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Abstract: The demand for effective, low-cost vaccines increases research in next-generation biomanu-
facturing platforms and the study of new vaccine delivery systems (e.g., mucosal vaccines). Applied
biotechnology in antigen production guides research toward developing genetic modification tech-
niques in different biological models to achieve the expression of heterologous proteins. These studies
are based on various transformation protocols, applied in prokaryotic systems such as Escherichia coli
to eukaryotic models such as yeasts, insect cell cultures, animals, and plants, including a particular
type of photosynthetic organisms: microalgae, demonstrating the feasibility of recombinant protein
expression in these biological models. Microalgae are one of the recombinant protein expression
models with the most significant potential and studies in the last decade. Unicellular photosynthetic
organisms are widely diverse with biological and growth-specific characteristics. Some examples of
the species with commercial interest are Chlamydomonas, Botryococcus, Chlorella, Dunaliella, Haemato-
coccus, and Spirulina. The production of microalgae species at an industrial level through specialized
equipment for this purpose allows for proposing microalgae as a basis for producing recombinant
proteins at a commercial level. A specie with a particular interest in biotechnology application
due to growth characteristics, composition, and protein production capacity is D. salina, which can
be cultivated under industrial standards to obtain βcarotene of high interest to humans. D saline
currently has advantages over other microalgae species, such as its growth in culture media with a
high salt concentration which reduces the risk of contamination, rapid growth, generally considered
safe (GRAS), recombinant protein biofactory, and a possible delivery vehicle for mucosal application.
This review discusses the status of microalgae D. salina as a platform of expression of recombinant
production for its potential mucosal application as a vaccine delivery system, taking an advance on
the technology for its production and cultivation at an industrial level.
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1. Introduction

Nowadays, biotechnology applied to developing products in the health industry is
highly diversified worldwide [1,2]; this interdisciplinary branch of biological sciences presents
greater participation in the market of pharmaceuticals and vaccines each day [3,4]. Therefore,
searching for new scientific developments with practical applications is a priority in the
industry. The approaches of biotechnology applications on microalgae range from metabolic
modification [5,6], to phytochemicals production (lipids, carbohydrates, terpenoids, phenolics,
and alkaloids) [7], to the expression of recombinant proteins [8]. In this area, efforts are
focused primarily on developing expression systems capable of achieving both the industrial
aspects of production costs and the quality of the recombinant proteins expressed [8]. Through
the development of protein expression systems, the study of biological models begins with
prokaryotic models (Streptomyces spp., Bacillus spp., Lactococcus lactis, Escherichia coli, and
Corynebacterium glutamicum) [9], in conjunction with different plasmid-based gene expression
strategies, with advantages such as high level of protein expression, rapid cell division, low
cost for the production of raw biomass.

Nevertheless, the prokaryotic system presents limitations such as forming insoluble
inclusion bodies, purification process requirements due to the presence of endotoxins, and
limited post-translational [10,11], which limit its use in the expression of high-quality pro-
teins. Unlike prokaryotic systems, eukaryotic systems allow the possible design of complex
proteins with post-translational characteristics [12,13], which in many cases compromise
folding and function. Model eukaryotic expression platforms include yeast, animal, plant,
mammalian/insect cells, and microalgae. Potvin et al., 2010 describe differences between
these expression platforms, including (i) size of the heterologous gene, (ii) sensitivity to
shear stress, (iii) recombinant product yield, (iv) production time, (v) cost of production,
(vi) scale-up and storage cost. A complete comparison with several other production
systems could be visualized in this review [14].

Due to its characteristics, the eukaryotic organism yeast is one of the expression
systems widely used in the industry [15]. This organism presents advantages in its use,
range of reproduction, culture in confinement (biological reactors), and an average cost
of production; however, it has disadvantages such as post-translational modifications
being significantly different from humans, and the high price of scale-up costs [14], require
preliminary analysis to consider this system for the production of antigens. In the case of eu-
karyotic cell systems, including invertebrate and mammalian cell lines, advantages include
the ability to achieve post-translational modifications resulting in high-quality products and
efficient protein secretion to the medium, which facilitates purification and the availability
of standard methods for genetic manipulation [16,17]. Nonetheless, its production cost, the
high nutrient requirements, cell growth rate, and the risk of contamination by pathogens
(viruses, bacteria, prions), in some cases, limit their use in vaccine production models [17].
A different approach to producing recombinant proteins is the generation of genetically
modified organisms, e.g., plants and animals. The main advantage of using transgenic
animals to produce recombinant proteins is the high yields of a high-quality product. De-
spite its benefits, the process of generating transgenic animals implies a long time between
the genetic engineering phase and the start of production, a low rate of gene integration,
and unpredictable behavior of the transgenes [18,19]. In particular, plants such as cereals,
tobacco, legumes, fruits, and vegetables [19], present attractive advantages for their use
in the production of recombinant proteins due to their production cost, the capacity of
post-translational modifications, cultivation cost advantages, and low scale-up cost [8], but
disadvantages such as production time, lacks regulatory approval [19], as well as the possi-
ble genetic contamination in populations of non-genetically modified plants [20], hinder its
mass production. Plant cell culture in vitro represents an essential role as a new expression
platform at the industrial level [21]. Plant cells, as they are not vectors of animal pathogens,
viruses, prions, or bacteria, carry out complex post-translational modifications [22], as well
as cultivation in closed systems, in addition to storing recombinant proteins at adequate
levels stabilized by a simply freeze-drying process, show attractive advantages for its use
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in mucosal vaccination. Nonetheless, this expression system is limited by the long period
between the production of transgenic plants and recombinant proteins [21,23].

This outlook reflects the need for next-generation platforms to overcome some limita-
tions in conventional systems. During the last two decades, microalgae have also emerged
in this field as a potential new platform for the production of biopharmaceuticals [7,22] due
to various advantages that are mentioned below.

2. Approaches for Mucosal Vaccine Delivery

The mucosal surface is a specialized tissue with the function of a selective barrier of
the internal and external environment of organisms, capable of exchange of nutrients and
oxygen and preventing the passage of foreign objects and pathogens. The protection of
this particular tissue is mainly based on the participation of mucosa-associated lymphoid
tissues (MALT), distributed along the mucosal surface [24], which are responsible for the
production and secretion of a particular type of secretory immunoglobulin A (S-IgA). The
predominant isotype in the local immune response in mucous membranes [25], S-IgA
is an essential part of defenses at the local level, preventing the entry of pathogens [26].
Parenteral administration of antigens is not practical for their induction, so the mucosal
immune system is considered separate from systemic immunity [27].

Interestingly, despite the advantages of mucosal vaccination such as non-invasiveness,
mucosal solid immune response to prevent the entry of most infectious agents, ability to
avoid the previous immune response by parenteral vaccination, local immune stimulation
as systemic, as well as its easy application [25], mucosal vaccines approved for use are
limited [26]. The design of a mucosal vaccine requires the correct selection of the following
components: (1) an antigen capable of inducing an efficient immune response, (2) an adju-
vant capable of stimulating the adaptive immune response, and (3) a suitable administration
system. In the case of oral and nasal mucosal administration systems include viral vectors,
virus-like particles, emulsions, immune-stimulating complexes, monophosphoryl lipid
A, calcium phosphate nanoparticles, polymeric nanoparticles, liposomes, proteasomes,
cholesterol-bearing pullulan nanoparticles, self-assembled peptides, nanogels, chitosan [25],
plant tissue [27], and microalgae [28]. Microalgae models in recent years have reflected a
development in the production of recombinant proteins, so its use as a vehicle for vaccine
administration is interesting for research.

3. Microalgae as a Biofactory for Proteins

The denomination microalgae include all unicellular organisms with a photosynthetic
capacity [29]. Therefore, this denomination comprises a broad polyphylogenic group,
including species from cyanobacteria to eukaryotes [30]. The production of microalgae
for human benefit is a practice known for over 2000 years [31]. Currently, the cultiva-
tion of microalgae has applications in the area of food, cosmetic, and pharmaceutical
industries [32] because it constitutes a natural source of lipids, vitamins, pigments (zeaxan-
thin, lutein, astaxanthin, and phycocyanin), antimicrobials [33,34], and antioxidants [35].
Species with industrial interest include Chlamydomonas, Botryococcus, Chlorella, Dunaliella,
Haematococcus, and Spirulina [29]. Another approach is protein production for human,
and animal nutrition [35,36], due to high protein content [37,38]. In particular, the protein
synthesis capacity of some microalgae species supports a possible use for the industrial
production of recombinant proteins. The advantages of microalgae compared to other
systems include a high growth rate, culture conditions in confined systems, availability of
genetic engineering tools, absence of toxic compounds (generally recognized as safe GRAS
classification), post-translational modifications, and high biosynthetic capacity in terms of
biomass yield [14,33].

Regarding post-translational modifications, glycosylation is directly responsible for the
immunogenicity of an antigen [39]. Therefore, a previous glycosylation patterns analysis
of a system is necessary before selecting it for vaccine production. In general, protein
expression systems possess species-specific N-glycans, with differences from human post-
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translation modification including “hyper-mannosidosis” structures (excess of mannose
residues assembled on yeast), absence of essential human residues (α (2,6)-sialic acid
and α(1,4)-fucose), undesired non-human residues (N-glycolylneuraminic acid (Neu5Gc)
and galactose-α (1,3)-galactose (α-Gal)) on CHO cells, glycans containing immunogenic
residues (β(1,2)-xylose and core α(1,3)-fucose) on plant cells. In the particular case of
microalgae, two different glycosylation pathways are reported: GnT I enzyme-independent
consists of 5 Man and 2 GlcNAc N-linked protein subjected to xylosyltransferases (XyT) and
methyltransferases (MeT), leading to unique N-linked structures containing methylated
mannoses linked to one or two xyloses with structures vary slightly among microalgae
species, and GnT I enzyme-dependent transfers an N-acetylglucosamine residue to the 5
Mannose and 2 GlcNAc N-linked protein, subjected to α-mannosidase II (α-Man II) and
fucosyltransferase (FuT), resulting in paucimannosidic (Man 3–4GlcNAc 2) fucosylated
N-glycans. However, in these processes, microalgal species showed patterns more similar
to humans [40].

In biopharmaceutical production, microalgae are a potential biofactory for antibodies,
nanobodies, cytokines, antimicrobial peptides, vaccines, hormones, and enzymes [41,42]. A
comprehensive list of proteins expressed in microalgae with industrial and biopharmaceuti-
cal applications in animals and humans has been reported in different species. Barolo et al.,
2020 extensively describe proteins produced and the microalgae used in their essays [40].

Due to the industrial interest in microalgae cultivation, developing highly special-
ized systems focused on efficient and low-cost cultivation showed progress over the last
decade [43–47]. Microalgae culture systems are classified into two types: open-type photo-
bioreactors (raceways) and closed-type photobioreactors (PBR) [48]. These present systems
differ in their design; however, their main concerns are the correct exposure to light, nu-
trients, temperature, and proper O2 and CO2 management [48]. Both designs are widely
used. Therefore, producing biomass for recombinant proteins is a logical step. Some
species considered possible expression platforms are C. reinhardtii, C. vulgaris, C. ellipsoidea,
D. salina, P. tricornutum, and N. oculata [14,40,49].

Genetic engineering on microalgae proved potential for protein expression at the
industrial level [18,40,50,51]. In addition, assays with microalgae species led to new protein
expression platforms with distinct and innovative characteristics. Recently, Dunaliella sp.
is one of the models proposed for study in protein expression [28,52–55]. The following
subheadings describe the biological and industrial characteristics of D. salina.

4. Dunaliella sp. as a Production and Delivery Vehicle for Antigens
4.1. General Features

Dunaliella sp. is a unicellular, halophilic, biflagellate, naked green alga Phylum
Chlorophyta, Class Chlorophyceae, order Volvocales, family Polyblepharidaceae with a total
of 29 species, as well as several varieties and forms [56,57]. D. salina was first described
in 1905 [58]. The genus Dunaliella sp., named in honor of Michel Felix Dunal [59] is the
richest natural source of βcarotene, violaxanthin, neoxanthin, zeaxanthin, and lutein with
the function of photoprotective to the high irradiance [60,61] and vitamins, antioxidants,
polyunsaturated fatty acids, minerals, and enzymes [62]. Recently, the study of this species
raised interest in its protein content, which ranges from 50 to 80% (dry weight), also for
the content of essential amino acids, which is higher than recommended by the Food
and Agriculture Organization of the United Nations (FAO) [36]. Dunaliella sp. presents
different forms (spherical, pyriform, fusiform, ellipsoid), sizes from 5 to 25 µm in length
and from 3 to 13 µm in width, also contain a single chloroplast, chlorophylls a and b, and
organelles observed in green algae: membrane-bound nucleus, mitochondria, vacuoles,
Golgi apparatus, and an eyespot and elastic plasma membrane covered by a mucus surface
coat with the capacity of shrinks or swells according with the hypertonic and hypotonic
conditions [62,63]. D. salina, similar to other microalgae, undergoes a complex life cycle,
cellular divisions by lengthwise division in the motile state (vegetative cells), but also
presents sexual reproduction (sexual zygote formation) [56].
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Several species of Dunaliella sp. are observed in high salt concentrations, classifying
them as halophilic organisms. However, some species thrive in freshwater [64,65] as well as
over a wide pH range, from pH1 (D. acidophila) to pH11 (D. salina) [66]. The high capacity
to adapt to different concentrations of salinity (3 to 31%) and temperature range (<0 ◦C
to >38 ◦C) make Dunaliella sp. a unique and highly resistant eukaryotic organism [67].
Because of these characteristics, various species of Dunaliella sp. have been isolated in
diverse ecosystems over the world [68]. Because of all high-value features, Dunaliella sp.
can be considered a promisor recombinant expression system [49,63,69,70]; between these
features are included: the capacity to grow in a wide range of salt concentrations which
can prevent contamination of the culture [66], transcriptional modifications [42,50,71],
and lacking a rigid cell wall, facilitating genetic transformation procedures as well as the
extraction during downstream processing [63].

4.2. Production Aspects

D. salina culture media have wide ranges in salts and pH (6 to 23 % of NaCl, and pH 6
to 9) [56,72]. Optimal grown conditions are between 2 and 8% salt; a high salt concentration
affects the growth rate in some cases. Under the best conditions for growth, the division
rate can go from 0.5 to 1.22 divisions per 24 h [56]. Based on several studies, an average
concentration of salt in the culture media of D. salina (12%) and D. viridis (6%) are the
optimal salt concentration for growing [73,74]. However, other strains present different
growth conditions [75]. In general, the culture conditions are a temperature of 25 ± 2 ◦C
under the white fluorescent light of 52.84 µmol photons m−2 s−1 without aeration in stirring
at 110 rpm/min in the orbital shaker [67,76]. The efforts focus on developing an efficient
condition for growing under laboratory and industrial requirements [60,77–79]. Media
for growth of D. salina suggested include: modified Johnson’s medium, Erdschreiber’s
medium, Guillard’s F/2 medium, modified ASP medium, and enriched seawater [76,80].

4.3. Culture Systems of D. salina

Mass culture of microalgae is reported in systems such as open ponds, circular ponds,
raceway ponds, cascade ponds, large bags, tanks, heterotrophic fermenters, and several
kinds of closed PBR [81,82]. In the case of D. salina, it can be grown under controlled
conditions in selective media and biological contamination-free [83]. Currently, PBR im-
plementation for Dunaliella’s intensive culture is widely reported [63,84]. PBR has several
advantages compared with other culture systems, such as higher yield, cleaner product,
and concentration of secondary metabolites. In general, there are three types of PBR: flat
plate bioreactors, tubular PBR, and ultrathin immobilized configurations [81,82,85]. The
use of PBR for Dunaliella sp. culture has been focused on secondary metabolite production;
however, their possible use as a PBR system for recombinant protein production is also
feasible [86–89].

4.4. Genetic Engineering Tools Applied to D. salina

Among the genetic manipulation techniques reported for Dunaliella sp. include electro-
poration [90,91], particle bombardment [92], glass beads [93], lithium acetate/polyethylene
glycol (PEG)-mediated method [55], and Agrobacterium-mediated method (agroinfiltra-
tion) [52]. In general, all techniques present a range of advantages and disadvantages for
their use in microalgae [42]. Expression-efficacy depends on codon optimization, protease
activity, protein toxicity, and transformation-associated genotypic modification [94]. In
the case of D. salina, some of the technical approaches reported for nuclear transformation
include LiAc/PEG-mediated method, glass bead method, and agroinfiltration protocol.
In the case of chloroplast transformation, the most recommended method is particle bom-
bardment. The possible use of other techniques, ultrasonic delivery [95], ultraviolet laser
microbeam [96], and aerosol gene delivery [97], allows the opportunity to explore new ap-
proaches to achieve the best form of genetic manipulation in Dunaliella sp. These methods
present a relatively low level of transformation and differences in their practicality and
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repeatability; however, most of these are focused on the expression of reporters, selecting
genes, therapeutic application, and production of viral proteins. Viral antigens, includ-
ing hepatitis B surface antigen (HBsAg), yielding 3.11 ng/mg of total soluble protein by
transforming electroporation protocol, white spot syndrome virus (WSSV) VP28, yielding
3.04 ng/mg of soluble protein by gene glass beads transformation [42], and hemagglutinin
influenza virus yielding 255.5 µg/2 g wet weight by agroinfiltration protocol [52]. Despite
the low expression levels [98], these assays are focused on determining the ability of this
system to express viral proteins, so yields require other approaches.

One of the most promising systems for expressing recombinant proteins in D. salina
is the agroinfiltration protocol mediated by Agrobacterium tumefaciens [52,99,100]. This
protocol is based on the ability of A. tumefaciens, an indirect method, to transfer exogenous
desoxyribonucleic acid (DNA) to plant cells through a bacterial conjugation system (Type
IV secretion system (T4SS) and protein-DNA complexes) [101]. Plants are naturally affected
by A. tumefaciens, including angiosperms and gymnosperms [102]. Briefly, A. tumefaciens,
a bacterium present in the soil, moves towards the wound upon detecting phenolic com-
pounds from a wounded plant, adheres, and begins to transform plant cells by inducing
the transcription of virulence genes present in a plasmid called Tumor-inducer (Ti-DNA).
Ti-DNA, together with the bacterial virulence proteins (VirD1, VirD2, VirE2), induces the
transcription, processing of transfer DNA (T-DNA), and integration into the plant genome.
Transferential DNA with A. tumefaciens requires the insertion of a gene of interest in T-DNA
present in Ti-DNA for its insertion into the genome of the nucleus of the cells [102,103].
The random insertion observed in this method suggests a non-homologous recombina-
tion mechanism [104]. Since the first experiments for the elaboration of transgenic plants
using A. tumefaciens in 1983 [102], significant advances in understanding the T-DNA inser-
tion process, protocols, and experimentation in model plants, including in D. salina have
been achieved.

4.4.1. Selection Markers and Reporter Genes

In the case of D. salina, selection markers, similar to antibiotics, require a different
approach [92], because this microalga presents inherent resistance to a variety of antibiotics
streptomycin, kanamycin, hygromycin (600 µg mL−1) [90], spectinomycin (1200 mg L−1) [100].
The use of chloramphenicol (60 µg mL−1) [90], and zeocin 5 mg L−1 [91] are feasible for the
selection of transformed cells. Another selection gen for D. salina reported is herbicide
phosphinothricin (PTT) (0.5 µg mL−1) [105]. As reporter genes, the gus reporter gene [92], and
the enhanced green fluorescent protein (EGFP), are applied [106].

4.4.2. Promoters and Enhancers for D. salina

The use of an efficient promoter is fundamental for the selection of any host. Among
the principal exogenous promoters developed for D. salina are cauliflower mosaic virus 35,
CaMV35S [55,91,92], Ubiquitin (Ubil), Ubil-Ω, CaMV35S-Ubil, CaMV35S-Ubil-Ω, endoge-
nous promoters of actin gene [105], and glyceraldehyde-3-phosphate dehydrogenase [107],
with high driving activity for gene expression. Inducible promoters include driving expres-
sion under a variety of sodium chloride concentrations (duplicated carbonic anhydrase
1 (DCA1)) [108], driving in the presence of nitrate, and inhibiting gene expression in the
presence of ammonium ions (promoter NR gene) [109]. In the case of enhancers, a correct
selection could prevent the gene silencing effect due to the position effect [110]. Enhancers
reported on D. salina are the matrix attachment regions (MARs) [71] and 5′ leader se-
quence of tobacco mosaic virus RNA (Ω element) combined with promoters Ubil and
CaMV35S-Ubil [90]. Studies suggest by MARs as a regulatory sequence increase expression
levels [111,112], as well as stabilize their transcription processes [113,114] in transgenic
offspring. Wang et al., 2005 demonstrated an increase in CAT gene expression 4.5-fold com-
pared with other regulatory sequences through MARs in transformed D. salina [115,116].
Enhancers from other systems and genetic screening by selected UV-induced mutations
with highly expressed nuclear transgenes open new possibilities [42,117]. In the case of
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nuclear protein expression, random integration sites, RNA silencing, a compact chromatin
structure, and non-conventional epigenetic effects [28,90,110], are possible factors affect-
ing protein yield. Strategies to address these issues include surrounding insertion-site
sequences analysis [118–120] and further study of regulatory sequences [111–114,121,122].

Currently, chloroplast transformation protocols in D. salina require a new approach due
to potential observed in other organisms [42,123–126]; evaluation of regulatory sequences [42]
and chloroplast transformation strategies [51,95,127–131] are possible improvement solutions.
The publication of the complete sequence of the D. salina chloroplast genome (ptDNA) [132]
encourages the development of more efficient transformation methods.

4.5. Advances in Dunaliella Transformation for Recombinant Biopharmaceutical Production

In general, expression in nucleus D. salina cells is focused mainly on reporter genes
such as β-glucuronidase gene [50], enhanced green fluorescent protein [107], and selection
markers such as phosphinothricin acetyltransferase under promoter DCA1 [110], chlo-
ramphenicol acetyltransferase [66], and zeocin resistance protein [105]. However, the
expression of commercial value proteins is reduced [108,109], including immunogens [50].
Although several results [28,42,52,90], none of these proteins has led to the generation of
products at the industrial level. According to findings, the Dunaliella system can be used in
an approach for industrial applications, in particular in antigen production. The chloroplast
is also an attractive expression protein system in microalgae due to advantages such as
directed integration of genes via homologous recombination [133], high-level expression,
organization of transgenes into operons, and no epigenetic interference [134,135], as previ-
ously reported [123,126]. Although there are few reports of expression in the chloroplast of
D. salina [136], other systems such as Chlamydomonas [131], demonstrated that the use of
chloroplast for the expression of recombinant proteins could be a proposal for proteins of
commercial value. The purpose of new promoters and construction of expression vectors
for D. salina chloroplast transformation is the following step [42] (Figure 1).

4.6. Immunological Aspects in Mucosal Vaccination with D. salina

Vaccination is one of the leading practices in medicine to control and prevent the vast
majority of infectious-contagious diseases [137], based on the correct presentation of an
antigen to the immune system. For this, it is necessary to determine the route of application,
components of the formulation (adjuvant), type of immune responses, the dose required,
and type of vaccine, either first group: (i) live attenuated vaccines (e.g., smallpox, yellow
fever, measles, mumps, rubella, and chicken pox), or second group: (i) subunit vaccines
(e.g., a vaccine against recombinant hepatitis B), (ii) toxoid vaccines (e.g., vaccines against
diphtheria and tetanus), (iii) carbohydrate vaccines (e.g., vaccines against pneumococcus),
and (iv) conjugate vaccines (e.g., vaccines against Haemophilus influenzae type B) [138].

Vaccination protocol and the immune system play a decisive role in correct immune
response [139], particularly the immune system on the mucosal surface [140]. In general,
the mucosal immune system presents highly specialized MALT, responsible for antigen
presentation for the generation of an efficient mucosal immune response [24]. Due to the
presence of these specialized tissues, mucosal administration of antigens demonstrated
efficiency in wide pathologies [141], including influenza virus [142].

The expression of subunit vaccines in microalgae presents a convenient mucosal
administration option with advantages including minimum processing before applica-
tion [143] relatively low cost (<$1mg protein) in contrast to synthetic peptide antigen
range between $35 and $95/mg peptide [143], algal cell wall appears sufficient to reduce
antigen degradation by digestive system (bio-encapsulated) [98], subsequently broken
down by digestive enzymes and commensal bacteria, and consequently, the recombinant
proteins are released to be in contact with MALT [144,145]. Therefore, these drawbacks in
consideration for oral vaccination are overcome by this expression model, as previously
reported [28,52]. Considering that more than ten milligrams of an average subunit vaccine
are required for oral administration (1000 times more than is necessary for an injected
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route) [27], it is estimated that hundreds of grams of recombinant tissue are needed to
stimulate an immune response. Nevertheless, increasing the concentration of the antigen by
freeze-dried microalgae without losing antigenic capacity [27], antimicrobial activity [146],
and immunomodulatory compounds naturally present in certain species of microalgae
(Dunaliella sp.) exert synergistic effects with the vaccine formulation [147,148].
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5. Prospective View

Improvement in high-value recombinant protein expression systems encourages the
research of several models with different advantages. Added to this, the cost of escala-
tion and characteristics of post-translational modifications [14,149,150] are also aspects
to consider.

In the case of D. salina, research showed this expression system as a practical so-
lution for the production of different types of recombinant proteins and promises to be
a production method based on the advantages of culture, transformation method, im-
munomodulatory compounds, glycosylation patterns, and natural encapsulation. The
status of the investigation on the genetic manipulation of D. salina is in the early stages;
however, the data suggest it can be a practical, tangible option for the vaccine industry. The
mucosal administration of antigens (oral, ocular, or intranasal) presents requirements for a
correct application, which not all recombinant protein expression systems can meet [14].
Hence, microalgae have advantages over other systems.
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In addition to previously described advantages, microalgae are organisms capable of
photosynthesizing by capturing environmental inorganic carbon (CO2) [151]. As is known,
microalgae are efficiently photosynthetic microorganisms [152]. Therefore, it is not only
necessary to consider the advantages of a system such as microalgae without considering
other social and environmental factors for developing a protein expression platform at an
industrial level.

More research is needed on several details of the heterologous protein expression
microalgae model, including regulatory sequences, codon-optimization [51,153], and effi-
cient expression vectors [94,154,155]. Nevertheless, data available allows for considering
D. salina as a protein expression system with potential for antigen production and its
mucosal administration.
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