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Abstract: This study aims to address the issues of volatile energy access to the active distribution 

network (ADN), which are the difficulty of frequency regulation, the increased voltage deviation of 

the ADN, the decrease in operational security and stability, etc. In this study, a two-stage 

majorization configuration model is established to identify and understand how volatility energy 

affects a hybrid energy storage system (HESS). The ADN and HESS with lead-acid batteries and 

supercapacitors (SC) are examined using day forecast data for wind, solar, and load. In this planning 

stage, the integrated cost, network loss, and node voltage deviation are considered as optimal 

objectives in a multi-objective optimization model, while the revised multi-objective optimization 

particle swarm approach is used to solve the initial value of capacity configuration. In the operation 

stage, optimizing objectives like wind output power fluctuations, the frequency deviation of HESS 

is used to solve the modified value of the configuration capabilities of the SC, and the output of 

different types of units in ADN is further optimized by the quantum particle swarm with the 

addition of a chaotic mechanism. The simulation study is conducted to determine the best 

configuration result based on case 33 node examples, and the simulation results demonstrate the 

model’s viability. 
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1. Introduction 

Under the background of the worldwide “Carbon Double”, the development of a 

series of volatile energy [1], like tidal energy and solar energy, has received 

unprecedented attention. Under the pressure of a high proportion of instability volatility 

energy consumption, multiple countries have put forward supporting development 

policies of “volatility energy + ESS”, and the significance of energy storage devices for the 

heavy penetration of volatility energy sources is totally mirrored. The optimal 

configuration of ESS incorporates a direct effect on the active control ability of ADN, 

which makes the ADN preferable to the traditional distribution network (TDN), and 

realizes the volatile energy interoperability between the grid and the electricity 

consumption side [2,3]. 

At present, the configuration strategy of the ESS of the distribution network has been 

observed in many studies at home and abroad. Wang et al., according to the data from 

load-side transformers and solar power, established an energy storage capacity allocation 

scheme with optimal economic efficiency based on intelligent algorithms and energy 

storage allocation strategies for customer power consumption characteristics [4]. Chen et 

al. established a model with the highest wind-storage combined system power sales 

revenue as the optimization objective and used the Ant-Lion algorithm to solve the 

optimal allocation scheme for wind generation (WG) cluster power backup and energy 
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storage power and capacity [5]. Using dynamic solar planned output data as a constraint 

and the maximum average annual benefit over the life cycle as the optimization objective, 

Hong et al. used particle swarm algorithms (PSO) and time-series simulation calculations 

to solve for the best configuration of ESS [6]. They also considered the energy storage 

investment cost, operation and maintenance, penalty costs for deviating from the planned 

output, and revenue from PV plants. Liu et al. analyzed the influence of fluctuations of 

load power on the distribution network and proposed a model predictive control-based 

optimization strategy for energy storage allocation and scheduling with the goal of 

economic efficiency of user-side energy storage operation [7]. 

However, the above models only formulate the configuration of the ESS in terms of 

operational economics and none of them take into account the dynamic characteristics of 

the ESS. Shi et al. analyzed the characteristics of historical wind and solar power output 

fluctuations at two durations of 15 min and 10 min and studied the capacity allocation 

strategies of ESSs based on smoothing energy output fluctuations and participating in 

system frequency regulation [8]. Wu et al. analyzed the output characteristics of the 

combined power generation farms with wind and solar, and proposed a project 

comparing the stabilization index and smoothing effect evaluation index to analyze the 

filtering effects of the sliding average method and least-squares procedure, to decide the 

output power level of ESS configuration [9]. Wang et al., resting on the historical 

information characteristics of the WG and PV, proposed a capacity optimization 

configuration method based on the analysis of the wind and PV output volatility under 

different capacity allocation schemes to guarantee the chance that the system output 

change rate satisfies the maximum requirements [10]. In Ref. [11], the ADN energy storage 

operating approach to smooth out the system’s power fluctuation is suggested. An ESS 

configuration scheme is structured with fixed expenses and operating expenses in the 

cycle as the optimization targets, and the dynamic programming arithmetic is needed to 

calculate the energy storage installation capacity, power, and installation location. The 

above model takes into consideration the dynamic characteristics of the ESS and 

additionally smoothed out the volatility to a definite extent; however, the improvement 

of the configuration results is not obvious when solely one layer model is employed for 

designing. 

In Ref. [12], the authors described the design of a two-level estimate model for 

allocating storage capacity. The outer layer determines the in-out power and capacity of 

the ESS with the calculated goal of minimizing the expense to invest in the storage system, 

the inner layer determines the charging and discharging power of the ESS to minimize the 

system transit line’s power fluctuation, and a probabilistic approach to multiple scenarios 

is adopted to calculate the conclusions of the ESS allocation. In Ref. [13], a HESS two-layer 

planning scheme on account of the operational life span in the operation phase was 

constructed. In the upper layer, with the objectives of the lowest investment cost, the 

linear programming algorithm is adopted to estimate the total action domain of HESS, 

which provides a reference range for the actual operation of HESS and formulates the 

energy storage operation strategy considering the storage charging and discharging 

capacity; the lower layer takes the maximum operational life span of the battery during 

the operation phase as the objective function, and the PSO algorithm is taken to calculate 

the best configuration of battery and supercapacitor capacity. The works of Refs. [11,12] 

are based on the use of ESSs within the distribution network for double-layer 

configuration, purely with the support of the distribution network; however, they did not 

consider that the role of WG in the configuration of the ESS is the existence of a negative 

correlation, and provide no analysis on the aspects of wind generation concerned in 

system frequency. 

With the increase of penetration power of wind and PV, the proportion of 

conventional generating sets is gradually reduced, and the power grid inertia and FM 

intensity are constantly reduced, which can have an effect on the security and stability of 

operation within the ADN with comparatively high volatile energy proportion [14]. To 
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take full advantage of the ESS and cut down the cost, this paper takes into account the 

optimal configuration of the ESS on the ADN side and the energy side, and considers the 

investment to study the optimal configuration of the HESS of lead-acid batteries and 

supercapacitors with the idea of “integrated planning of energy storage capacity 

configuration and dispatching strategy” [15]. It is also contrasted with various battery 

types used for energy storage and serves as a guide for user-side energy storage designs. 

Based on the initial values of capacity and power provided by the traditional energy 

storage allocation method, an operational strategy for volatility energy utilization value 

enhancement is introduced at the planning level, and an optimal scheduling strategy to 

take into account the system frequency deviation is introduced at the dispatching level, 

using the output of WG and ESSs to take part in FM to correct the configuration of 

planning level supercapacitors energy storage capacity’s initial values. The contributions 

of this paper are summarized as follows: 

(1) The problem of the impact of fluctuating energy output on the configuration of 

energy storage systems is analyzed, laying the foundation for the subsequent 

development of operational dispatching strategies based on equivalent load curves. 

(2) A hybrid energy storage system using lead-acid batteries and supercapacitors is 

utilized to diversify the types of energy storage and expand the scope of 

optimization. 

(3) By considering both the distribution grid side and the energy side, a two-tier energy 

system optimization strategy with joint participation of wind storage in system 

frequency regulation is proposed. Through day-ahead optimization and intra-day 

correction multi-timescale hybrid energy storage configuration optimization, the 

distribution grid economy and renewable energy utilization are improved. 

2. Impacts of Volatility Energy Power on ESS and Mathematical Model 

2.1. Analysis of the Impact of volatility Energy Power on ESS 

In this paper, volatility energy mainly adopts WG generation and PV. The sum of 

actual load and negative load (each power generation) is taken as the equivalent load of 

volatility energy access to ADN, and the period of charging and discharging of HESS is 

segmented by the extremal variation of the equivalent load figure. 

Equation (1) presents the specific calculation procedure. 

( ) ( ) ( ) ( )WG PV
P t = P t - P t - P t
e,load load

 (1) 

where ( )tP loade, , ( )tPload , ( )tPWG and ( )tPPV  illustrate the equivalent load, realistic load, 

WG power, and PV power in period t, respectively. 

Currently, the fluctuation of photovoltaics often takes place in intervals of less than 

1 min; when considering how to smooth out fluctuations in PV power, control using the 

energy storage system’s output is frequently used [16]. When PV power fluctuations do 

not exceed the maximum permissible power of the HESS, the HESS’s power is often 

employed to smooth these power variations while keeping the PV converter operating in 

MPPT mode. To put it another way, downward power fluctuations are tamed by 

discharging (when the power value of HESS greater than 0), and upward power variations 

are tamed by charging (when HESS power is negative). The details of the coordinated 

control strategy are discussed in Section 3. Wind power and load fluctuations follow the 

same pattern. 

The variations in PV power throughout a minute is discussed in this paper. The 

power fluctuations are the interval size between the utmost and minimum power values 

measured at the purpose of common coupling over the course of 1 min, as described in 

Figure 1. 

https://www.mdpi.com/2071-1050/11/5/1324/htm#sec3-sustainability-11-01324
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Figure 1. PV power fluctuations in one minute. 

The comparison of typical daily PV output and wind output curve and actual load 

curve in a certain place is shown in Figure 2. 

 

Figure 2. Comparison of the load curve and the volatile energy output. 

From Figure 1, it is obvious that the peak period of PV output is 9:00–14:00, while the 

typical daily load curve peaks at around 12:00 and 20:00, indicating that the peak period 

of PV and the peak period of the load curve during the day coincide. Thus, the peak-to-

valley’s distances of the equivalent load curve will be curtailed after the superposition of 

PV output with realistic load, and PV power generation is positively correlated with the 

peak-to-valley difference. On the contrary, the peak period of wind and the valley period 

of load curve at night are similar; the peak-to-valley’s distances after the superposition of 

wind output and realistic load will be increased, and its influence is negatively correlated. 

To sum up, PV output reduces the necessity of energy storage configuration, and 

wind output increases the necessity. While the HESS is configured with the equivalent 

load curve, the access of volatility energy will realize peak cutting and valley filling and 

affect the HESS’s operation strategy. 

2.2. Mathematical Model of ESS 

The usage of energy storage devices can help to reduce network losses and power 

quality fluctuations [17] that are brought on by unstable energy sources linked to ADN as 

well as some of the energy consumption and utilization rate fluctuations. It is challenging 

to fulfill this need with a single kind [18] of energy storage device, though. The double-

layer planning model established in this paper can fully utilize the complementary 

characteristics of lead-acid batteries and supercapacitors [19] to effectively extend the 

service life of the system, save cost, improve the overall performance of energy storage, 
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and solve the problem to the greatest extent. This is demonstrated by the low frequency 

of lead-acid battery charging and discharging and the high frequency of supercapacitor 

charging and discharging [20]. 

It is mathematically modeled from the State of Charge (SOC) and the 

charging/discharging power. 

( )

( ) ( )
( )

( ) ( )
( )

1 1 ,

1 1 ,

c

e

d

e

P t t
SOC t charge

E
SOC t

P t t
SOC t discharge

E







• •
− − +


= 

•
− − +

 •

 (2) 

where 𝑆𝑂𝐶(𝑡) evaluates the SOC level in period 𝑡, ƞ delineates the loss rate of remaining 

power per hour, 𝑃𝑐(𝑡) and 𝑃𝑑(𝑡) clarify charging and discharging power, γ and λ are 

charging and discharging efficiencies, 𝐸𝑒  is the rated capacity, ∆𝑡  is the sampling 

interval, and the value of this paper is 1 h. 

3. A Double-Layer Multi-Objective Optimization Model 

This study uses the two-layer decision optimization model to solve the ESS 

configuration scheme. The two-layer model can comprehensively consider the problems 

of the configuration of ESS and various problems in the and. 

3.1. Planning Layer Optimization Model 

According to the load situation of the ADN, the maximum capacity value of the ESS 

is initially calculated, the day forecasts of wind, solar, and load are used to carry out the 

preliminary planning of the ESS, and an optimization model is built with the combined 

cost, network loss, and nodal voltage deviation as the optimal objectives . 

3.1.1. Objective Functions 

• Comprehensive cost of a full-day life cycle; 

WG
minF = C + C + C + C + C + Cruninv PV1 buy ploss

 (3) 

where 𝐹1 introduces the daily comprehensive expenses of HESS, 𝐶𝑖𝑛𝑣  and 𝐶𝑟𝑢𝑛are the 

daily investment expenses and daily operation and maintenance expenses of HESS, 𝐶𝑃𝑉, 

𝐶𝑊𝐺  represent the operation and maintenance expenses of PV and wind farms, 𝐶𝑝𝑙𝑜𝑠𝑠 

describes the network loss expenses, and 𝐶𝑏𝑢𝑦  describes the daily power purchase 

expenses, which to some extent characterizes the ability of “Peak cut and fulfill valleys”. 

The calculation formulas of each component are as follows: 

( ) ( )

( )( )1

1

24 1 1

lN
p ess e e

inv l

j

c P c E
C T

 

=

+ +
= •

+ −
  

(4) 

( )( )
0

1=

=
N T

run om ess

j

C c P t dt

 

( )( )
0

= 
T

PV PV PVC c P t dt

 

( )( )
0

= 
T

WG WG WGC c P t dt  

( ) ( )( ), ,
0

= +
T

buy g LAB c SC cC m P t P t dt  



Processes 2022, 10, 1844 6 of 18 
 

( )( )
0

= 
T

ploss a plossC m P t dt  

where N indicates energy storage units’ amount, 𝑃𝑒𝑠𝑠 indicates the HESS’s power rating, 

𝑐𝑝  and 𝑐𝑒  evaluate power and capacity cost coefficients, 𝑐𝑜𝑚 , 𝑐𝑃𝑉 , and 𝑐𝑊𝐺  denote 

HESS’s, PV’s, and WG’s operation and maintenance cost factor, 𝑃𝑒𝑠𝑠(𝑡)  indicates the 

actual power level of the HESS in period 𝑡, 𝑃𝐿𝐴𝐵,𝑐(𝑡) and 𝑃𝑆𝐶,𝑐(𝑡) describe the charge 

powers of lead-acid batteries and supercapacitors, 𝑚𝑔 and 𝑚𝑎 evaluate unit electricity 

price and unit network loss cost, and 𝑃𝑝𝑙𝑜𝑠𝑠(𝑡) denotes the network active loss power. 

• Network loss 

2 , ,

1 1

min

= =

=
T I

loss i t

t i

F P
 

(5) 

where 𝐹2 delineates the network loss for 24 h, T defines the dispatching time, I is the 

nodes’ amount of the ADN, and 𝑃𝑙𝑜𝑠𝑠,𝑖,𝑡 denotes the power loss of line i at time t. 

• Node voltage deviation 

3

1

min

=

= −
I

i N

i

F V V
 

(6) 

where 𝑉𝑁 denotes the node’s rated voltage, 𝑉𝑖 is the voltage on node i, and 𝐹3 is smaller, 

meaning the node voltage is more stable. 

3.1.2. Constraint Condition 

• SOC of energy storage constraint; 

To avoid over-charging and over-discharging, SOC has a certain range limit, which 

cannot be fully discharged or fully charged. 

( )min max SOC SOC t SOC  (7) 

where 𝑆𝑂𝐶𝑚𝑖𝑛  and 𝑆𝑂𝐶𝑚𝑎𝑥  are the minimum charge level and maximum residual charge 

level, respectively. 

• Node voltage constraints 

( ),min ,max 1,2,3 ,  =i i iU U U i I
 

(8) 

where 𝑈𝑖,𝑚𝑖𝑛  and 𝑈𝑖,𝑚𝑎𝑥 are the minimum and maximum voltages at node i, respectively. 

• Branch circuit current constraints 

To guarantee the HESSs can operate well and stably. 

( ),max 1,2,3 , =i iI I i m
 

(9) 

where 𝐼𝑖,𝑚𝑎𝑥  is the upper limit of the current in the i-th branch, and m is the number of 

branches. 

• Power balance constraints 

( )

( )

, ,

1

, ,

1

cos sin

sin cos

N

G i N i i j ij ij ij ij

j

N

G i N i i j ij ij ij ij

j

P P U U X Y

Q Q U U X Y

 

 

=

=


− = +





− = −





 

(10) 

where 𝑃𝐺,𝑖 and 𝑄𝐺,𝑖 indicate the power output of active and reactive to the power supply 

at nodes i, 𝑃𝑁,𝑖 and 𝑄𝑁,𝑖  indicate the power output of active and reactive at nodes i, 

𝑈𝑖  and 𝑈𝑗 are the voltage amplitude at nodes i and j, 𝑋𝑖𝑗  and 𝑌𝑖𝑗  evaluate real and virtual 

parts of the node-admittance matrix elements, and 𝛷𝑖𝑗  evaluates the voltage angular 

phase difference of nodes i and j. 
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3.2. Operation Layer Optimization Model 

Due to the access of WG and load, there is frequency fluctuation in the distribution 

network system. This study adds 120 MW of WG in the operation layer to adjust the 

energy storage system output, using the energy storage output to suppress the fluctuation 

[21,22]; 5% of the WG output is used for system frequency regulation. When the 

fluctuation frequency range exceeds 0.2 Hz, the whole capacity of WG is added to the 

distribution network; otherwise, the energy storage capacity calculated under the optimal 

strategy is used. In turn, the value of the additional capacity to the operation layer needed 

for the supercapacitors is calculated. 

3.2.1. Objective Function 

• Minimal fluctuations in WG output 

( )
2

4

1

1
min

=

 = − 
n

WG WG

t

F P t P
n  

(11) 

where �̅�𝑊𝐺  is the average active power of the all-day life cycle. 

• Minimal system frequency deviation 

( )
5min 100%

−
= •

e

e

f t f
F

f
 

(12) 

where 𝑓(𝑡) is system frequency at time t, and 𝑓𝑒 is system-rated frequency. 

3.2.2. Constraint Condition 

• Charge and discharge power constraint 

( ), ,max , ,max−  LAB c LAB LAB dP P t P
 

(13) 

( ), ,max , ,max−  SC c SC SC dP P t P
 

(14) 

where 𝑃𝐿𝐴𝐵,𝑐,𝑚𝑎𝑥  and 𝑃𝐿𝐴𝐵,𝑑,𝑚𝑎𝑥  reflect the lead-acid batteries’ charging/discharging 

powers crest values, 𝑃𝑆𝐶,𝑐,𝑚𝑎𝑥  and 𝑃𝑆𝐶,𝑑,𝑚𝑎𝑥  reflect the supercapacitors’ 

charging/discharging powers crest values. 

• Charge and discharge times constraint 

The life span of energy storage units increase and the costs reduce by reducing the 

number of charging and discharging occurrences during operation. 

0

0

 

 

x N

y M
 

(15) 

where x, y, N, and M are the number of charging and rated charging of lead-acid batteries 

and supercapacitors, respectively. 

4. Scheduling Strategy and Solution Algorithm 

4.1. Scheduling Strategy for Energy Storage Systems 

The two components of the scheduling strategy are as follows: the division of 

continuous charging and discharging periods following the “time-of-day tariff” [23]. The 

segmentation of charging and discharging periods is used to determine the power of the 

ESS to charge and discharge in each period. 

① HESS is configured according to the load curve, charging at the curve trough, and 

discharging at the peak. To improve the utilization of the energy storage system, for the 

flat tariff period, if the period before and after it is a high tariff period then the charging 

time is 𝑇𝑒; if both the preceding and following periods are low tariff periods, then the 

discharge time is 𝑇𝑑. The charging/discharging periods are distinguished on account of 
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the time-of-day tariff strategy, and the high and low electricity price periods 

corresponding to the charging and discharging periods; 𝑇𝑒,1 and 𝑇𝑒,2  are the charging 

periods and 𝑇𝑑,1, 𝑇𝑑,2 and 𝑇𝑑,3 are the discharging periods. The results of the charging and 

discharging time periods are delineated in Figure 3. The times of 4:00–9:00 and 15:00–19:00 

are low electricity prices, while 10:00–14:00 and 20:00–3:00 are high electricity prices, in 

the known charging and discharging period, considering the SOC. 

 

Figure 3. The strategy of charging and discharging. 

② The variable power charging/discharging mode is adopted to determine the 

power values of multiple ESSs when charging and discharging. The specific process is as 

follows. 

The smaller the equivalent load within ∆𝑡 , the more energy storage charging is 

required. The equivalent load values within ∆𝑡 for each sampling interval of period T are 

sorted in order from smallest to largest, and the size of the charging power level of the 

HESS within ∆𝑡 corresponding with the equivalent load is determined, respectively. To 

make the fluctuation of the equivalent load curve of the HESS after charging as small as 

possible (except for the HESS within ∆𝑡  with the smallest equivalent load, which is 

charged by the maximum power), the storage system is charged at a variable power less 

than the maximum power. The calculation is shown in Equation (16). 

Charging: 

( )
( )( ) ( ) ( )

( ) ( )
,max ,min,max ,min

,max ,min,

,

,

  +• + −
= 

 +

L c Lc L L

c

L c Lc e

P t P PP P P t
P t

P t P PP
 

(16) 

For each determined charging power, the SOC also increases, and undetermined 

sampling intervals are charged at zero power until the power magnitude of all sampling 

intervals is determined and all charging power values for the HESS are output. In contrast, 

the SOC decreases during the discharging process. 

The process of determining the magnitude of the discharge power is similar to the 

above process. The differences are the larger the equivalent load in ∆𝑡, the greater the 

need for energy storage discharge, and in order of equivalent load from largest to smallest 

to determine its corresponding the size of the discharge power of the HESS within ∆𝑡. 

Except for the ∆𝑡  with the largest equivalent load, the HESS is discharged by the 

maximum power value; during other ∆𝑡 the HESS is discharged at a variable power that 

is less than the maximum power. The calculation is shown in Equation (17). 

Discharging: 

( )
( )( ) ( ) ( )

( ) ( )
,max ,max,max ,max

,max ,max,

,

,

  −• + −
= 

 −

L L cL d L

c

L L cd e

P t P PP t P P
P t

P t P PP
 

(17) 
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where 𝑃𝑐,𝑚𝑎𝑥 , 𝑃𝑑,𝑚𝑖𝑛 , 𝑃𝑐,𝑒 , 𝑃𝑑,𝑒 are charging/discharging powers in period t, maximum 

charging power, minimum discharge power, and rated charging/discharging power, 

respectively. 𝑃𝐿(𝑡) , 𝑃𝐿,𝑚𝑖𝑛 , 𝑃𝐿,𝑚𝑎𝑥 , 𝛼 , 𝛽  are large equivalent load values during the 

sampling period t, minimum, and maximum, equivalent load values at the sampling 

interval, and charging and discharging power weights, respectively. 

4.2. The Computational flow of Multi-Objective Chaotic Particle Swarm Algorithm 

A mathematical optimization methodology for dealing with multi-layer analytical 

processes is called Chaos Particle Swarm Optimization (CPSO). According to how well it 

fits its surroundings, each particle is gradually shifted to a better location. After solving 

each sub-step or step’s requirement’s part-optimal solution in the correct order, the 

optimal prescription from the set of local optima is then employed as the optimization’s 

final output. 

Therefore, a modified Chaos Particle Swarm Optimization (MCPSO) is used to solve 

this problem. The chaotic property is used to improve the diversity of the population and 

the ergodicity of the particle search, and the inclusion of chaotic states into the 

optimization variables gives the particles the ability to search continuously. The specific 

flow chart is presented in Figure 4. 

The detailed operations are shown as follows. 

Step 1: The maximum allowable times of iterations the range of fitness error values, 

and the algorithm-related parameters: inertia weights, and learning factors are initialized. 

Step 2: Chaotic initialization of particle positions and velocities are determined. 

(1) An n-dimensional vector ( )1 11 12 1, , , nx x x x=  between [0,1] is randomly 

generated, using the Logistic chaotic system equation by Equation (18) to obtain N vectors 

1 2, , , Nx x x . 

( )1 1 , 0,1,2,n n nx x x n+ =  − =  (18) 

(2) After calculating the fitness function for all particles, Z initial velocities are 

generated at random from Y initial populations by choosing the Z initial solutions with 

the best performance. 

Step 3: pBest is set as the new position if the particle fitness is greater than the 

individual extreme. 

Step 4: The global extreme gBest is set to the new position if the particle fitness is 

greater than it. 
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Figure 4. An MCPSO flow chart for solving the optimal HESS configuration. 

Step 5: Dynamically update learning factor. 

(1) Take the average value of the particle adaptation value. 

(2) The particle adaptation value is compared with the average value. When the 

average value is more than the adaptation, the learning effect maximum value is taken. 

Otherwise, the learning factor is solved by using Equation (19). 

( )max min

min 1

1

−
= + −

−
i

w w
w w x x

x x
 (19) 

Where 𝑤𝑚𝑖𝑛,𝑤𝑚𝑎𝑥 are the learning factor’s minimum and maximum values, and 𝑥1,𝑥𝑖,�̅� 

are the average of the adaptation values of the 1st and ith particle, and the population 

adaptation values. 

Step 6: Redefine the particles’ positions and velocities. 

Step 7: Chaos optimization to get the best position. 

Calculate the adaptation value for each feasible solution experienced by the chaotic 

variables in the original solution space, and select the feasible solution with the best 

performance. Map the vectors in the optimal position to the definition domain of the 

Logistic equation [0,1], iterate with the Logistic equation to generate a sequence of chaotic 

variables, then return the generated sequence of chaotic variables to the original solution 

space through the inverse mapping. 

Step 8: Substitute for any one particle’s position present in all particles with p*. 

Step 9: The search terminates and the global optimal position is output if the halting 

condition is met. If not, go back to Step 3. 
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5. Case Study 

5.1. Basic Parameters for the Case 

In this research, the modified case 33 node examples system was used as an 

arithmetic example, and 300 kw WG and 300 kw PV were added to nodes 19 and 26. The 

system structure is delineated in Figure 5 for the HESS configuration. The WG output, PV 

output, and load curves for a typical day at a site are described in Figure 2. 

WG

PV

HE

 

Figure 5. Example system of PV, WG, and HESS access in ADN. 

A time-of-day tariff was set, with a tariff of RMB 1.0/kWh during peak hours (HESS 

discharging periods), RMB 0.35/kWh during low hours (HESS charging periods), and a 

flat tariff of RMB 0.55/kWh for the rest of the day. The parameters related to 

supercapacitor and lead-acid battery units are expressed in Table 1. 

Table 1. Related parameters of the energy storage unit. 

Parameters Lead-Acid Batteries SC 

SOCmin 0.4 0.1 

SOCmax 0.8 0.9 

charging and discharging efficiency (%) 98 98 

capacity cost factor (RMB/kW) 1500 2400 

capacity maintenance cost factor (RMB/year) 0.045 0.015 

service life (year) 10 20 

power cost factor (RMB/MW) 300 300 

initial volume of SOC 0.4 0.1 

discount rate (%) 10 10 

power factor (%) 98 98 

5.2. Analysis of the Impact of Energy Storage System access Nodes 

As shown in Figure 6, when the same capacity (400 kW) energy storage device was 

connected to different nodes, the voltage stability and minimum voltage difference were 

obvious. In nodes 8 to 18 and nodes 29 to 33 access, the node voltage was lower but the 

corresponding voltage stability index was also not high, thus the voltage lifting effect was 

not obvious. Therefore, it is not conducive to voltage safety and stability. Thus, if only the 

voltage stability indicators are considered, the nodes in Table 2 can be connected. 
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Figure 6. Voltage stability index for different access points. 

Table 2. Effect of different access points on grid voltage and stability. VBN: Voltage of the branch 

node. 

Access Nodes Stability Index VBN 

1 1 1 

2 0.99 0.99 

3 0.98 0.98 

20 0.98 0.99 

21 0.97 0.99 

22 0.96 0.99 

Assuming access to one of the nodes first, the size of the active network loss of the 

energy storage device at different access points of the network-wide 33 nodes is derived, 

as shown in Figure 7. As can be seen from the figure, the network-wide active network 

loss values are relatively low at nodes 1, 2, 6, 19–22, 28, and nodes 31–33, so it is possible 

to choose between these nodes. 

 

Figure 7. Effect of different access points on active power network loss. 

After considering both the stability index curve and the active network loss curve, 

the energy storage device is connected to the above nodes, the tidal current calculation is 

carried out, and finally node 6 and node 30 are selected. Due to the three branches of the 
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IEEE 33 node distribution system, the position of node 6 can be made the Interaction of 

energy, generating information faster and more economically secure, which is the 

interaction between the wind generation systems, PV systems, and loads of the individual 

nodes. 

5.3. Interpretation of Result 

5.3.1. Capacity Configuration Results and Economic Analysis 

This paper takes a comparison under three scenes and thus judges the validity and 

reliability of this study. Scene 1 is a single layer multi-objective improved particle swarm 

optimization algorithm for configuration, without consideration of lower layer 

optimization. In scene 2, a double-layer optimization configuration model, the upper layer 

is optimized by a multi-objective chaotic particle swarm algorithm but does not consider 

that the operation layer wind power does not participate in the impact of system 

frequency modulation on the configuration. Scene 3 is the proposed solution of this study. 

Table 3. Configuration results in the three scenarios (KW). 

Parameters Scene 1 Scene 2 Scene 3 

capacity of lead-acid batteries  464.55 425.32 157.34 

capacity of supercapacitors 1100 926.93 695.64 

correction of supercapacitors 0 5.25 5.95 

 

Figure 8. Charging and discharge strategy of the HESSs in Scene 3. 

In addition to lead-acid batteries, other types of hybrid batteries such as Li-Ion 

batteries and NaS batteries were also tested, demonstrating that the simulation results are 

rather different. This was done to diversify the forms of energy storage and widen the 

scope of optimization. 

Table 4. The cost profiles of the configuration schemes (RMB). 

Parameters Scene 1 Scene 2 Scene 3 

Investment costs 3.34 ×106 2.86 ×106 1.91 ×106 

operation and maintenance costs 201.62 176.61 84.23 

network loss costs  3.49 3.27 2.67 

wind and PV operation and maintenance costs 80.34 80.34 80.34 

power purchase costs 52.27 50.25 45.29 
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correction costs 0 71.14 61.06 

total costs 3,337,137.73 2,934,047.53 1,844,656.99 

From Table 3-4 it can be concluded that: 

(1) In Scene 1, a hybrid energy storage equipment is added to the system, and 

although the operation layer energy storage dispatching strategy does not take into 

account the system frequency deviation, it has a certain soothing effect on the equivalent 

load curve, achieving a certain effect of “Peak cut” and optimizing the operation of the 

grid. 

(2) Scene 2 is based on Scene 1, using a double-layer planning model, with only the 

lower layer of ESS taking part in the system’s FM. Therefore, the lower layer is used to 

correct the capacity of supercapacitors, with a correction value of 5.2456 kw, reducing the 

total cost by RMB 403,090.20. The cost reduction rate is about 12.08%, which achieves 

integrated planning of capacity dispatch and further improves the effect of peak and 

valley reduction. 

(3) Scene 3 is an optimized configuration of the HESS based on a double-layer 

planning model, with WG added to the lower layer to participate in system FM, correcting 

the supercapacitor capacity value of the improvement. The charging and discharging 

strategy for hess in Scene 3 is introduced in Figure 8. The total costs of Scene 3 relative to 

Scene 1 and Scene 2 are RMB 1,492,480.74 and RMB 1,089,390.54 saved, respectively. The 

reduction rates are approximately 44.72% and 37.13%, with a total cost reduction while 

the effect of network loss optimization is also more obvious. 

Table 5. Comparison of the three battery storage costs in Scene 3 (RMB). 

Parameters NaS Li-Ion 

Investment costs 3.40×106 3.75×106 

operation and maintenance costs 249.38 343.32 

network loss costs  3.26 3.36 

wind and PV operation and maintenance costs 61.60 61.60 

power purchase costs 50.93 49.93 

correction costs 63.12 56.97 

total costs 3,399,028.28 3,748,015.17 

The analysis of lithium batteries and sodium-sulfur batteries in Scene 3 of this paper 

reveals that the life-cycle costs of lithium batteries are RMB 3,747,958.20 and the life-cycle 

costs of sodium-sulfur batteries are RMB 3,398,965.16, like Table 5, which leads one to the 

conclusion that lead-acid batteries are more cost-effective than other energy storage 

batteries because their price per unit capacity and power are lower. 

5.3.2. Network Loss Analysis after Optimization 

The net loss can be greatly improved after the hybrid energy storage device in node 

6 is delineated in Figure 9. The network loss before the configuration optimization is 4.72 

MW, after is 4.19 MW, and the net loss is reduced by about 0.53 MW. At node 14, the 

network loss reduction is the largest, at about 0.045 MW. 
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Figure 9. Network loss comparison after adding HESS to ADN. 

5.3.3. Optimum Voltage Analysis of Distribution Network 

After energy storage optimization, the minimum voltage values of multiple nodes of 

the distribution network system are increased, and the minimum voltage increase at node 

11 is the most obvious, which is described in Figure 10. To some extent, it can be explained 

that the energy storage system configuration has significantly improved the voltage of the 

network. 

 

Figure 10. Optimized voltage comparison curve after distribution network. 

5.3.4. Analysis of the Frequency Bias after Optimization 

Under normal frequency fluctuations (within the range of [−0.2,0.2]), the wind 

generator is effectively adjusted according to the reserved 20% output margin. In 

emergencies with large fluctuations (outside the range of [−0.2,0.2]), the maximum 

capacity of the wind generator is used to adjust the system frequency and the load side is 

demand-responding, with an adjustment factor within the rated value of 1.5. 

The WG output during the system frequency modulation is displayed in Figure 11. 

The supercapacitor energy storage outputs during system frequency modulation are 

described in Figure 12. 
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Figure 11. The output of WG participation in frequency regulation. 

 

Figure 12. The output of HESS participation in frequency regulation. 

The frequency fluctuation range after optimization is obviously reduced by 

extending the time for system frequency regulation to 96 h, which is described in Figure 

13, with the frequency fluctuating within −0.032~0.042 Hz before optimization and within 

−0.024~0.016 Hz after optimization. To some extent, the frequency fluctuations of the ADN 

are abated. 

 

Figure 13. Comparison of frequency response before and after each period. 

6. Conclusions 

This paper studies the effect of energy storage charging/discharging tactics and WG 

participation in frequency modulation on HESS configuration and operation in ADN 

containing volatile energy sources, which is solved in MATLAB using a dynamic chaotic 

particle swarm algorithm. Through the simulation analysis of the improved case 33 nodes 

power distribution system, the three conclusions are obtained. 
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(1) The first layer is developed according to the equivalent load curve and proposes a 

charging and discharging strategy for the HESS considering the “time-of-day tariff”, 

while the second layer adopts WG and HESS to suppress fluctuations in the 

operation strategy, which can achieve better economic results and “Peak cut and 

fulfill valleys” with less investment and operation costs. 

(2) Optimizing the configuration of the HESS with “integrated planning of the 

configuration capacity and dispatching strategy” and establishing a mathematical 

model for the optimal configuration of the capacity ensures that research of energy 

storage configuration can be more reasonably and accurately grasped, and the risk 

of over-investment or under-investment can be reduced. 

(3) Consideration of the dynamic characteristics of HESS operation, which can achieve 

the goal of smoothing fluctuating energy’s power fluctuation, as well as improving 

the voltage quality of the distribution network and reducing network losses, which 

is of more practical significance. 
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