is a variable in the
process and is related to the processing process. Once the machining is completed, the back-
cutting depth can be calculated. Therefore, the main work of the research is to optimize the
model of energy consumption and carbon emission. The energy consumption and carbon
emission models are as follows [30–32].

3.1. Energy Consumption Calculation Model Based on Blank Production and Processing

The manufacturing process includes the stages of energy manufacturing, auxiliary
material manufacturing, raw material manufacturing, and product manufacturing. The
whole process goes through steel making, pouring, undercutting, forging, machining,
and other processes, with the assistance of energy (primary energy, secondary energy,
electrical energy), cutting fluid, lubricating oil, fixtures, etc., to finally form the raw material
of the gear blank. The production of blanks must go through processes such as raw
material mining and transportation, blast furnace ironmaking, steelmaking, and steel
rolling. Among them, the mining and transportation of materials, blast furnace ironmaking,
steelmaking, and other processes have little impact on the design of the blank dimension.
Therefore, the effect of the rolling process energy consumption on the blank dimension
is only considered here. According to the billet production and use process, the energy
consumption can be divided into rolling energy consumption during blank rolling and
cutting energy consumption when the blank is cut.

The rolling energy consumption can be expressed as:

EZ =
n

∑
t=1

qt =
n

∑
t=1

Mtvtτt/Dt (1)

where t represents the rolling pass, Mt, vt, τt are expressed as the rolling moment, the rolling
speed, the rolling time when t pass . qt represents the t pass rolling energy consumption.
Dt represents the roll working diameter, a, n are represented the coefficient, and the rolling
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pass, respectively. Rolling pass n is a variable, connected with total elongation coefficient
uz and the average elongation coefficient up, the expression is:

n =
log(uz)

log
(
up
) (2)

uz =
F0

Fn
=

(at At)
2 − 0.86(0.1at At)

2

π(Datt)
2/4

(3)

where at, At, D are the thermal expansion coefficient, billet side length (mm),and blank
diameter (mm), respectively. F0 and Fn are the red billet section area (mm2), and the finished
product and thermal state section area (mm2).

The energy consumption in blank processing is primarily the electricity consumption
of the machine tool equipment, which will directly affect the shape, dimension, and
precision of the blank. In addition, it also includes the lighting energy consumption when
the blank is used and the product transportation energy consumption.

The electricity consumption of the machine tool equipment in the blank processing is:

ED,i = EB + EI + EC (4)

where ED,i is the machine tool total electrical energy consumption (kWh) in the i step in the
part process route, EB is the machine tool basic energy consumption, which is the energy
consumption for the machine tool to keep running when the workpiece is loaded, unloaded,
positioned, and clamped on the machine tool (kWh), EI is the machine tool idle energy
consumption, it is the spindle running energy consumption when the tool feeds, retracts
and adjusts the tool (kWh), EC is the energy consumed by the tool to cut parts or change
the accuracy and surface quality of the parts (kWh);

EC = V ∗ δ ∗ tc (5)

V is the material removed volume in the process step (mm3), δ is the specific energy
consumption (w.s/mm3), and tc is the process step working time.

The energy consumption of lighting and product transportation is

EA = PL ∗ tL +
n

∑
m=1

PT ∗ tT (6)

EA is the lighting energy consumption and product transportation energy consumption,
PL is the lighting equipment power (kWh/s), tL is the workpiece average lighting time (s);
PT is the mth transportation equipment power (kWh/s), and tT is the average transporta-
tion time and cutting time of the workpiece of the m-th transportation equipment.

In conclusion, for a part produced by a process route consisting of i steps, the average
power consumption of each workpiece can be expressed as,

EJ = EZ +
l

∑
i=1

ED,i + EA (7)

3.2. Carbon Emission Calculation Model Based on Blank Production and Processing
3.2.1. Carbon Emissions from the Blank Production Process

The production of blank must go through the mining and transportation of raw
materials, iron smelting, steelmaking, rolling, and other processes. Among them, only the
rolling process has a greater impact on the blank dimension design. Therefore, only the
impact of rolling carbon emissions on blank production is considered here. The energy
consumed is mainly electricity in the hot rolling process, and due to the requirements of
product quality, some billets need to wait for a period of time to reduce the temperature after
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they are released from the heating furnace; that is, temperature control can be performed
before rolling. Therefore, the carbon emissions from billet hot rolling can be divided into
two parts: the electricity produced carbon emissions in the rolling mill and the temperature
drop caused carbon emissions during the waiting process of the rolling. They can be
expressed as follows:

CZ = αEZ = θ
n

∑
t=1

Mtvtτt/Dt (8)

CT = ϕ
m−1

∑
i=0

[xi+1 − (xi + ti)] (9)

where, CZ is the rolling mill carbon emission generated by using electricity, CT is the
temperature drop carbon emission caused during the rolling waiting process, m is the
total number of steel blanks rolled in the steel plant, θ is the energy consumption carbon
emission coefficient, ϕ is the temperature drop carbon emission coefficient, xi represents
the time when the billet i starts rolling, ti is the rolling required time of the blank i.

3.2.2. Material Consumption, Energy Consumption, and Waste Generation in
Blank Processing

In the process of gear processing, the reaction of raw materials of gear blanks with
auxiliary raw materials, electricity, gas, etc., will produce massive carbon emissions. The
carbon emission boundary of gear processing can be set as the entire process from the input
of gear raw materials to the output of gear products, including the carbon emissions of
materials, energy, and wastes consumed in the gear processing. According to production
needs, all kinds of materials i(i = 1, 2, . . . , I) and energy k(k = 1, 2,..., K) enter the gear
blank preparation and gear cutting workshop, and after forging, heat treatment, machining,
etc., the finished product is obtained, and waste l(l = 1, 2, . . . , L) is discharged from
each workshop.

The materials, energy consumption, and waste generated by the gear passing through
workshop m (m = 1, 2, . . . , M) are expressed as S(i, m), E(k, m), and W(l, m), respectively.
In the processing time T, the total amount of materials consumption, energy consumption,
and waste discharged in the gear processing process are respectively expressed as,

MT =
M

∑
m=1

I

∑
i=1

S(i, m) (10)

ET =
M

∑
m=1

K

∑
k=1

E(k, m) (11)

WT =
M

∑
m=1

L

∑
l=1

W(l, m) (12)

According to the material, energy consumption, and waste generation in the process
of gear machining, the processing carbon emissions in the process of quantification is
as follows:

Cem = CM + CE + CW (13)

where Cem, CM, CE, CW represent the total carbon emission, carbon emission of material
consumption, carbon emission of energy consumption, carbon emission of waste treatment.
Carbon emission can represent as the product of energy consumption (converted to stan-
dard coal amount) and carbon emission factor SE (SE = eC/tE, where eC is carbon emission
(t), tE is standard coal amount (t)) by the emission factor method.
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3.2.3. Material Carbon Emissions Calculation

In gear processing, the indirect carbon emission C(i,m)
M generated by the consumption

of the ith material in the processing workshop m is:

C(i,m)
M =

N

∑
c=1

S(i, m)Ji
cSEc (14)

Ji
c is the standard coal amount of the c-th energy consumed by the production unit material

i, and SEc is the energy c carbon emission factor.
The total indirect carbon emission of material i consumed by gear processing is

Ci
M =

M

∑
m=1

C(i,m)
M =

M

∑
m=1

N

∑
c=1

S(i, m)Ji
cSEc (15)

The total indirect carbon emission of all materials consumed in gear machining is

CM =
M

∑
m=1

I

∑
i=1

C(i,m)
M =

M

∑
m=1

I

∑
i=1

N

∑
c=1

S(i, m)Ji
cSEk (16)

3.2.4. Energy Carbon Emission Calculation

There are two types of energy consumption carbon emissions: one is the indirect
carbon emission CIE generated in the energy preparation process, and the other is the
direct carbon emission CDE, which is caused by the fossil energy consumption in the gear
processing process, so CE = CIE + CDE.

(1) Indirect carbon emissions

In gear processing, the indirectly emitted carbon emissions generated by the kth energy
consumption in the processing workshop m are:

C(k,m)
IE =

N

∑
n=1

E(k, m)Jk
nSEn (17)

Jk
n is the standard coal amount of the nth energy consumed by producing unit energy k,

and SEn is the energy n carbon emission factor.
The gear processing process total indirect carbon emissions from kth energy con-

sumed are:

Ck
IE =

M

∑
m=1

C(k,m)
IE =

M

∑
m=1

N

∑
n=1

E(k, m)Jk
nSEn (18)

The gear processing process total indirect carbon emissions from all energy con-
sumed are:

CIE =
M

∑
m=1

K

∑
k=1

C(k,m)
IE =

M

∑
m=1

K

∑
k=1

N

∑
n=1

E(k, m)Jk
nSEn (19)

(2) Direct carbon emissions

In gear processing, the direct emissions of carbon caused by the consumption of the
kth fossil energy in the processing workshop m are:

C(k,m)
DE = E(k, m)PkSEk (20)

Pk is the standard coal coefficient of energy k, and SEk is the carbon emission factor of energy.
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The total direct carbon emissions of kth energy consumed in the gear processing
process are:

Ck
DE =

M

∑
m=1

C(k,m)
DE =

M

∑
m=1

E(k, m)PkSEk (21)

The total direct carbon emission of energy consumed in the gear processing process are:

CDE =
M

∑
m=1

K

∑
k=1

N

∑
n=1

E(k, m)Jk
nSEk (22)

3.2.5. Waste Disposal Carbon Emissions

The treatment of wastewater and waste gas generated in the gear processing process
consumes electricity and fossil energy. The carbon emission of the waste disposal process
generated by the waste l discharged from the manufacturing workshop m are:

C(l,m)
W =

N

∑
q=1

W(l, m)Jl
qSEq (23)

where Jl
q is the standard coal amount of the qth energy consumed by the processing unit

waste l, and SEq is the energy q carbon emission factor.
The total carbon emissions from waste l in the gear processing process are:

Cl
W =

M

∑
m=1

C(l,m)
W =

M

∑
m=1

N

∑
q=1

W(l, m)Jl
qSEq (24)

The total carbon emissions of all waste products in gear processing are:

CW =
M

∑
m=1

L

∑
l=1

C(l,m)
W =

M

∑
m=1

L

∑
l=1

N

∑
q=1

W(l, m)Jl
qSEq (25)

4. Optimization Model Solution Method

There are many types of algorithms for solving multi-objective problems. Different
algorithms have different characteristics. After comparison, we selected the gray wolf
optimizer as the solving method of the optimization model.

4.1. Grey Wolf Algorithm Description

Grey Wolf Optimizer (GWO) is a swarm intelligence optimization algorithm that
evolved from the ecological predation habit of the grey wolf. Construct a simple and
effective optimization mechanism by using wolves of different social classes to jointly guide
the wolves to locate the target and realize the predation process of finding prey, surrounding
prey, tracking prey, and capturing prey. Relative to the particle swarm algorithm, cuckoo
algorithm, and other swarm intelligence algorithms, the gray wolf algorithm has a stronger
global search ability. This paper redesigns the update operator of the algorithm. It adds
crossover and mutation operations to solve the model so that the optimization of energy
consumption, carbon emission, and cost can be realized in the iterative optimization
process [33–36].

It strictly replicates the wolves’ internal hierarchy management system. The design
of GWO is to build a social hierarchy pyramid of gray wolves, the first to third layers of
the social hierarchy pyramid in the wolf pack, namely the best, second best, and third
best wolves are denoted as α, β, γ, respectively, and the remaining wolves at the bottom
of the pyramid are referred to as δ [37,38]. In GWO, α, β, γ guide the wolves to complete
the entire hunting (optimization) process, and the δ wolf must obey the three wolves. This
population hierarchy ensures that the process of killing prey is efficient. First, all members
of the wolf pack look for, chase, and approach the prey together, and encircle the prey from
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different angles and directions. As the encirclement circle shrinks, the β and γ wolves that
are closest to the prey will attack the prey in the wolf pack led by the α wolf. When the
prey escapes, the δ will be supplemented to ensure that the wolves continue to tackle the
prey in each direction, and finally, catch prey smoothly [39].

First, the gray wolf forms a prey encirclement, and the individual’s distance from the
prey is computed as follows:

D =
∣∣C·Xp(t)− Xw(t)

∣∣. (26)

Xw(t + 1) = Xp(t)− A. (27)

Xp(t) is the position coordinate of the prey, Xw(t) is the gray wolf’s location coordinates,
and t is the number of iterations. A and C are synergy coefficient vectors, which are the
convergence factor and the swing factor, respectively.

A = 2a·r2 − a (28)

C = 2·r1 (29)

r1 and r2 are random vectors in the [0, 1] interval, as the number of iterations increases,
a gradually decreases linearly from 2 to 0.

Since the position of the prey is unknown in the abstract search space, three wolves
(α, β, γ) with the best results are saved in each iteration, and other wolves are guided to
approach the prey according to their position information. The update method is as follows:

Dα = |C1·Xα(t)− Xw(t)| (30)

Dβ =
∣∣C2·Xβ(t)− Xw(t)

∣∣ (31)

Dγ = |C3·Xγ(t)− Xw(t)| (32)

X1 = Xα − A1·Dα (33)

X2 = Xβ − A2·Dβ (34)

X3 = Xγ − A3·Dγ (35)

Xp(t + 1) = (X1 + X2 + X3)/3 (36)

The search process of GWO is mainly composed of two parts: prey positioning and
gray wolves’ movement. First, in the solution space, the gray wolf population is produced
randomly, starting from the random population of gray wolves, and then (α, β, γ) guides
other individuals to complete the prey capture. A is a random number between [−a, a]
because as the number of repetitions increases, a reduces linearly. A has a higher value in
the early period of evolution and a lower value in the later period.

When |A| > 1, the gray wolves will expand the encirclement and suppression circle to
increase the search range so that the wolves can search for prey in a wider range and ensure
the global search ability of the algorithm. When |A| < 1, the gray wolves will shrink the
encircling circle to attack and capture the prey. Finally, when the stopping condition is
satisfied, it will capture the prey and output the optimal solution [40–42].

4.2. Algorithm Flow

The flow chart of GWO is shown in Figure 3, including the following steps.
Step 1. Code the process route, equipment, and tool.
Step 2. Population initialization and parameter setting.
Step 3. Sort the solution set.
Step 4. Determine whether the termination condition is reached, output the result if it

is reached, and go to Step 5 if it is not reached.
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Step 5. Four social classes of wolves were established, the wolves hunt under the
leadership of the alpha wolf, and the solution set is obtained by cross-mutation.

Step 6. Merge the new wolf group obtained in Step 5 with the previous old wolf group.
Step 7. Update the population position.
Step 8. Output the optimal solution, and the algorithm ends.
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4.3. Encoding and Decoding

In order to solve the problem of process route optimization, the selection of equipment
and tools and the sequence of processes need to be reasonably reflected in the part coding
method in the algorithm. Each individual in the population has three substrings, including
the workpiece process route sequence, equipment, and tools; the number of steps in the
component is equal to the extent of the three substrings, as shown in Figure 4. The order
substring represents the operation order of part processing in a continuous list, and its
genes should take into account the constraints of processing priority. The equipment
substring consists of the equipment number that has been assigned to each operation, and
the jth gene on the substring represents the equipment used to complete operation j. The
meaning of the tool substring is similar to that of the equipment substring.
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4.4. Population Initialization and Fitness Function

According to the above coding method, each wolf (solution) is a sequence, and the
initial solution is obtained by random initialization. Individuals in the wolf pack are
classified according to their fitness level using the fitness function. During the position
update process of the gray wolf, the wolves with higher fitness are reserved, and the gray
wolves with lower fitness are assigned to search for and capture the prey. According to
the cutting parameters of the process, the corresponding fitness value is calculated. In this
paper, two objective functions, f 1 (energy consumption in the manufacturing process) and
f 2 (carbon emissions in the manufacturing process), are integrated into one fitness function
by the weight method. The weight is set as ω, the fitness function is as follows,

min f itnessi = min
(

ω1
f1i − f1min

f1max − f1min
+ ω2

f2i − f2min
f2max − f2min

)
(37)

f1 = min(EZ + ∑l
i=1 ED,i + EA + ∑l

i=1 EM,i

)
(38)

f2 = min(CZ + CT + CM + CE + CW) (39)

f1i and f2i are the ith wolf’s fitness values, respectively. f1max and f1min represent the
maximum and minimum energy consumption, respectively, when the only optimization
goal is to reduce the energy consumption of the manufacturing process. f2max and f2min
respectively represent the maximum and minimum carbon emissions obtained when the
carbon emission of the manufacturing process is taken as the single optimization objective,
ω1, ω2 represent the weight of the corresponding item, and satisfy ω1 + ω2 = 1. The
analytic hierarchy process, the fuzzy evaluation approach, the expert scoring method, the
group decision-making method, and other methods can be used to determine the weight.

4.5. Constraints

The selection of cutting parameters for blank development is affected by many aspects.
The rolling process is constrained by the bite angle and the stability conditions of the rolling
stock in the pass. The cutting parameters of the process are subject to the constraints of
machine tool speed, feed, cutting force, machine tool cutting power and roughness, etc.,
which can be expressed as follows,

(1) Biting condition.

The actual bite angle α of the rolling piece α should be less than the maximum bite
angle αmax of the rolling mill pass to make the rolling piece enter the roll smoothly,

α ≤ αmax (40)

(2) Stability condition of the rolling piece in the pass.

βmin < β < βmax (41)
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where, β, βmin, and βmax are the rolling ratio of the non-equiaxed section and the minimum
and maximum allowable axial ratios, respectively.

(3) Machine tool speed constraint.

The cutting speed directly determines the spindle speed, and the spindle speed will
directly affect the tool life and the processing effect of the workpiece. After the machine
tool is determined, the spindle speed of the machine tool should be within the spindle
speed range specified by the allowable nameplate of the machine tool,

nmin ≤ n ≤ nmax (42)

where nmin and nmax indicate the machine tool spindle’s minimum and maximum
speeds, respectively.

(4) Feed limit constraint.

In order to achieve the machining accuracy criteria, the value of the machine feed or
feed speed selected for the process must be within the range of the feed specified by the
allowable nameplate,

fmin ≤ f ≤ fmax (43)

fvmin ≤ z fz ≤ fvmax (44)

where fmin and fmax are the feed rates of the minimum and maximum level of the lathe
respectively. fvmin and fvmax are the feed rates of the minimum and maximum level of the
milling machine, respectively.

(5) Cutting force constraint.

The dimension of the cutting force will affect the life of the machining resources and
machining accuracy. During the cutting process, the overall cutting force, which includes
the main cutting force, rear force, and feed force, cannot exceed the maximum cutting force
Fkmax allowed by the machine tool.

Fi =
√

F2
ci
+ F2

fi
+ F2

pi
≤ Fkmax (45)

Fc = CFc axFc
p f yFc vnFc

c kFc

Ff = CFf a
xFf
p f

yFf v
nFf
c kFf

Fp = CFp a
xFp
p f yFp v

nFp
c kFp

(46)

where Fc, Ff , and Fp are the main cutting force, rear force, and feed force in the turning
process, respectively. Taking turning as an example, CFc , xFc , yFc , nFc , kFc are the relevant
coefficients of turning main cutting force, CFf , xFf , yFf , nFf , kFf are the correlation coeffi-
cients of turning feed force, CFp , xFp , yFp , nFp , kFp are the correlation coefficients of turning
back force. The above coefficients are related to the processing conditions and workpiece
material and can be obtained by consulting the cutting allowance manual. At the same
time, the feed force of the machine tool must be within the allowable feed force range,

Ff = CFf a
xFf
p f

yFf v
nFf
c kFf ≤ Ffmax (47)

(6) Machine tool power constraint.

During the machining process, the machine tool’s output power is connected to the
main cutting force Fc, the cutting speed vc, and the effective coefficient τ of the selected
machine tool power. The output power of the machine tool must also be controlled within
the range of the effective cutting power Pmax allowed by the machine tool.

Fcvc

τ
≤ Pmax (48)
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(7) Feature roughness constraint.

Each machining feature of the part has machining quality requirements, the selection
of cutting parameters in process i must ensure the surface quality of the machining feature,
and the roughness must meet the Equation (50),

Ra =
0.0312 f 2

r
≤ Ramax (49)

where r is the tool nose arc radius, the maximum allowable surface roughness is Ramax.

4.6. Establishing Population Classes and Location Updates

Since the search process of the original GWO algorithm is guided by three optimal
solutions, but the Pareto solution set is obtained in the multi-objective optimization process,
so the population is divided into multiple levels according to the dominance relationship,
the non-dominated solutions are denoted by α, β and γ, respectively. When the number
of non-dominated levels of the population is 1, α, β, γ are randomly generated by the
population; when the number of non-dominated levels is 2, α is derived from the first level,
and β, γ are derived from the second level; When the number of non-dominant level is 3
and above, α, β, and γ are obtained from the above three ranks, respectively [43,44].

Since the gray wolf algorithm was originally designed to handle continuous optimiza-
tion issues, so as to ensure that the solutions generated by each evolution are feasible for
the process planning problem, a transformation method is used to improve the update
operator to achieve neighborhood changes and select one of them as the offspring with
equal probability, as shown below.

X(π)t+1
i =


shi f t

(
X(π)t

i , C·
(
X(π)t

α − X(π)t
i
))

i f 0 ≤ rand ≤ 1
3

shi f t
(

X(π)t
i , C·

(
X(π)t

β − X(π)t
i

))
i f 1

3 ≤ rand ≤ 2
3

shi f t
(
X(π)t

i , C·
(
X(π)t

γ − X(π)t
i
))

i f 2
3 ≤ rand ≤ 1

(50)

where, shift
(
→
x ,
→
d
)

indicates that the individual X(π)t
i can move left or right, and

→
d

indicates the distance that the element moves |d|, rand is a random number in [0, 1], and C
takes 1 in this paper. The shift function can help the wolves to update their positions.

4.7. Genetic Operations

Genetic operations generally fall into two categories: crossover and mutation, the
genetic operations are different for each substring. For the sake of algorithm efficiency,
the two-point intersection is adopted for the equipment substring and the tool substring.
The mutation operation of equipment substrings and tool substrings is performed by
selecting points to replace any optional equipment, tools, and machining paths, as shown in
Figure 5a. Use an improved two-point intersection method for sequential substrings. The
operator will inherit the effective sequence substrings that satisfy the priority constraints
and avoid duplication and omission. Two splicing points are randomly selected in the
substring. The genes before splicing site 1 and after splicing site 2 in parent P1 are directly
copied to the same site in offspring O1, remove the existing genes of O1 in the parental P2,
and copy the remaining genes to the remaining sites of O1 (and the gene segment between
the two splicing sites) according to the order in P2. For another offspring, O2, it is generated
according to the same principle after swapping P1 and P2. This intersection operation can
result in an order of operations that does not violate constraints [45–47].

The mutation operation of sequential substrings is as follows: first, a process is
randomly selected, and then a potential site is defined on the substring, that is, the site
where the selected process can be replaced without violating the priority constraint. In
the flexible sequence problem, the selected operation needs to satisfy all its predecessors
and takes precedence over all its immediate successors. Therefore, potential sites appear
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consecutively on the substring. Among the potential insertion sites, one was randomly
selected to replace the site that was initially selected, as shown in Figure 5b.
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5. Case Study
5.1. Instance Parameters

A factory received the task of designing the blank of the second gear of the automobile
transmission intermediate shaft (20CrMnTiH, the outer diameter is 97.25 mm, the tooth
thickness is 15 mm, the modulus is 1.75 mm, the number of teeth is 46, and the weight is
about 0.665 kg), the quantity is 500,000 pieces. The manufacturing process must meet the
requirements of circular economy development.

The business compass is a model that guides enterprises to design for sustainable
development. It can be used for research ranging from enterprise business strategy path
selection to small research on product design. Specific to the design of the automobile
transmission gear blank, we analyzed the existing situation and production needs of
the enterprise. Based on the theoretical framework of the business compass, we can
dynamically guide the optimization selection of the objective influencing factors in the
design process from the requirements of the blank design. The machining parameters at
the time of the obtained target optimal value are reversed to calculate the blank dimension.

5.2. Experimental Equipment and Parameters

The existing rough rolling equipment of the enterprise is: the entire rolling line uses a
total of 22 rolling mills, which are divided into roughing, neutralizing, first finishing, and
second finishing mills, arranged in the way of 4, 6, 6, and 6, respectively. The billet used
is 45 steel, and the length and width are both 165 mm. The process flow of continuous
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round steel rolling is shown in Figure 6. The heated billet is sent to the rough rolling mills
for four passes, cut head by the #1 flying shear, sent to the medium rolling mills for six
passes, cut head by the #2 flying shear, and sent to the first finishing rolling mills for six
passes, cut head by the #3 flying shear, sent to the second finishing rolling mills for six
passes, the ruler is cut by the flying shears, and then sent to the cooling bed for cooling.
Finally, it is automatically collected and bundled, and the finished products are collected
and put into the warehouse. The company’s existing blank processing conditions are: there
are two CNC lathes (M1, M2), two CNC milling machines (M3, M4), one drilling machine
(M5), and one grinding machine (M6) in the workshop, involving turning and milling,
drilling, grinding four processing methods. According to the actual processing conditions,
the detailed information of the machine tool is shown in Table 1, Table 2 is the turning tool
parameters, and Table 3 is the turning force coefficient.
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Table 1. Machine parameters.

Lathe nmin(r/min) nmax(r/min) fmin(mm/r) fmax(mm/r) Fmax(N) Pmax(kW) τ

M1 100 1400 0.1 0.25 1700 8.0 0.85
M2 120 1600 0.1 0.35 1700 10 0.8

Table 2. Tool parameters.

Tool Material Main Deflection
Angle(◦) Rake Angle(◦) Blade Angle(◦) Tip Arc Radius rθ(mm)

K1 High-speed steel 45◦ 20◦ 5◦ 0.8
K2 Cemented carbide 45◦ 20◦ 5◦ 0.8

Table 3. Cutting force coefficient.

CFc xFc yFc
nFc kFc CFf xFf yFf

nFf kFf

1 1750 0.9 0.75 0 1 580 1.1 0.65 0 1
2 2855 1.0 0.75 −0.1 1 2920 1 0.5 −0.35 1

CFp xFp yFp
nFp kFp

1 1100 0.9 0.65 0 1
2 1930 0.9 0.6 −0.35 1
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The carbon emission factors of the material preparation process produced by gear
processing are shown in Table 4; Table 5 shows the values of indirect carbon emission
factors of energy consumption in the process of energy preparation; Table 6 shows the
relevant factor values of direct carbon emissions from the consumption of fossil energy;
Table 7 shows the relevant factor values of carbon emissions from waste disposal.

Table 4. Values of carbon emission factors in the material preparation process.

Carbon Emission Category Material i
Consumption

Production Process
Consumes Energy c

Energy c Carbon
Emission Factor SEc

Material preparation process carbon emissions CM Steel Raw coal 2.653

Table 5. Values of indirect carbon emission factors in the energy preparation process from en-
ergy consumption.

Carbon Emission Category The nth Energy Type
Consumed by Energy k

Production Process
Consumes Energy

Energy n Carbon Emission
Factor SEn

Indirect carbon emissions in the
energy production process CIE

Electricity
Raw coal 2.565

Crude 2.221
Natural gas 1.642

Coal
Crude 2.221

Natural gas 1.642
Electricity 8.220

Natural gas
Raw coal 2.565

Crude 2.221
Natural gas 1.642

Fuel/Circulating
oil/Lubricant

Raw coal 2.565
Crude 2.221

Natural gas 1.642

Table 6. Values of direct carbon emission factors from fossil energy consumption.

Carbon Emission Category Consumption Type of Material k Energy Carbon Emission Factor SEk

Processing direct carbon emissions
CDE

Coal 0.6764
Natural gas 0.4593

Fuel/Circulating oil/Lubricant 0.6878

Table 7. Values of carbon emission factors for waste treatment.

Carbon Emission Category Waste l Discharge Type Energy Consumed Type in
the Waste Treatment Process

Energy Carbon Emission
Factor SEq

Waste treatment carbon
emissions CW

Wastewater/waste oil Electricity 8.221
Scra0ps Electricity 8.221

According to the energy consumption and carbon emission calculation model pro-
posed above, some required equipment parameter information has been listed, and the
GWO was used to optimize and solve the model. The parameters of the algorithm are
as follows: population number is 100, maximum generation number is 500, crossover
rate is 0.8, the mutation rate is 0.1, and the optimization goal is a low carbon and low
energy consumption.

5.3. Optimization Results and Analysis

The optimized blank dimension is 98.6, compared with the optimized blank dimension
of the standard dimension of 100 and 105, respectively, the algorithm convergence diagrams
of carbon emission and energy consumption are shown in Figures 7–9.
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The coordinated optimization of many elements in the production and use of blanks
can result in optimal energy consumption and carbon emission. The blank dimension
designed according to sustainable thinking is 98.6, the energy consumption per piece is
15.865, the carbon emission is 6.31, and the material consumption is 0.893. The standard
blank dimensions of 100 and 105 are selected for comparison. As shown in Table 8, the
optimal energy consumption is 16.57 and 17.03, carbon emissions are 6.93 and 6.85, and
material consumption is 0.925 and 1.02. Compared with the available selected blank
dimensions of 100 and 105, and considering enterprise conditions, the optimal designed
blank dimension’s energy consumption is only close to 95.7% and 93.1% of the selected
blank dimensions, respectively, and the carbon emission is 92.6% and 90.2% of the selected
dimensions, respectively. Material consumption is close to 96.5% and 87.5% of the selected
dimensions, respectively. This batch of gears requires 500,000 pieces. Compared with the
standard dimension 100 and 105 blanks, the optimized blanks reduce energy consumption
by 3.525 × 105 and 5.825 × 105 and reduce carbon emissions by 3.1 × 105 and 2.7 × 105,
decreasing material consumption by 1.6 × 104 and 6.3 × 104, respectively. The above
results showed that the optimized blank dimension could not only save a lot of energy
consumption and reduce carbon emissions but also save a lot of production materials. It
can be seen that the blank dimension design method has the advantages of saving energy
and low carbon and reducing resource consumption. This method can help enterprises
design the blank dimension according to the requirements of enterprise energy saving and
low carbon and provide suggestions for the sustainable development of enterprises.

Table 8. Comparison of different blank dimensions and optimization objectives.

Scheme Blank
Dimension

Energy
Consumption

Carbon
Emission

Material
Consumption

1 98.6 15.865 6.31 0.893
2 100 16.57 6.93 0.925
3 105 17.03 6.85 1.02

5.4. Comparison with Previous Works

In the first chapter, the literature [7–22] provides many ideas and methods of blank
dimension optimization, which effectively achieves the goal. However, the literature [7–13]
only considered the blank production stage and optimized the blank shape and forming
process. The literature [14–22] only considered the blank use stage and optimized the design
of the processing parameters in the use process. The production and use of blanks are a
unified whole, and sustainable design blanks need to be considered together. Based on the
business compass, this paper comprehensively considered the production and use stages of
blanks and constructed a calculation model for energy consumption and carbon emissions
during blank production and use was proposed. The improved gray wolf algorithm was
used to solve the problem, which was faster.

Compared with references 14–22, the selection of energy consumption and carbon
emission as research objects is more in line with the requirements of the times and compared
with the optimization methods in references 14–22, compared with the blank selection in
references 14–22, the designed blank dimension can save energy consumption and carbon
emission by more than 4%.

5.5. Practical Implications and Future Steps

In this paper, a blank dimension design method considering process variation was
proposed and verified by a machining case of gear blank. This research can provide
guidance for enterprises to design energy-saving and low-carbon blank dimensions and
help the manufacturing industry improve the utilization rate of raw materials and energy.
Implementing blank dimension optimization design will help governments and business
managers develop energy-saving and low-carbon strategies to reduce the harmful environ-
mental impact of their products. However, this paper only considered the impact of blank
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dimension design on energy-saving and low-carbon objectives, and future research should
include consideration of the impact on more objectives, as well as the impact of blank
dimension optimization design on other types of process equipment and process elements.

6. Conclusions

1. In order to achieve the goal of minimum energy consumption and carbon emission
in the process of blank production and use, the optimization design of the blank
dimension is carried out. The factors in the process of blank production and use are
coordinated according to the business compass, and an energy-saving and low-carbon
blank dimension optimization design method considering the process of dynamic
change is proposed. The gray wolf algorithm is used to solve the calculation model.
Taking gear blank as an example, the feasibility of the method is verified. Compared
with the two standard blank dimensions, 100 and 105, this method can reduce energy
consumption by 4.3% and 6.9%, respectively, and reduce carbon emissions by 7.4% and
9.8%, respectively. The results show that this method can effectively help production
managers and designers design appropriate blank dimensions to achieve the goal of
energy saving and emission reduction in the process of blank production and use.

2. The value of this method mainly lies in: (1) selecting the optimization design of
blank dimension, which is less studied at present, to analyze the process of energy
consumption and carbon emission change in the process of blank production and
processing; (2) taking the business compass as a guide, comprehensively coordinating
the factors of the stage of blank production and the stage of using; (3) selecting
the optimization objective which synthetically considers the energy-saving and low-
carbon composite economic indexes, and establishing the optimization model of
processing parameters.
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