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Abstract: Soil-washing is a potential technology for the disposal of soil contaminated by e-waste;
however, the produced soil-washing effluent will contain polybrominated diphenyl ethers (PBDEs)
and a large number of surfactants, which are harmful to the environment, so the treatment of PBDEs
and the recycling of surfactants are the key to the application of soil-washing technology. In this
study, coconut shell granular-activated carbon (GAC) was applied to remove PBDEs from Triton
X-100 (TX-100) surfactant which simulates soil-washing effluent. The adsorption results show that,
GAC can simultaneously achieve effective removal of 4,4′-dibromodiphenyl ether (BDE-15) and
efficient recovery of TX-100. Under optimal conditions, the maximum adsorption capacity of BDE-15
could reach 623.19 µmol/g, and the recovery rate of TX-100 was always higher than 83%. The
adsorption process of 4,4′-dibromodiphenyl ether (BDE-15) by GAC could best be described using the
pseudo-second-order kinetic model and Freundlich isothermal adsorption model. The coexistence
ions had almost no effect on the removal of BDE-15 and the recovery rate of TX-100, and the solution
pH had little effect on the recovery rate of TX-100; BDE-15 had the best removal effect under the
condition of weak acid to weak base, indicating that GAC has good environmental adaptability. After
adsorption, GAC could be regenerated with methanol and the adsorption effect of BDE-15 could
still reach more than 81%. Density functional theory (DFT) calculation and characterization results
showed that, Van der Waals interaction and π–π interaction are dominant between BDE-15 and GAC,
and hydrogen bond interactions also exist. The existence of oxygen-containing functional groups is
conducive to the adsorption of BDE-15, and the carboxyl group (-COOH) has the strongest promoting
effect. The study proved the feasibility of GAC to effectively remove PBDEs and recover surfactants
from the soil-washing effluent, and revealed the interaction mechanism between PBDEs and GAC,
which can provide reference for the application of soil-washing technology.

Keywords: granular-activated carbon; polybrominated diphenyl ethers; Triton X-100; soil-washing
effluent; adsorption; density functional theory calculation

1. Introduction

Polybrominated diphenyl ethers (PBDEs) are a class of persistent organic pollutants
widely existing in the environment [1], which have been widely detected in various envi-
ronmental media such as water, the atmosphere, soil and sediment [2–5]. As an environ-
mental endocrine disruptor, the harm of PBDEs have been recognized by the international
community [6], the US Environmental Protection Agency (EPA) having listed PBDEs as
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carcinogenic chemicals. Researchers found that PBDEs can damage the balance of repro-
ductive and thyroid hormones in the body [7], cause neurotoxicity [8], affect early cognitive
performance of young children [9], increase the risk of kidney injury to children in e-waste
dismantling areas and increase the risk of menopausal breast cancer [6], and its metabolites
such as hydroxylated PBDEs can be even more toxic [10,11]. Due to its hydrophobicity,
PBDEs often combines with organic components in particulate matter, soil and sediment
in the environment [12,13]. The concentrations of PBDEs can be between 12 mg/kg and
296.4 mg/kg in contaminated soil [14,15], which is the highest detected in e-waste dis-
mantling area. Contaminated soil is both the source and sink of PBDEs [16], continuously
exposing the environment and organisms to risks. Therefore, it is urgent to remove PBDEs
from soil.

Common remediation methods such as microbial degradation, photodegradation
and electrocatalysis are inefficient or even difficult to carry out, due to the low mass
transfer efficiency and complex components of soil [17]. Surfactant elution technology can
separate pollutants from soil by changing the distribution of hydrophobic organic matter
in soil–liquid phase, which is one of the most promising potential technologies to remove
PBDEs from soil [18]. In recent years, surfactants such as Tween 80, polyoxyethylene
lauryl ether and Triton X-100 (TX-100) have been widely used in the elution and removal
of hydrophobic organic matters in soil [19,20], in which the nonionic surfactant TX-100
showed excellent PBDEs elution effect [21,22]. However, the chemical cost of surfactants is
relatively high [23], and the generated elution effluent may also cause secondary pollution
to the ecological environment [24]. If the effluent can be recycled after washing the soil, it
will assist environmental protection and economic benefits.

Adsorption can effectively avoid the degradation loss of surfactant and unknown
by-products in the process of soil-washing effluent treatment, avoiding posing a great threat
to the environment. It is a separation and purification method with high efficiency, low
cost and simple operation [25]. In previous studies, pseudomonas stutzier [26], polystyrene
microplastics [27], maize straw-derived biochars [28] and core–shell magnetic dummy
template molecularly imprinted polymers [29] have been used to adsorb PBDEs in aqueous
solution. However, there are still some problems in the application of these adsorbents, such
as low adsorption capacity, poor stability, and lack of research on the influence of surfactant
and adsorption mechanism. Therefore, it is of great significance to find an adsorbent that
can effectively and economically remove PBDEs from the soil-washing solution. Activated
carbon (AC) is a common adsorbent for treating organic wastewater [30]. Its developed
pore structure, huge specific surface area and abundant surface functional groups make
it have excellent adsorption performance, which has been used to recover TX-100 [31,32],
sodium dodecyl sulfate [33], Tween 80 [34] and polyoxyethylene lauryl ether [35] from
soil-washing effluent polluted by polycyclic aromatic hydrocarbons. Researchers have
shown the application advantages of AC in the treatment of soil-washing effluent, but
research on their adsorption of PBDEs in soil-washing effluent is still lacking. Due to the
problems of mechanical wear and regeneration loss of activated carbon adsorbent in actual
wastewater treatment projects, it is more practical to choose granular-activated carbon
(GAC) with higher hardness and strength as an adsorbent.

In this study, considering the practical application potential, coconut shell GAC
with high hardness and strength was used as adsorbent, and the application perfor-
mance and adsorption mechanism in the treatment of simulated soil-washing effluent
(4,4′-dibromodiphenyl ether (BDE-15) as model PBDEs, and TX-100 as surfactant eluant)
were studied [22]. The purpose of this study is as follows: (1) to explore the feasibility of
adsorbing PBDEs from TX-100 solution; (2) study the influencing factors of BDE-15 adsorp-
tion and TX-100 recovery; (3) explore the adsorption kinetics and isotherm characteristics of
PBDEs on GAC, and calculate the thermodynamic parameters; (4) explore the adsorption
mechanism of BDE-15 on GAC. This study focuses on exploring the feasible process and
related mechanism of simultaneous pollutant removal and eluant recovery from PBDEs
washing effluent and provides reference for the application of soil-washing technology.
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2. Materials and Methods
2.1. Materials

Coconut shell granular-activated carbon (GAC, 20~40 mesh irregular particles) was
purchased from Aike Reagenta (Chengdu, China). Triton X-100 (TX-100, >99.0%) was
purchased from Sigma-Aldrich (Shanghai, China). 4-bromodiphenyl ether (BDE-3, >99%),
4,4′-dibromodiphenyl ether (BDE-15, >99%), 2,4,4′-tribromodiphenyl ether (BDE-28, >99%),
2,2′,4,4′-tetrabromodiphenyl ether (BDE-47, >99%) and 2,2′,4,4′,6-pentabromodiphenyl
ether (BDE-100, >99%) were purchased from Aladdin Reagents (Shanghai, China) Co., Ltd.
High-performance liquid chromatography-grade methanol and acetonitrile (ACN) were
purchased from CNW Company (Shanghai, China). The experimental water was ultrapure
water (18.2 MΩ cm).

2.2. Characterization

The structure and surface characteristics of GAC were characterized by specific in-
struments. The morphology was analyzed by scanning electron microscope (SEM, Merlin,
ZEISS, Oberkochen, Germany). The specific surface area and pore size distribution were
characterized by physical adsorption instrument (NOVA4200e, Quantachrome, Boynton
Beach, FL, USA). The changes of chemical bonds and functional groups before and after ad-
sorption were identified by infrared spectrometer (ATR-IR, Thermo Scientific Nicolet iS10,
Waltham, MA, USA) and the element composition was analyzed by X-ray photoelectron
spectroscopy (XPS, Escalad Xi+, Thermo Fisher, Waltham, MA, USA).

2.3. Adsorption Experiment

Except the special experimental conditions, the soil-washing effluent used in the ad-
sorption experiment was prepared by solubilizing BDE-15 solid with 1 g/L TX-100 solution.
The concentration of BDE-15 was 30 µmol/L, the dosage of GAC was 0.1 g/L, the pH was 6,
and the reaction temperature was 25 ◦C. Three parallel control groups were set in all exper-
iments. The research contents of batch experiments include adsorption kinetics, isothermal
adsorption, pH, temperature, anion effect experiment and GAC reuse experiment.

Isothermal adsorption: In this experiment, 1 mg GAC was weighed in 10 mL of simulated
soil-washing solution with different concentrations of BDE-15 (2 µmol/L–80 µmol/L). Then
the reaction system was placed in a 25 ◦C thermostatic oscillator (150 r/min) for 168 h
(7 days). The supernatant was filtered by 0.22 µm glass fiber filter, and the concentration
of BDE-15 in the solution was analyzed by HPLC. The removal rate η (%) and adsorption
amount q (µmol/L) are calculated as follows:

η =
(C0 − Ce)

C0
× 100% (1)

q =
(C0 − Ce)×V

m
(2)

where q is the adsorption capacity (µmol/g), C0 is the initial concentration of pollutants
(µmol/L), Ce is the equilibrium concentration of pollutants (µmol/L), V is the volume (L)
of the solution, and m is the mass (g) of the adsorbent.

Adsorption kinetics: In this experiment, 20 mg GAC was weighed and placed in 200 mL
simulated soil-washing effluent. The reaction system was put in a constant temperature
oscillator at 25 ◦C for 342 h, and then sampled at 0, 3, 6, 10, 13, 34, 48, 60, 74, 97, 143, 192,
246, 296 and 341 h, respectively. After the adsorption, the treatment steps were the same as
those of isothermal adsorption, and the used adsorption models were shown in Text S1.

Thermodynamic experiment: In this experiment, 1 mg GAC was weighed and placed
in 10 mL of simulated soil-washing effluent with different concentrations of BDE-15
(2 µmol/L–80 µmol/L), and reacted at 15 ◦C, 25 ◦C and 35 ◦C for 7 days, the treatment
steps after adsorption are the same as those of isothermal adsorption.
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Influence of environmental conditions on selective adsorption: The initial concentration
of TX-100 affected the adsorption of BDE-15 is 1–5 g/L. The pH range was 2–12, the
concentration of BDE-15 was fixed at 30 µmol/L, and 6 mol/L NaOH or HCl solution
was used for pH adjustment. The concentration range of ion strength (HCO3

−, Cl−,
ClO−, H2PO4

−, NO3
−) was 0–10 mol/L. Other operation processes were the same as

isothermal adsorption.
Regeneration experiment of adsorbent: 80 mg GAC was added in 800 mL BDE-15 simu-

lated soil-washing effluent with the concentration of 30 µmol/L, and it was shaken at a
constant temperature for 7 days. After separation, BDE-15 in the adsorption material was
completely eluted with methanol eluent, and the regenerated GAC was placed in the same
concentration of soil-washing effluent again for reuse. The regeneration experiment was
repeated three times.

2.4. Analytical Test

HPLC system (Agilent 1200, Santa Clara, CA, USA) equipped with C18 column
(Agilent Eclipse Plus C18, 4.6 × 150 mm × 5 µm) was used to quantitatively detect BDE-15
and TX-100. The column temperature was below 30 ◦C, the flow rate of mobile phase was
set at 1 mL/min, the injection amount was 20 µL, and the ultraviolet wavelength was set at
226 nm. Isometric elution was used, and the mobile phase was acetonitrile and water with
the ratio of 95:5 (v:v) [36].

2.5. Chemical Calculation Method

The microscopic mechanism of interaction between PBDEs and GAC was studied by
density functional theory (DFT) calculations, and the weak interaction between graphitized
structure and oxygen-containing functional groups in BDE-15 and GAC was mainly ana-
lyzed. In theoretical calculation, coronene is often used as the basic carbon structure model
of activated carbon and biochar [37,38], and structurally substituted oxygen-containing
functional groups to examine the change of properties [39]. In this study, coronene was used
as the basic model, and substituted carboxyl (-COOH), hydroxyl (-OH), aldehyde (-CHO)
and ether (-C-O-C-) were used as oxygen-containing models, respectively, to investigate
the interaction between the carbon structure with oxygen-containing functional groups and
BDE-15. Firstly, the conformation of BDE-15 molecule and the five GAC molecular model
structures were searched, and the stable configuration with the lowest energy was obtained
through structure optimization. Then, the BDE-15 molecule and the corresponding GAC
molecular models were used to establish the complex models and optimize the screening.
The energy and wave function information of monomer molecules and complexes were
obtained by DFT calculation, and the configuration, binding energy, interaction region and
interaction type of complexes were investigated, and the weak interaction characteristics
were judged from the molecular level, thus revealing the mechanism of GAC adsorption of
PBDEs. The specific methods used are as follows:

Firstly, the Molclus program [40] was used to search the conformation of single
molecules, and a batch of initial conformations of BDE-15 and GAC molecules were gen-
erated by the gentor module of the program. The xtb quantum chemistry program [41]
was then invoked to conduct calculation under the semi-empirical method of GFN2-xTB
for preliminary structure screening, and a number of molecular configurations with low
energy were obtained. Furthermore, the quantum chemistry program ORCA 5.0.2 [42]
was used to conduct optimization and frequency calculation for the screened structures
by B97-3c [43,44] density functional method which was explicitly parametrized by includ-
ing the standard D3 semiclassical dispersion correction, and the optimized structure was
further used to calculate the high-precision single-point energy by using the combinato-
rially optimized, range-separated hybrid, meta-GGA density functional ωB97M-V with
VV10 nonlocal correlation and high-grade 3-zeta basis set def2-TZVP. Then, the confor-
mation with the lowest free energy was selected as the structure for the next complex
calculation. Some initial conformations of the complex formed between BDE-15 and GAC



Processes 2022, 10, 1815 5 of 18

molecular model were constructed by the genmer module of Molclus program. The xtb
quantum chemistry program was invoked to conduct preliminary screening under the
semi-empirical method of GFN2-xTB, and a number of complex configurations with low
energy were obtained. The same DFT method as single molecule calculation was used
for optimization, frequency and high-precision single point energy calculation, and the
basis set superposition error (BSSE) correction was done by the counterpoise method to
eliminate the calculation error of complex energy resulting from basis set overlap. With
Gaussian 16 [42], the single point energy of all optimized structures was calculated at
M05-2X/6-31 (d) [45] level with or without SMD implicit solvent model, and the calculated
energy difference was the solvation free energy, which was used to correct the calculated
energy in water environment. The Shermo program developed by Lu [46] was used to
process the output file of frequency calculations and the Gibbs free energy correction values
were obtained. The binding energy between pollutants and functional monomers was
calculated as follows:

∆E = E(pollutant + GAC) − E(pollutant) − E(GAC) (3)

∆G = G(pollutant + GAC) − G(pollutant) − G(GAC) (4)

In this formula, E (kcal/mol) is electron energy, G (kcal/mol) is Gibbs free energy,
and Gibbs free energy is the sum of electron energy, Gibbs free energy correction value
and solvation free energy. ∆E (kcal/mol) is the binding energy, ∆G (kcal/mol) is the
binding free energy, and a negative value of ∆G indicates that a stable compound can be
spontaneously formed.

To study the weak interaction between BDE-15 and GAC, the Electrostatic potential
(ESP), Reduced density gradient (RDG) and Interaction region indicator (IRI) were analyzed
by Multiwfn 3.6 program [47]. RDG scatter plots can show the intensity and type of weak
interaction, and IRI isograph can show the spatial area and type of weak interaction.

3. Results and Discussion
3.1. Physical and Chemical Properties Analysis of GAC

The surface morphology, element composition and pore characteristics of GAC are
shown in Figure 1. SEM results show that GAC has rough and porous surface, various
pore structures and sizes, and contains a certain amount of ash. The results of X-ray energy
dispersive spectrometer (EDS) show that GAC is mainly composed of elements C and O,
with the content of 95% and 5% respectively, which indicates that GAC mainly exists in the
form of carbon structure and contains a certain amount of oxygen-containing functional
groups. The N2 adsorption–desorption isotherm of GAC shows an IV pattern, forming
H1 hysteresis loop. Combined with the pore size distribution curve, it can be seen that
there are both micropores and mesopores in the structure. The average pore diameter
of GAC is 2.31 nm, and the BET specific surface area is 373.09 m2/g, showing excellent
adsorption potential.

3.2. Adsorption Studies
3.2.1. Adsorption Kinetics

The kinetic curve of BDE-15 adsorption by GAC is shown in Figure 2a. The adsorption
capacity of BDE-15 by GAC increases with time and gradually tends to balance within 168 h,
and the adsorption capacity is about 170.21 µmol/g, the long adsorption equilibrium time
is caused by the large particle size of GAC. The adsorption kinetics curve was further fitted
by pseudo-first-order, pseudo-second-order and intraparticle diffusion model, and the
results are shown in Table S1. According to the fitting parameters, the pseudo-second-order
model has a higher fitting accuracy (R2 = 0.997), and the fitted adsorption capacity is close
to the experimental adsorption capacity, showing that GAC may have chemical adsorption
characteristics for BDE-15 [48]. In the intraparticle diffusion model (Figure 2b), qt and t1/2

show a multi-linear relationship, which indicates that the adsorption of BDE-15 can be
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divided into three stages. In the first stage, BDE-15 diffuses to the outer surface of GAC
through the boundary liquid film, and this process is fast and presents a large slope. In the
second stage, BDE-15 diffuses from the outer surface of GAC to the inner hole, and this
process is slow and presents a low slope. In the third stage, the slope is smaller, and the
adsorption rate is slower. In this process, pollutants will enter smaller pores and eventually
tend towards adsorption equilibrium. Among them, the rate-limiting step includes both
external liquid film diffusion and intra-particle diffusion [49].
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3.2.2. Adsorption Isotherms and Thermodynamic

Furthermore, the adsorption of different concentrations of BDE-15 by GAC was in-
vestigated, and the adsorption isotherm in the concentration range of 2–80 µmol/L was
obtained as shown in Figure 3. With the increase of initial concentration of BDE-15, GAC’s
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adsorption capacity of BDE-15 increased rapidly, and showed a good adsorption effect
within the scope of BDE-15 solubilization. Langmuir model and Freundlich model were
used to fit the curve, and the results are shown in Table S2. Both models show good fitting
accuracy, and Freundlich model can better describe the isothermal adsorption process of
BDE-15 by GAC (R2 is 0.980), which indicates that the adsorption energy of GAC is different,
and the distribution of adsorption sites is uneven, and there are many adsorption sites. It is
speculated that van der Waals interaction, hydrogen bond interaction and π–π interaction
may exist between GAC and pollutants [50]. At the same time, 1/n <1, indicates that the
adsorption reaction is easy to perform. According to Langmuir model, the theoretical
maximum adsorption capacity of BDE-15 by GAC is 623.19 µmol/g, which shows good
adsorption performance.

Processes 2022, 10, x FOR PEER REVIEW 7 of 18 
 

 

Figure 2. Adsorption kinetics (a) and intraparticle diffusion (b) for the adsorption of BDE-15 on 
GAC (Adsorption conditions: T = 298 K; CBDE-15 = 30 μmol/L; CTX-100 = 1 g/L; pH = 6; Dosage = 0.1 g/L). 

3.2.2. Adsorption Isotherms and Thermodynamic  
Furthermore, the adsorption of different concentrations of BDE-15 by GAC was in-

vestigated, and the adsorption isotherm in the concentration range of 2–80 μmol/L was 
obtained as shown in Figure 3. With the increase of initial concentration of BDE-15, GAC’s 
adsorption capacity of BDE-15 increased rapidly, and showed a good adsorption effect 
within the scope of BDE-15 solubilization. Langmuir model and Freundlich model were 
used to fit the curve, and the results are shown in Table S2. Both models show good fitting 
accuracy, and Freundlich model can better describe the isothermal adsorption process of 
BDE-15 by GAC (R2 is 0.980), which indicates that the adsorption energy of GAC is differ-
ent, and the distribution of adsorption sites is uneven, and there are many adsorption 
sites. It is speculated that van der Waals interaction, hydrogen bond interaction and π–π 
interaction may exist between GAC and pollutants [50]. At the same time, 1/n <1, indicates 
that the adsorption reaction is easy to perform. According to Langmuir model, the theo-
retical maximum adsorption capacity of BDE-15 by GAC is 623.19 μmol/g, which shows 
good adsorption performance. 

 
Figure 3. Fitting curves of isothermal adsorption of BDE-15 by GAC (Adsorption conditions: T = 298 
K; CTX-100 = 1 g/L; pH = 6; Dosage = 0.1 g/L). 

The thermodynamic parameters of adsorption of BDE-15 by GAC, such as Gibbs free 
energy (ΔG0), enthalpy change (ΔH0) and entropy change (ΔS0), were further calculated 
by using the fitting parameters of the Freundlich model. As shown in Table S3, −11.84 < 
ΔG0 < 0, ΔH0 (5.83 kJ/mol) and ΔS0 (55.87 J/mol/k) > 0, so the adsorption of BDE-15 by GAC 
is a spontaneous endothermic reaction, and the disorder of the adsorption process gradu-
ally increases, which indicates that the adsorption of BDE-15 on GAC is an easy process. 
Low ΔH0 indicates that the influence of temperature can be neglected [49], indicating that 
the adsorption process has good temperature adaptability, which is beneficial to the ap-
plication in practical environment. 

3.3. Effect of Environmental Factors 
The effect of dosage on adsorption effect (adsorption conditions: T = 298 K, CBDE-15 = 

30 μmol/L, CTX-100 = 1 g/L, pH = 6) is shown in Figure 4a, with the increase of GAC dosage, 
BDE-15 removal rate gradually increases, and TX-100 loss rate gradually decreases. When 
the dosage was 0.1 g/L, BDE-15 removal rate reached about 59%, TX-100 loss rate was 
6.91%, and when the dosage was 0.8 g/L, BDE-15 was removed completely, and TX-100 

0 6 12 18 24 30 36

0

60

120

180

240

300

360

420  BDE-15
 Langmuir modle
 Freundlich modle

q e
 (μ

m
ol

/g
)

Ce (μmol/L)
Figure 3. Fitting curves of isothermal adsorption of BDE-15 by GAC (Adsorption conditions:
T = 298 K; CTX-100 = 1 g/L; pH = 6; Dosage = 0.1 g/L).

The thermodynamic parameters of adsorption of BDE-15 by GAC, such as Gibbs
free energy (∆G0), enthalpy change (∆H0) and entropy change (∆S0), were further cal-
culated by using the fitting parameters of the Freundlich model. As shown in Table S3,
−11.84 < ∆G0 < 0, ∆H0 (5.83 kJ/mol) and ∆S0 (55.87 J/mol/k) > 0, so the adsorption of
BDE-15 by GAC is a spontaneous endothermic reaction, and the disorder of the adsorption
process gradually increases, which indicates that the adsorption of BDE-15 on GAC is an
easy process. Low ∆H0 indicates that the influence of temperature can be neglected [49], in-
dicating that the adsorption process has good temperature adaptability, which is beneficial
to the application in practical environment.

3.3. Effect of Environmental Factors

The effect of dosage on adsorption effect (adsorption conditions: T = 298 K,
CBDE-15 = 30 µmol/L, CTX-100 = 1 g/L, pH = 6) is shown in Figure 4a, with the increase of
GAC dosage, BDE-15 removal rate gradually increases, and TX-100 loss rate gradually
decreases. When the dosage was 0.1 g/L, BDE-15 removal rate reached about 59%, TX-100
loss rate was 6.91%, and when the dosage was 0.8 g/L, BDE-15 was removed completely,
and TX-100 loss rate was 17%. The removal rate of BDE-15 is obviously higher than the
loss rate of TX-100, which shows the application potential of GAC in adsorption removal
of PBDEs from soil-washing effluent and recovery of TX-100.
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The effect of initial pH on adsorption (adsorption condition: T = 298 K, CBDE-15 = 30 µmol/L,
CTX-100 = 1 g/L, Dosage = 0.1 g/L) is shown in Figure 4b, the adsorption capacity of BDE-
15 is the highest at pH 6~8, and the reduction of adsorption efficiency under acid–base
conditions may be caused by the destruction of oxygen-containing functional groups of
GAC [51], but the adsorption capacity is always higher than 80 µmol/g, and the loss rate
of TX-100 is always lower than 11%. The results show that the solution pH has little effect
on the recovery rate of TX-100, and BDE-15 has the best removal efficiency in the pH range
from weak acid to weak base, so GAC has good pH adaptability.

The effect of the initial TX-100 concentration in the solution on the adsorption effect
(adsorption conditions: T = 298 K, CBDE-15 = 30 µmol/L, pH = 6, Dosage = 0.1 g/L) is
shown in Figure 4c, with the increase of TX-100 concentration; the removal rate of BDE-15
gradually decreased from 82.5% to 30.9%, indicating that higher concentration of TX-100
will hinder the adsorption process of BDE-15. At higher surfactant concentration, more
surfactant micelles will exist in the aqueous phase, thus solubilizing more BDE-15 and
reducing the adsorption of BDE-15 [52]. At the same time, the micropores of GAC will be
blocked by more surfactant molecules, so the pores available for adsorption of BDE-15 will
be reduced. In all cases, the loss rate of TX-100 is less than 7%. All of them are far less
than the removal rate of BDE-15, indicating that GAC adsorption is an effective method to
remove PBDEs and recover TX-100 from soil-washing effluent.

The influence of anions HCO3
−, Cl−, ClO−, H2PO4

− and NO3
− coexisting in eluent

on the adsorption effect is shown in Figure 4d. GAC keeps good adsorption performance
of BDE-15 and recovery rate of TX-100 in the presence of anions, especially the adsorption
of BDE-15 by HCO3

−, Cl−, H2PO4
− and NO3

− and TX-100. The adsorption of BDE-15
was slightly inhibited by high concentration of ClO−. As one of the reagents for oxidative
modification of carbon materials [53,54], the oxidation of ClO− destroyed the carbon
structure of GAC, resulting in the weakening of π–π interaction between benzene ring
of BDE-15 and unsaturated carbon of GAC, while the recovery rate of TX-100 remained
basically unchanged, indicating that the change of GAC structure has little effect on the
adsorption of TX-100. Good adsorption performance of BDE-15 and recovery effect of
TX-100 in the presence of GAC coexisting ions show good practical application potential.

3.4. Adsorption of Various PBDEs by GAC

In actual contaminated sites, where there are usually various PBDEs, the adsorption
characteristics of different PBDEs by GAC in TX-100 eluent were further investigated. The
adsorption effect of GAC on different PBDEs is shown in Figure 5. The results show that
GAC has good adsorption effect on five PBDEs. With the increase of bromine content
in PBDEs, the adsorption capacity of GAC to PBDEs decreased; this may because low
brominated polybrominated diphenyl ethers have smaller molecular volume and are easier
to combine with the adsorption sites of adsorbents. In summary, GAC shows good removal
ability for PBDEs with different bromination degrees.

3.5. Recycling of GAC

In order to study the recycling performance of GAC after treating eluent, methanol
was used to elute GAC for regeneration and reuse. As shown in Figure 6, in the three
recovery–adsorption cycles, the adsorption capacity of GAC decreases slightly, and the
adsorption capacity of GAC remains above 103 µmol/g, with a decrease of 25 µmol/g (a
decrease of 19%). GAC shows good recyclability and reusability, which is beneficial to
practical application.
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Figure 5. Adsorption of different concentrations of PBDEs by GAC (Adsorption conditions: T = 298 K;
CTX-100 = 1 g/L; pH = 6; Dosage = 0.1 g/L).
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Figure 6. Reuse of GAC (Adsorption conditions: T = 298 K; CBDE-15 = 30 µmol/L; CTX-100 = 1 g/L;
pH = 6; Dosage = 0.1 g/L).

3.6. Adsorption Mechanisms
3.6.1. Characterization before and after Adsorption

Adsorption is an interface process between the adsorbed pollutants and the surface
of materials. In order to explore the adsorption mechanism, firstly, XPS was used to
study the change of surface chemical structure of GAC after adsorption of BDE-15. As
shown in Figure 7a, the main elements in GAC are C and O, and the peak positions of
C1s and O1s have no obvious change before and after adsorption, which indicates that
the chemical composition and structure of GAC before and after adsorption are basically
the same. After the GAC eluent was treated, the Br element peak appeared in the general
spectrum (Figure 7b), indicating that BDE-15 was successfully adsorbed on GAC. Before
adsorption, the C1s spectrum was divided into three peaks of 289.7, 285.9 and 284.4 eV in
Figure 7c, which correspond to C=O, C—O and C=C bonds respectively, indicating that
GAC is a carbon skeleton structure composed of aromatic benzene rings [55]. The O1s
spectrum was divided into 535.18, 530.86 and 532.67 eV in Figure 7d, corresponding to
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O—Fx, C—O and O—H bonds, respectively. Combined with the peak of C1s, it shows
that GAC may have oxygen-containing functional groups such as carbonyl, hydroxyl,
carboxyl and ether groups, which is consistent with the results of EDS. After adsorption,
the peaks corresponding to C=C, C=O and O—H bonds became weak, indicating that
they were involved in the adsorption of BDE-15, and it is speculated that there is an
interaction between the unsaturated carbon structure or oxygen-containing functional
groups of BDE-15 and GAC.
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According to the infrared spectrum of GAC before and after adsorption, the change
of functional groups on the surface of the material was qualitatively analyzed. As shown
in Figure 8, before adsorption, the characteristic peak near the peak of GAC at 3438 cm−1

was O—H stretching vibration peak, the characteristic peak near 2904 cm−1 was C—H
stretching vibration peak, and the characteristic peak near 1633 cm−1 was C=C stretching
vibration peak of aromatic ring. The absorption peak near 1093 cm−1 indicates that the
GAC surface compounds contain associated primary alcohol hydroxyl groups: below is the
stretching vibration peak of C—O bond, which mostly exist in phenolic or hydroxyl groups.
After adsorption of BDE-15, the O—H stretching vibration peak of GAC around 3438 cm−1

was relatively weakened, which indicate that there is an interaction between O—H and
BDE-15, and it is speculated that there is hydrogen bonding. The stretching strength
of aromatic ring C=C at 1633 cm−1 moved to 1577 cm−1, which prove that there is π–π
interaction between BDE-15 and GAC [34], which is consistent with XPS analysis results.
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3.6.2. Microscopic Mechanism from DFT Calculations

To further study the microscopic interaction mechanism between PBDEs and GAC,
the weak interaction between GAC carbon structure model and BDE-15 was investigated
by computational chemistry. According to the characterization results, the pure carbon
structure model with coronene as the basic structure, and the structural models with
carboxy, hydroxyl, aldehyde and ether substitution were constructed to simulate the
unsaturated carbon structure and oxygen-containing functional group structure of GAC.
The electrostatic potentials of BDE-15 and five GAC structural models are shown in Figure 9.
BDE-15 shows negative electrostatic potentials near its bromine atom and oxygen atom, and
other areas especially near its hydrogen atom, show positive electrostatic potentials. This
is because the electronegativity of bromine atom and oxygen atom is greater than that of
carbon atom, while the electronegativity of hydrogen atom is the smallest. In the structure
of coronene, all the carbon atoms show negative electrostatic potential characteristics, and
the hydrogen atoms show positive electrostatic potential characteristics. The introduction
of oxygen-containing functional groups increases the positive electrostatic potential area
and negative electrostatic potential area near the group, and it belongs to the region
with the strongest polarity in the structure. According to the principle that positive and
negative electrostatic potentials attract each other, BDE-15 and GAC structure model can
form a variety of composite configurations. It could be speculated that the existence of
strong electrostatic potential region near the group makes BDE-15 easier to combine with
the group.
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A number of stable configurations with low energy were screened out by further
conformation search, as shown in Tables S4 and S5. It can be found that all the composite
structures have low binding free energy, which indicates that BDE-15 is easy to form a
composite with GAC structure model, especially the structure with oxygen-containing
functional groups. The binding free energy reaches a negative value, which indicates that a
stable composite can be spontaneously formed. Its configuration also indicates that BDE-15
tends to bind near the group, which is consistent with the results of electrostatic potential
analysis. Therefore, the configuration energy of GAC containing functional groups and
BDE-15 is lower, which indicates that the composite configuration formed by functional
groups is more stable, which is beneficial to enhance the adsorption interaction [56], among
which -COOH has the most obvious enhancement effect.

The compound configuration with the lowest energy formed by the above-mentioned
GAC structure models and BDE-15 were selected for weak interaction analysis, and the
results are shown in Figure 10. The compound configurations all show green peaks near
−0.01 a.u of RDG scatter diagram, and a large area of green isosurface appears between
the benzene ring of BDE-15 and the carbon structure of GAC molecular model in the corre-
sponding IRI isosurface diagram, which confirms the existence of van der Waals interaction
and π–π interaction [47]. The introduction of oxygen-containing functional groups extends
the interaction area, and can form O-H, Br-H and other interactions. Combining with the
adsorption experiment and the characterization results of GAC structure changes before
and after adsorption, we see that the interaction between BDE-15 and GAC is mainly van
der Waals attraction and π–π interaction, while there is also hydrogen bond interaction.
The existence of oxygen-containing functional groups strengthens the interaction between
the molecules, and -COOH has the strongest promoting effect.
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4. Conclusions

An effective adsorption process of removing PBDEs and recovering TX-100 surfactant
at the same time in soil-washing effluent was investigated with coconut shell granular-
activated carbon (GAC), and the microscopic interaction mechanism between GAC and
PBDEs was analyzed by DFT calculation. The results showed that, the adsorption of BDE-15
by GAC is an adsorption process with uneven distribution of adsorption sites and interac-
tion between functional groups; the adsorption rate was controlled by external liquid film
diffusion and intra-particle diffusion. ∆G0 was negative in the adsorption process, which
indicated that the adsorption process of BDE-15 is spontaneous. Under the optimum reac-
tion conditions, the maximum adsorption capacity of BDE-15 could reach 623.19 µmol/g,
which is larger than adsorption capacity of adsorbents in previous studies (Table S6), and
the recovery rate of TX-100 was always higher than 83%. Natural coexisting ions and pH
had little effect on the removal of BDE-15 and the recovery of TX-100: methanol could
effectively regenerate GAC, and after repeated use (three times), the adsorption capacity
could still be above 81% of the initial GAC, which is beneficial to practical application.
The results of XPS and FTIR showed that there were unsaturated aromatic structures and
oxygen-containing functional groups in GAC. DFT calculation showed that the interaction
between BDE-15 and GAC was mainly van der Waals interaction and π–π interaction, while
there was O–H interaction. The existence of oxygen-containing functional groups promotes
interactions between the molecules, which was conducive to the adsorption of BDE-15, and
–COOH had the strongest promoting effect.
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parameters of BDE-15 adsorption kinetic model of GAC; Table S2: Fitting parameters of isother-
mal adsorption model for BDE-15 of GAC; Table S3: Thermodynamic parameters of BE-15 ad-
sorption by GAC; Table S4: The information of optimized geometric coordinates; Table S5: Bind-
ing energy (∆E298.15K, kcal/mol), Gibbs free energy change (∆G298.15K, kcal/mol), and enthalpy
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