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Abstract: To build a DEM model of Cyperus esculentus seed particles, the shape and size of the Cyperus
esculentus seed particles were measured and analyzed. The results showed that the dispersity in
size had a normal distribution. Additionally, a certain functional relationship between the primary
dimension and secondary dimensions was determined. The width of the seed was the primary
dimension, and the other secondary dimensions (length and thickness) were calculated based on their
relationships with the primary dimension. On this basis, an approach for modeling Cyperus esculentus
seed particles based on the multi-sphere (MS) method was proposed. The discrete element analysis
models of three varieties of Cyperus esculentus seeds were established with different numbers of filing
spheres. Moreover, to obtain more accurate simulation parameters, first, a range of values of the
simulation parameters was obtained by the experimental method. Second, the Plackett–Burman (PB)
test and the path of steepest ascent method were both adopted to correct and calibrate the simulation
parameters, which were difficult to obtain through experiments, and simulation of the direct shear test
was used for calibration. All of the methods guaranteed that the selected parameters were reasonable.
The test results showed that the static friction coefficient of seed–seed had a significant effect on the
simulation results. Finally, piling tests and the bulk density test were used for modeling verification. By
comparing the simulated results and experimental results in the piling tests and bulk density test, when
the number of filing spheres increased, the simulated results were close to those obtained experimentally.
Therefore, the feasibility and validity of the modeling method for Cyperus esculentus seed particles that
we proposed and the simulation parameters that were obtained were verified.

Keywords: discrete element method; Cyperus esculentus; parameter selection; simulation; modeling

1. Introduction

Cyperus esculentus is a type of cash crop from which oil, grain, feed, and medicine can be
derived, and the cultivated area is increasing year by year [1]. However, the mechanization
level for processing Cyperus esculentus is not adequate for needs, so it is necessary to urgently
develop the related machinery for Cyperus esculentus. When Cyperus esculentus seeds or kernels
are handled in seeding, harvesting, threshing, separation, processing, and packing, contacts
occur between the individual Cyperus esculentus particles, as well as between the Cyperus
esculentus particles and the related working components [2,3]. To analyze these contacts and
therefore optimize the relevant working components, it is essential to build a precise model of
Cyperus esculentus seed or kernel assembly, using the discrete element method [4].

The discrete element method (DEM) was proposed by Cundall et al. in 1971, and
has been extensively used to calibrate the contact parameters between the particles and
mechanical components. The method can be used to predict the mechanical behavior and
motion of the particles. It is widely used for various industries, such as geomechanics, min-
ing, pharmacy, agriculture, food, and the chemical industry [4]. Accurately representing
the shape of the particles is the key to DEM analysis. Compared with those of soybean,
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corn, and wheat seeds, the shape of Cyperus esculentus seeds is more irregular. When mod-
eling irregular seed particles, they can be represented by ellipsoids [5,6], superquadrics [7],
and polyhedrons [8]. However, the contact detection algorithms for both ellipsoids and
superquadrics are complicated, which renders them time-consuming [9]. Currently, many
researchers have used the multi-sphere (MS) method to build non-spherical particle mod-
els [10]. Xu et al. [11] and Yan et al. [12], respectively, established 5-sphere, 9-sphere, and
13-sphere models for soybean seeds with different sphericities by using the MS method.
Chen et al. established 10-sphere to 14-sphere, 18-sphere, and 6-sphere models for corn
seeds with three shapes of horse-tooth, cone, and sphere [13]. Zhou et al. proposed a
general modeling method that was applicable to corn seed particles [14]. However, it is still
necessary to further analyze which method can be adopted to establish a general modeling
method for Cyperus esculentus.

In addition, when DEM is adopted for simulation, most scholars find that the sim-
ulation parameter has a great influence on the simulation results through the analysis
of parameter sensitivity [15]. Some of the parameters, such as the elastic modulus and
restitution coefficient, can be obtained by experiments, but the friction coefficient is difficult
to obtain directly by tests, so it needs to be calibrated. Wang et al. used the golden section
method combined with a single-factor experiment to determine the rolling friction coef-
ficient of corn particles [16]. The simulation parameters of Fagopyrum esculentum were
calibrated through a piling test combined with the PB test by Fan et al. [17]. Therefore, how
to select and identify the simulation parameters by means of experiments and calibrations
should be further studied.

Meanwhile, discrete element simulation technology greatly depends on the established
model, and the modeling accuracy directly determines the reliability of the simulation
results. There exist some shortcomings in DEM modeling of irregular agricultural materials,
and few studies have been conducted on the simulation parameters and optimization of
irregular seed particle models.

Therefore, in this paper, three varieties of Cyperus esculentus seeds were used to measure
and analyze their shapes and sizes. The proposed modeling methods for a single Cyperus
esculentus seed particle and Cyperus esculentus seed assembly were based on the multi-sphere
method. The physical and mechanical properties of the Cyperus esculentus seed, such as density,
moisture content, restitution coefficient, elastic modulus, and static friction coefficient, were
measured and analyzed. Furthermore, to clarify the influence of the simulation parameters on
the simulation results, by means of simulation of the direct shear test, the PB test combined
with the path of steepest ascent method was adopted to select the simulation parameters
with a significant performance impact. Then, calibration was achieved to guarantee that the
parameter selection was reasonable. Finally, by comparing the simulated and experimental
results in piling tests and the bulk density test, the feasibility and validity of the modeling
methods for the Cyperus esculentus seed particles and model parameter selection were verified.
This work will provide a reference for related research.

2. Measurement and Analysis of the Physical Properties of Cyperus esculentus

In this paper, three varieties (Jinong 1, Jinong 2, and Jinong 3) of Cyperus esculentus seeds
were used, as shown in Figure 1. An electronic balance with an accuracy of 0.01 g was used to
measure the thousand seed weight of the seeds, and the moisture content of the seeds was
measured by the oven drying method. In addition, the density of the seeds was measured by
the liquid replacement method, and the experimental results are listed in Table 1.

Table 1. Density, moisture content and thousand seed weight of the Cyperus esculentus seeds.

Variety Density Moisture Content Thousand Seed Weight

Jinong 1 1.34 g/cm3 28.8% 427 g
Jinong 2 1.27 g/cm3 28.4% 406 g
Jinong 3 1.19 g/cm3 35.8% 809 g
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Figure 1. Tri-axial dimensions and reference coordinate system of the Cyperus esculentus seeds.

The tri-axial dimensions of the three varieties of Cyperus esculentus seeds were defined
as the length (L), width (W), and thickness (T), as shown in Figure 1a–c. One hundred intact
seeds were randomly selected from each variety, and the sizes were measured by a digital
Vernier caliper with an accuracy of 0.01 mm. The mean value and standard deviation of the
tri-axial dimensions of the Cyperus esculentus seeds are listed in Table 2.

Table 2. Size of the different varieties of Cyperus esculentus seeds.

Variety Size Mean/mm Standard Deviation/mm

Jinong 1
Length (L) 9.63 0.54
Width (W) 9.11 1.19

Thickness (T) 7.94 1.43

Jinong 2
Length (L) 8.02 0.62
Width (W) 13.70 1.71

Thickness (T) 5.80 0.65

Jinong 3
Length (L) 11.86 1.37
Width (W) 11.45 1.56

Thickness (T) 9.49 1.56

The results showed that the sizes all followed a normal distribution. The distributions
of the tri-axial dimensions are shown in Figures 2–4.
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The tri-axial dimensions of the Cyperus esculentus seeds were analyzed, and functional
relationships were found between the width–length and width–thickness of the Cyperus
esculentus seeds, as shown in Figures 5–7. According to the analysis, the width was defined
as the primary dimension, while the length and thickness were the secondary dimensions.
The relationships between the primary dimension and the secondary dimensions of the
seeds of the three varieties of Cyperus esculentus are listed in Table 3, and the lengths and
thicknesses were calculated according to the expressions.
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Figure 5. Relationships between two dimensions of Jinong 1 seeds: (a) width–length and
(b) width–thickness.
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Table 3. Relationships between the primary dimension and the secondary dimensions of different
varieties of Cyperus esculentus seeds.

Variety Expression R2

Jinong 1 L = (W − 5.9814)/(0.0004 ×W3) 0.9516
T = (W − 5.984)/(0.0005 ×W3) 0.892

Jinong 2 L = (W − 9.3913)/(0.0002 ×W3) 0.9334
T = (W − 9.4943)/(0.0003 ×W3) 0.8844

Jinong 3 L = (W − 7.9676)/(0.0002 ×W3) 0.893
T = (W − 8.1707)/(0.0002 ×W3) 0.8217

In summary, when modeling the Cyperus esculentus seed assembly, the width (W) was
selected as the primary dimension and was generated according to the normal distribution,
and the other two dimensions (L and T) were calculated according to their relationships
with the primary dimension. As a result, the size and distribution of the created seed
assembly were close to those of the actual Cyperus esculentus seed assembly.

3. Measurement and Analysis of the Mechanical Properties of Cyperus esculentus

The mechanical properties of the three varieties of Cyperus esculentus seeds were
measured and analyzed. The elastic modulus is a measurement of a material’s resistance
to elastic deformation [18]. In this paper, the elastic modulus of the Cyperus esculentus
seeds was measured by a compression test using a universal testing machine, as shown in
Figure 8. The curvature radius between the seed–upper contact surface and the seed–lower
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contact surface was considered to be the same, and the elastic modulus was calculated
according to the simplified Hertz formula in Equation (1):

E∗ =
0.338F

(
1− µ2)

D
3
2

[
2KU

(
1
R
+

1
R′

) 1
3
] 3

2

(1)

where E* is the elastic modulus of the seed, Pa; F is the force loaded normally to the seed, N;
D is the deformation of the seed, mm; µ is the Poisson’s ratio of the seed; R and R′ are the
curvature radii of the seeds when in contact with the compression probe or undersurface,
mm; and Ku is a constant, which can be determined according to the relationship between
cos θ and Ku by looking up a table (the standard of the ASAE S368.4 Dec2000 (R2017) [19]),
where the value of cos θ is calculated by Equation (2):

cosθ =

[
1
R
− 1

R′

]
/
[

1
R
+

1
R′

]
(2)

Processes 2022, 10, 1729 6 of 23 
 

 

Figure 8. The curvature radius between the seed–upper contact surface and the seed–
lower contact surface was considered to be the same, and the elastic modulus was calcu-
lated according to the simplified Hertz formula in Equation (1): 

 
Figure 8. Compression test by a universal testing machine. 

         


U '

F μ
E = K +

R RD

3
1 22 3

3
2

0.338 1 1 1* 2  (1)

where E* is the elastic modulus of the seed, Pa; F is the force loaded normally to the seed, 
N; D is the deformation of the seed, mm; μ is the Poisson’s ratio of the seed; R and R′ are 
the curvature radii of the seeds when in contact with the compression probe or undersur-
face, mm; and Ku is a constant, which can be determined according to the relationship 
between cos θ and Ku by looking up a table (the standard of the ASAE S368.4 Dec2000 
(R2017) [19]), where the value of cos θ is calculated by Equation (2): 

1 1 1 1   
   
   

 ' 'θ = +
R RR R

cos  (2)

The curvature radii of R and R′ were calculated according to the empirical formulas 
in Equations (3) and (4): 

2
H'R =  (3)

22

4
2

'
LH +

R =
H  

(4)

where H′ is the thickness of the seed when compressed, mm; and L′ is the length of the 
seed when compressed, mm. 

Due to the irregular shape of the seeds and the current experimental conditions, it is 
difficult to measure Poisson’s ratio accurately. Therefore, a value of 0.4 is adopted which 
is suitable for general beans [19]. Thus, the elasticity moduli of the three varieties of 
Cyperus esculentus seeds were obtained, and the results for Jinong 1, Jinong 2, and Jinong 
3 were 3.53 × 107 Pa, 5.55 × 107 Pa, and 1.46 × 108 Pa, respectively. 

Figure 8. Compression test by a universal testing machine.

The curvature radii of R and R′ were calculated according to the empirical formulas in
Equations (3) and (4):

R =
H′

2
(3)

R′ =
H2 + L2

4
2H

(4)

where H′ is the thickness of the seed when compressed, mm; and L′ is the length of the
seed when compressed, mm.

Due to the irregular shape of the seeds and the current experimental conditions, it is
difficult to measure Poisson’s ratio accurately. Therefore, a value of 0.4 is adopted which is
suitable for general beans [19]. Thus, the elasticity moduli of the three varieties of Cyperus
esculentus seeds were obtained, and the results for Jinong 1, Jinong 2, and Jinong 3 were
3.53 × 107 Pa, 5.55 × 107 Pa, and 1.46 × 108 Pa, respectively.
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The shear modulus of the three varieties of Cyperus esculentus seeds was calculated
based on the value of elastic modulus that we obtained previously, following Equation (5):

G∗ =
E∗

2(1 + µ)
(5)

where G* is the shear modulus of the seed, Pa; E* is the elastic modulus of the seed, Pa; and
µ is the Poisson’s ratio of the seed.

The restitution coefficients of seed–copper, seed–steel and seed–polymethyl methacry-
late were measured and analyzed using a free fall test [20], as shown in Figure 9a. The
restitution coefficient is the ratio of the descent velocity to rebound velocity, and the expres-
sion of the restitution coefficient was deduced combined with the kinematics equation, as
shown in Equation (6):

e∗ =

√
h
H

(6)

where H is the release height of the seed, mm; and h is the rebound height of the seed, mm.
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The seed–seed restitution coefficient was measured by a single pendulum impact
test [21], as shown in Figure 9b. The restitution coefficient between seed–seed was calcu-
lated following Equation (7):

e∗ =
v1 − v2

v0
=

√
2gh1 −

√
2gh2√

2gH
(7)

where v0 is the release velocity of No. 1 seed, m/s; v1 is the velocity of No. 2 seed (collided
seed) after impact, m/s; v2 is the velocity of No. 1 seed after impact, m/s; H is the release
height of No. 1 seed, mm; h1 is the rebound height of No. 2 seed (collided seed), mm; and
h2 is the rebound height of No. 1 seed, mm.

The restitution coefficient between the Cyperus esculentus seed particles and the resti-
tution coefficient of seed–copper, seed–steel, and seed–polymethyl methacrylate were
measured, and the results are listed in Table 4.
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Table 4. Restitution coefficient of different varieties of Cyperus esculentus seeds.

Variety Collision Material Restitution Coefficient

Jinong 1

Copper 0.58
Steel 0.65

Polymethyl methacrylate 0.41
Seed 0.28

Jinong 2

Copper 0.64
Steel 0.75

Polymethyl methacrylate 0.42
Seed 0.34

Jinong 3

Copper 0.68
Steel 0.79

Polymethyl methacrylate 0.55
Seed 0.50

Moreover, the static friction coefficients of seed–copper, seed–steel, and seed–polymethyl
methacrylate were measured and analyzed. When the static friction between the seed and
contact material occurs, the seed should have a tendency to slide. In this paper, the slope
method [22] was used for measurement with a home-made, inclined apparatus and angle
sensor, as shown in Figure 10a. To prevent the seeds from rolling, nine seeds were stuck to
a plate, as shown in Figure 10b. The static friction coefficients between the seeds and the
different contact materials were calculated based on the mechanical formula in Equation (8),
and the experimental results are listed in Table 5.

mgsinθ = µxmgcosθ (8)

where µx is the static friction coefficient; and θ is the angle between the inclined apparatus
and horizontal plane, deg.

Processes 2022, 10, 1729 8 of 23 
 

 

Table 4. Restitution coefficient of different varieties of Cyperus esculentus seeds. 

Variety Collision Material Restitution Coefficient 

Jinong 1 

Copper 0.58 
Steel 0.65 

Polymethyl methacrylate 0.41 
Seed 0.28 

Jinong 2 

Copper 0.64 
Steel 0.75 

Polymethyl methacrylate 0.42 
Seed 0.34 

Jinong 3 

Copper 0.68 
Steel 0.79 

Polymethyl methacrylate 0.55 
Seed 0.50 

Moreover, the static friction coefficients of seed–copper, seed–steel, and seed–
polymethyl methacrylate were measured and analyzed. When the static friction between 
the seed and contact material occurs, the seed should have a tendency to slide. In this 
paper, the slope method [22] was used for measurement with a home-made, inclined ap-
paratus and angle sensor, as shown in Figure 10a. To prevent the seeds from rolling, nine 
seeds were stuck to a plate, as shown in Figure 10b. The static friction coefficients between 
the seeds and the different contact materials were calculated based on the mechanical for-
mula in Equation (8), and the experimental results are listed in Table 5. 

 
Figure 10. (a,b) Static friction coefficient measurement tests: (a) Measurement device: 1—inclinom-
eter, 2—angle transducer, 3—seed plate, 4—electromotor; (b) Seed plate. 

xmgsinθ = μ mgcosθ  (8)

where μx is the static friction coefficient; and θ is the angle between the inclined apparatus 
and horizontal plane, deg. 

Table 5. Static friction coefficient for different varieties of Cyperus esculentus seeds. 

Material Jinong 1 Jinong 2 Jinong 3 
Copper 0.41 0.39 0.38 

Steel 0.40 0.39 0.35 
Polymethyl methacrylate 0.42 0.40 0.34 

Figure 10. (a,b) Static friction coefficient measurement tests: (a) Measurement device: 1—inclinometer,
2—angle transducer, 3—seed plate, 4—electromotor; (b) Seed plate.

Table 5. Static friction coefficient for different varieties of Cyperus esculentus seeds.

Material Jinong 1 Jinong 2 Jinong 3

Copper 0.41 0.39 0.38
Steel 0.40 0.39 0.35

Polymethyl methacrylate 0.42 0.40 0.34
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When rolling friction between the seed and contact material occurs, the motion of the
seed should be self-rotation while rolling on the material. Thus, it is difficult to obtain the
rolling friction coefficient between the seed and contact material. Moreover, the rolling friction
coefficient between seed–seed was obtained by calibration; see the details in Section 5.

4. Modeling Method of Cyperus esculentus Seeds
4.1. Particle Modeling

In this paper, the point cloud data of the outlines of three varieties of Cyperus esculentus
seeds were obtained using a Minolta Vivid 910 3D laser scanner (Minolta Co., Osaka, Japan)
with an accuracy of 0.05 mm. Based on the point cloud data of the outlines of the Cyperus
esculentus seed, a single seed particle was modeled by the MS method. When filing spheres,
the hilum of the seed was separately considered as a single sphere. The other parts of the
seed were simplified as ellipsoids, which were the same as the actual parts with length (L),
width (W), and thickness (T).

The principle of filing spheres was as follows: the outlines of the filing sphere were
tangential to the outlines of the ellipsoid as far as possible; the center of the filing sphere
was on the axis or axis plane of the ellipsoid; to meet the requirements for the filing accuracy,
the number of filing spheres should be as small as possible.

The filing method for the 7-sphere model of Jinong 1 was as follows: the length (L),
width (W), and thickness (T) of the seed were aligned on the major axis (axis x), the middle
axis (axis z), and the minor axis (axis y) of the ellipsoid, respectively. On the xoy plane,
first, the maximum sphere (sphere O1) with a radius of T/2 was filled at the center (point
O1) of the ellipsoid, as shown in Figure 11a. Second, on the xoz plane, the width W of the
ellipsoid was divided into trisections, and two line segments, AB and CD, which were
parallel to axis x and intersecting with the ellipsoid outline, were made through each equal
diversion point. Then, the parallel line segments AB and CD were divided into trisections,
as shown in Figure 11b. The equal diversion points (point O2, point O3, point O4, point O5,
and point O6) were the centers of the new filing spheres. Thus, another five spheres that
were tangential to the outline of the ellipsoid were filled, defined as sphere O2, sphere O3,
sphere O4, sphere O5, and sphere O6, as shown in Figure 11c. Finally, the last sphere O7 was
filled at the position of the hilum. As a result, seven total spheres were filled. Based on the
filing principle, the 7-sphere, 9-sphere, and 11-sphere models of Jinong 1 were successively
modeled, as shown in Figure 14a–c.
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The filing method for the 9-sphere model of Jinong 2 was as follows: the width (W),
length (L), and thickness (T) of the seed were aligned on the major axis (axis x), the middle
axis (axis z), and the minor axis (axis y) of the ellipsoid, respectively. On the xoz plane,
first, the width W of the ellipsoid was divided into four segments. Two line segments AB
and CD, which were parallel to axis z and intersecting with the ellipsoid outline, were
made through only two diversion points. Then, the parallel line segments AB and CD
were divided into trisections, as shown in Figure 12a. Moreover, the equal diversion points
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(point O1, point O2, point O3, point O4, point O5, and point O6) were the centers of the
filing spheres. Thus, six spheres that were tangential to the outline of the ellipsoid were
filled, defined as sphere O1, sphere O2, sphere O3, sphere O4, sphere O5, and sphere O6,
as shown in Figure 12b. In addition, on the xoy plane, the width W of the ellipsoid was
divided into seven parts, and the equal diversion points (point O7 and point O8) were only
considered as the centers of the new filing spheres. Thus, another two spheres that were
tangential to the outline of the ellipsoid were filled, defined as sphere O7 and sphere O8, as
shown in Figure 12c. Finally, the last sphere O9 was filled at the position of the hilum. As a
result, nine spheres in total were filled. Based on the filing principle, the 9-sphere, 11-sphere,
and 13-sphere models of Jinong 2 were successively modeled, as shown in Figure 14d–f.
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The filing method for the 7-sphere model of Jinong 3 was as follows: the width (W),
length (L), and thickness (T) of the seed were aligned on the major axis (axis x), the middle
axis (axis z), and the minor axis (axis y) of the ellipsoid, respectively. On the xoz plane, first,
the width W of the ellipsoid was divided into trisections, and two line segments AB and
CD, which were parallel to axis z and intersecting with the ellipsoid outline, were made
through the diversion points. Then, the parallel line segments AB and CD were divided
into trisections, as shown in Figure 13a. Moreover, the equal diversion points (point O1,
point O2, point O3, and point O4) were the centers of the new filing spheres. Thus, four
spheres that were tangential to the outline of the ellipsoid were filled, defined as sphere O1,
sphere O2, sphere O3, and sphere O4, as shown in Figure 13b.
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Figure 13. (a–c) Filing methods for the multi-sphere model of Jinong 3.

In addition, on the xoy plane, the width W of the ellipsoid was divided into five parts,
and the equal diversion points (point O5 and point O6) were only considered as the centers
of the new filing spheres. Thus, another two spheres that were tangential to the outline
of the ellipsoid were filled, defined as sphere O5 and sphere O6, as shown in Figure 13c.
Finally, the last sphere O7 was filled at the position of the hilum. As a result, seven total
spheres were filled. Based on the filing principle, 7-sphere, 9-sphere, and 11-sphere models
of Jinong 3 were successively modeled, as shown in Figure 14g–i.
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4.2. Contact Force Model of Multi-Sphere Particles

As a partial sphere a in a multi-sphere particle z, a normal force and a tangential force
which were acting on partial sphere a at the contact point p, given as:

Fn
zap =

(
4
3

E∗
√

R∗δ3/2
zap − 2

√
5
6

β
√

Snm∗vn
zap

)
^
nzap (9)

and

Ft
zap = −min

(
Stξzap + 2

√
5
6

β
√

Stm∗vt
zap, µs|Fx|

ξzap∣∣ξzap
∣∣
)

(10)

where E* as the equivalent Young’s modulus, and E∗ =
[(

1− µ2
z
)
/Ez +

(
1− µ2

y

)
/Ey

]−1

with Ez, Ey, µz, and µy being the Young’s moduli and Poisson ratios of particle z and

y, respectively; R∗ was the equivalent radius, and R∗ =
(

1/Rza + 1/Ryb

)−1
with Rza

and Ryb being the radii of partial sphere a and b, respectively; δzap was the normal over-

lap; β = ln e/
√

ln2 e ∗+π2 with e* being the coefficient of restitution; Sn = 2E∗
√

R∗δzap;

m∗ was the equivalent mass, and m∗ =
(

1/mza + 1/myb

)−1
with mza and myb being

the masses of partial sphere a and b, respectively;
^
nzap was the normal unit contact

vector which pointed from the contact point p to the center of partial sphere a, and
^
nzap =

(
xza − xzap

)
/
∣∣xza − xzap

∣∣ with xza being the position vector of the center of par-
tial sphere a, and xzap being the position vector of the contact point p; St = 8G∗

√
R∗δzap,

G* was the equivalent shear modulus; ξzap was the total tangential displacement of partial
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sphere a; vn
zap and vt

zap were the relative normal and tangential velocities of partial sphere
a at the contact point p; µs was the coefficient of static friction.

The forces and moments acting on multi-sphere particle z were, respectively, expressed as:

Fz =
N

∑
a=1

P

∑
p=1

(
Fn

zap + Ft
zap

)
(11)

and

Tz =
N

∑
a=1

P

∑
p=1

[(
xzap − xz

)
× Ft

zap − µr

∣∣∣Fn
zap

∣∣∣∣∣xzap − xz
∣∣ω̂z

]
(12)

where N and P were the numbers of partial spheres and contact points, respectively; xz was
the position vector of the center of particle z; µr was the coefficient of rolling friction; ω̂z
was the unit angular velocity of multi-sphere particle z, as shown in Figure 15 [11].
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5. Determination of Simulation Parameters

The relative simulation parameters are needed when the simulation analysis is per-
formed using DEM. Some of these parameters can be obtained from experiments; see the
details in Sections 2 and 3. However, the Poisson’s ratio and the coefficients of static friction
and rolling friction between the Cyperus esculentus seeds are difficult to measure through
experiments. Thus, the direct shear test [23] is adopted for calibration. Furthermore, to
obtain more accurate simulation parameters, in this section, the PB test was first used to
determine the significant performance of each simulation parameter on the simulation
results, and then the final value of the simulation parameters was determined combined
with the results of the path of steepest ascent method.

5.1. The Direct Shear Test

A ZJ strain-controlled direct shear apparatus was used for the direct shear test, as
shown in Figure 16. The inner diameter of the direct box was 61.8 mm, and the height
was 20 mm. The shear box was evenly filled with Cyperus esculentus seeds, and the surface
was smoothed. The weight of each test sample was recorded. Each sample was loaded to
different normal compressive stresses (50 kPa, 100 kPa, 150 kPa, and 200 kPa), and each
test was repeated three times. The results are listed in Table 6.
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Table 6. Results of the direct shear tests for different varieties of Cyperus esculentus seeds.

Variety Maximum Shear Strength
/kPa

Internal Friction Angle
/◦

Cohesive Force
/kPa

Jinong 1 118.23 27.03 14.11
Jinong 2 136.67 31.43 6.88
Jinong 3 105.76 25.83 14.49

5.2. Plackett–Burman Test and Path of Steepest Ascent Method

Taking the Cyperus esculentus seeds of Jinong 1 as an example, the significance analysis
of the simulation parameters of the 9-sphere model for Cyperus esculentus was analyzed by
the PB test through the direct shear test. On this basis, the value of the simulation parameter
was finally determined by the path of steepest ascent method. The shear modulus, static
friction coefficient, and restitution coefficient between seed–copper plate and seed–seed
were measured by the physical and mechanical property tests in Sections 2 and 3. On this
basis, the value range of the factor in the PB test was clarified. For the reference values
of Poisson’s ratio, the coefficients of rolling friction and static friction between seed–seed
were obtained from the standard of the American Society of Agricultural Engineers. Thus,
Poisson’s ratio was 0.3–0.5, the rolling friction coefficient was 0–0.1, and the static friction
coefficient between Cyperus esculentus seeds was 0.15–0.55. Then, eight factors were selected
as parametric variables, and the other three factors were kept in reserve as dummy variables
for error analysis. The maximum shear strength was taken as the response value, two
levels of each variable were taken as high (+1) and low (−1), and the factors and levels for
simulation are listed in Table 7. Twelve groups of simulations were carried out according
to the experimental arrangement. Each case was repeated three times, and the mean value
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of three experiments was used as the maximum shear strength in each case. The results are
listed in Table 8.

Table 7. Factors and levels of the Plackett–Burman test.

Symbol Factor Low Level (−1) High Level (+1)

A Poisson’s ratio of seed 0.3 0.5
B Shear modulus of seed/MPa 30 300
C Coefficient of static friction of seed–seed 0.15 0.55
D Coefficient of static friction of seed–polymethyl methacrylate 0.2 0.6
E Coefficient of rolling friction of seed–seed 0 0.1
F Coefficient of rolling friction of seed–polymethyl methacrylate 0 0.1
G Restitution coefficient of seed–seed 0.15 0.75
H Restitution coefficient of seed–polymethyl methacrylate 0.2 0.8

I1, I2, I3 Virtual parameters — —

Table 8. Arrangement and results of the Plackett–Burman test.

No.
Factor

A B C D E F G H I1 I2 I3
Y Maximum Shear Strength

(kPa)

1 0.5 300 0.15 0.6 0.1 0.1 0.15 0.2 −1 1 −1 97.9953
2 0.3 300 0.55 0.6 0 0 0.15 0.8 −1 1 1 127.114
3 0.3 30 0.15 0.2 0 0 0.15 0.2 −1 −1 −1 51.6994
4 0.3 300 0.55 0.2 0.1 0.1 0.75 0.2 −1 −1 1 88.6227
5 0.5 30 0.55 0.6 0 0.1 0.75 0.8 −1 −1 −1 99.1627
6 0.3 30 0.55 0.2 0.1 0.1 0.15 0.8 1 1 −1 77.4156
7 0.5 30 0.15 0.2 0.1 0 0.75 0.8 −1 1 1 46.1292
8 0.3 300 0.15 0.6 0.1 0 0.75 0.8 1 −1 −1 61.1053
9 0.5 300 0.15 0.2 0 0.1 0.15 0.8 1 −1 1 80.4509

10 0.5 30 0.55 0.6 0.1 0 0.15 0.2 1 −1 1 194.423
11 0.5 300 0.55 0.2 0 0 0.75 0.2 1 1 −1 122.911
12 0.3 30 0.15 0.6 0 0.1 0.75 0.2 1 1 1 81.3848

When the processes of the direct shear test were simulated, the Hertz–Mindlin (no-
slip) contact model was used, and the EDEM version was EDEM 2018, DEM Solutions,
Edinburgh, UK, 2002. To ensure the convergence and stability of the numerical calculation
in the simulation, the time step in the simulations was 5 × 10−7 s. The simulation time
was 12 s. The Cyperus esculentus seed particles were generated by a normal distribution in
terms of volume, and the sample mass generated was the same as the test mass for each
case. At 2 s in the simulation, the plate was subjected to a normal force of 200 kPa in the +z
direction and was stabilized for 0.5 s; at 2.5 s in the simulation, the down box started to
move at a speed of 0.002 m/s in the +x direction until the end of the simulation, and the
screenshots of the simulation for different times are shown in Figure 17a–d.

The maximum shear strength of the seeds was obtained after each simulation, and
then, ANOVA was carried out. The results are listed in Table 9. The significance of the
p value determines the influence level of the factor on the test index. As a result, it was
found that the static friction coefficient of seed–seed had a significant influence on the
maximum shear strength.

The results of the PB test combined with ANOVA can only determine which parameter
is significant, but it is difficult to effectively calibrate the static friction coefficient of seed–
seed. Therefore, the path of steepest ascent method is needed, which can quickly approach
the optimum value of the critical factors. The Pareto chart of PB showed that the static
friction coefficient of seed–seed had a positive effect on the response value in the PB test,
as shown in Figure 18. Therefore, the factor became the rising path in the path of steepest
ascent test.
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Table 9. Significant analysis of factors in the Plackett–Burman test.

Factor Sum of Squares F Value p Value Significance

A 1969.42 3.01 0.1813 3
B 65.26 0.100 0.7729 7
C 7051.12 10.77 0.0464 1
D 3134.91 4.79 0.1165 2
E 0.73 1.121 × 10−3 0.9754 8
F 511.55 0.78 0.4419 6
G 1403.62 2.14 0.2394 5
H 1768.04 2.70 0.1989 4
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Moreover, the arrangement of the path of steepest ascent test is determined accord-
ing to the value range of the static friction coefficient of seed–seed in the PB test. The
arrangement and results of the path of steepest ascent test are listed in Table 10.

Table 10. Arrangement and results of the path of steepest ascent method.

No. Coefficient of Static Friction of Seed–Seed Maximum Shear Strength /kPa Relative Error

1 0.15 50.73 57.09%
2 0.25 62.54 47.10%
3 0.35 95.80 18.98%
4 0.45 108.67 8.09%
5 0.55 122.88 3.93%

As a result, with the increase in the static friction coefficient of seed–seed, the value of
the maximum shear strength in the simulation increased. The smallest relative error was
observed in test No. 5, which indicated that the optimal value of the factor was close to a
value of 0.55. Therefore, the static friction coefficient of seed–seed was taken as 0.55. The
static friction coefficients of seed–seed of Jinong 2 and Jinong 3 were also calibrated in the
same way, and a value of 0.35 was appropriate for both. In addition, the value of the other
simulation parameters was taken as the value of the 0-level in the PB test.

6. Analysis and Validation
6.1. Piling Tests

A cube container made of polymethyl methacrylate was used for the piling test [24]
and had a length, width, and height of 120 mm. The thickness was 5 mm. The container
was without a lid. First, the Cyperus esculentus seeds were poured into the container, and
the upper surface of the seeds was flattened with a scraper. Second, the right baffle was
pulled out at a speed of 1 m/s. The Cyperus esculentus seeds began to fall and pile until
they were stable, and then the static angle of repose was formed, as shown in Figure 19a.
To improve the measurement accuracy of the static angle of repose, the collected images
were binarized, as shown in Figure 19b. The test of each variety was repeated five times,
and the mean value of the five experiments was used as the value for the static angle of
repose in each case.
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Figure 19. Packing test: (a) photograph of the piling test captured by a high-speed camera;
(b) image binarization.

6.2. Bulk Density Tests

A box made of polymethyl methacrylate was used for the bulk density test and had a
length, width, and height of 75 mm, 75 mm, and 65 mm. The Cyperus esculentus seeds were
released above the box. The gravity acceleration caused the seed particles to fall into the
box and a conical pile to form at the top of the box. When the seeds were stable, a scraper
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made of polymethyl methacrylate was used to scrape the redundant seeds with a speed of
0.5 m/s, as shown in Figure 20a–c. The bulk density was calculated according to the ratio
of the seeds’ mass left in the box to the volume of the box. The experimental data for each
condition were repeated eight times, and the mean value was used as the value for bulk
density in each case.
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Figure 20. (a–c) Bulk density test of the Cyperus esculentus seeds.

6.3. Simulation Analysis

In this paper, the piling test and the bulk density test were both simulated for the seeds
of the three varieties of Cyperus esculentus. Particle models with different filing spheres were
used in the simulation. The simulations were carried out using the 7-sphere, 9-sphere, and
11-sphere models for Jinong 1, the 9-sphere, 11-sphere, and 13-sphere models for Jinong 2,
and the 7-sphere, 9-sphere, and 11-sphere models for Jinong 3. The simulation parameters
of polymethyl methacrylate in the simulation were obtained from Ref. [25]. The simulation
parameters are listed in Table 11.

Table 11. Simulation parameters of the piling test.

Parameter Jinong 1 Jinong 2 Jinong 3 Polymethyl Methacrylate

Poisson’s ratio 0.4 0.4 0.4 0.32
Density kg/m3 1340 1270 1190 1190

Shear modulus MPa 165 165 165 1197
Coefficient of restitution 0.45 0.45 0.45 0.55

Coefficient of static friction 0.55 0.35 0.35 0.34
Coefficient of rolling friction 0.05 0.05 0.05 0.05

The Hertz–Mindlin (no-slip) contact model was used. To ensure the convergence and
stability of the numerical calculation in the simulation, the time step in the simulations was
5 × 10−7 s.

In the piling test, the simulation time was 4 s. The simulation was performed in two
stages. In the first stage, the Cyperus esculentus seed particles were generated by a normal
distribution in terms of volume, and the total mass produced in the simulation was the
same as that in the test. The volume, mass, and moment of inertia of a single particle for the
three varieties are listed in Table 12, which are guaranteed to not change with the increase
in the number of filing spheres.
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Table 12. Generation of particle parameters by simulation.

Variety Volume *1/m3

V
Moment of inertia /kg·m2

Ix *2 Iy *3 Iz *4

Jinong 1 2.91722 × 10−6 1.37398 × 10−10 1.21829 × 10−10 1.14194 × 10−10

Jinong 2 2.66842 × 10−6 1.70719 × 10−10 6.64186 × 10−11 1.49946 × 10−10

Jinong 3 5.39506 × 10−6 3.49005 × 10−10 2.96202 × 10−10 2.83974 × 10−10

*1 V = 4/3πabc; m = ρV; *2 Ix = 1/5m(b2 + c2); *3 Iy = 1/5m(a2 + c2); *4 Iz = 1/5m(a2 + b2); where a, b, and c are half
of the length, thickness, and width of the seed.

The second stage of the simulation started after 0.5 s for particle assembly stabilization.
The right baffle began to move upward at a speed of 1 m/s, and the Cyperus esculentus
seed particles slid out until a stable static angle of repose was formed. A screenshot of the
simulation is shown in Figure 21.
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The comparisons between the experimental results and the simulated results of static
angle of repose are shown in Figure 22a–c. With the increase in the number of filing spheres,
the simulated results were consistent with those obtained experimentally in the piling test.
Except for the 7-sphere of Jinong 1 and the 9-sphere of Jinong 2, the mean value of the
simulated results fluctuated within the standard deviation of the experimental results, and
the relative errors between the simulated results and the experimental results in terms of
the static angle of repose for the other particle models were in the range from 0.25% to
2.67%. The mean values of the simulated results were all within the margin of the standard
errors of the experimental results.

In the bulk density test, the simulation time was 2 s. The simulation was performed
in two stages. In the first stage, the Cyperus esculentus seed particles were generated by a
normal distribution in terms of volume. The volume, mass, and moment of inertia of a
single particle for the three varieties were still the same as the ones listed in Table 12, which
are guaranteed to not change with the increase in the number of filing spheres.

The second stage of the simulation started after 0.5 s for particle assembly stabilization.
The scraper began to move at a speed of 0.5 m/s and was used to scrape the redundant
seeds. The particles’ mass left inside the box can be calculated, thus, the bulk density of the
particles was calculated. Every numerical experiment was repeated eight times. The bulk
density test simulation process for the 9-sphere model of Jinong 3 is shown in Figure 23a–c.



Processes 2022, 10, 1729 19 of 22

Processes 2022, 10, 1729 19 of 23 
 

 

The comparisons between the experimental results and the simulated results of static 
angle of repose are shown in Figure 22a–c. With the increase in the number of filing 
spheres, the simulated results were consistent with those obtained experimentally in the 
piling test. Except for the 7-sphere of Jinong 1 and the 9-sphere of Jinong 2, the mean value 
of the simulated results fluctuated within the standard deviation of the experimental re-
sults, and the relative errors between the simulated results and the experimental results 
in terms of the static angle of repose for the other particle models were in the range from 
0.25% to 2.67%. The mean values of the simulated results were all within the margin of 
the standard errors of the experimental results. 

 
Figure 22. (a–c) Variations of the simulated static angle of repose versus the number of filing spheres 
for different varieties of seeds. 

In the bulk density test, the simulation time was 2 s. The simulation was performed 
in two stages. In the first stage, the Cyperus esculentus seed particles were generated by a 
normal distribution in terms of volume. The volume, mass, and moment of inertia of a 
single particle for the three varieties were still the same as the ones listed in Table 12, 
which are guaranteed to not change with the increase in the number of filing spheres. 

The second stage of the simulation started after 0.5 s for particle assembly stabiliza-
tion. The scraper began to move at a speed of 0.5 m/s and was used to scrape the redun-
dant seeds. The particles’ mass left inside the box can be calculated, thus, the bulk density 
of the particles was calculated. Every numerical experiment was repeated eight times. The 
bulk density test simulation process for the 9-sphere model of Jinong 3 is shown in Figure 
23a–c. 

 
Figure 23. Snapshots of the simulation of the bulk density test of Jinong 3 seeds at different times 
using the 9-sphere model: (a) t = 1.4 s; (b) t = 1.6 s; (c) t = 2 s. 

The comparisons between the experimental results and the simulated results of bulk 
density test are shown in Figure 24a–c. The conclusion was consistent with that obtained 

Figure 22. (a–c) Variations of the simulated static angle of repose versus the number of filing spheres
for different varieties of seeds.

Processes 2022, 10, 1729 19 of 23 
 

 

The comparisons between the experimental results and the simulated results of static 
angle of repose are shown in Figure 22a–c. With the increase in the number of filing 
spheres, the simulated results were consistent with those obtained experimentally in the 
piling test. Except for the 7-sphere of Jinong 1 and the 9-sphere of Jinong 2, the mean value 
of the simulated results fluctuated within the standard deviation of the experimental re-
sults, and the relative errors between the simulated results and the experimental results 
in terms of the static angle of repose for the other particle models were in the range from 
0.25% to 2.67%. The mean values of the simulated results were all within the margin of 
the standard errors of the experimental results. 

 
Figure 22. (a–c) Variations of the simulated static angle of repose versus the number of filing spheres 
for different varieties of seeds. 

In the bulk density test, the simulation time was 2 s. The simulation was performed 
in two stages. In the first stage, the Cyperus esculentus seed particles were generated by a 
normal distribution in terms of volume. The volume, mass, and moment of inertia of a 
single particle for the three varieties were still the same as the ones listed in Table 12, 
which are guaranteed to not change with the increase in the number of filing spheres. 

The second stage of the simulation started after 0.5 s for particle assembly stabiliza-
tion. The scraper began to move at a speed of 0.5 m/s and was used to scrape the redun-
dant seeds. The particles’ mass left inside the box can be calculated, thus, the bulk density 
of the particles was calculated. Every numerical experiment was repeated eight times. The 
bulk density test simulation process for the 9-sphere model of Jinong 3 is shown in Figure 
23a–c. 

 
Figure 23. Snapshots of the simulation of the bulk density test of Jinong 3 seeds at different times 
using the 9-sphere model: (a) t = 1.4 s; (b) t = 1.6 s; (c) t = 2 s. 

The comparisons between the experimental results and the simulated results of bulk 
density test are shown in Figure 24a–c. The conclusion was consistent with that obtained 

Figure 23. Snapshots of the simulation of the bulk density test of Jinong 3 seeds at different times
using the 9-sphere model: (a) t = 1.4 s; (b) t = 1.6 s; (c) t = 2 s.

The comparisons between the experimental results and the simulated results of bulk
density test are shown in Figure 24a–c. The conclusion was consistent with that obtained in
the simulation of the piling test. Except for the 9-sphere of Jinong 2, the mean value of the
simulated results fluctuated within the standard deviation of the experimental results. The
mean values of the simulated results were all within the margin of the standard errors of
the experimental ones. Thus, the feasibility and rationality of the Cyperus esculentus seed
models were established and the parameter selections in this paper were further verified.
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7. Conclusions

In this paper, three varieties of Cyperus esculentus seeds with irregular shapes (Jinong 1,
Jinong 2, and Jinong 3) were used to study their geometrical shapes, and the sizes of the
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seeds were measured and analyzed. The point cloud data of the outlines were obtained by
3D scanning technology. The modeling methods for a single Cyperus esculentus seed particle
and for a Cyperus esculentus seed particle assembly were proposed. Moreover, the physical
and mechanical properties of the seeds from three varieties of Cyperus esculentus were
studied. Partial physical and mechanical parameters were obtained by experiments. The
PB test and path of steepest ascent method were both adopted to correct and calibrate the
simulation parameters, which were difficult to obtain through experiments, and simulation
of the direct shear test was used for calibration. Finally, by comparing the simulated results
and experimental results in the piling tests and the bulk density test, the simulated results
were close to those obtained experimentally. Therefore, the feasibility and validity of
the modeling method for the Cyperus esculentus seed particles that we proposed and the
simulation parameters that were obtained were verified. The following conclusions are
based on the data obtained in the current study:

(1) The sizes of the Cyperus esculentus seed particles all had a normal distribution, and a certain
functional relationship was identified between the primary dimension and other secondary
dimensions. The width of the seed was the primary dimension, and the other secondary
dimensions (length and thickness) were calculated based on their relationships with the
primary dimension. On this basis, an approach for modeling Cyperus esculentus seed
particles based on the MS method was proposed. The 7-sphere, 9-sphere, and 11-sphere
models were constructed for the seeds of Jinong 1 and Jinong 3, and the 9-sphere, 11-sphere,
and 13-sphere models were constructed for the seeds of Jinong 2;

(2) The mechanical properties of the Cyperus esculentus seeds were tested and analyzed.
The elastic modulus of the seed, the restitution coefficient between seed–seed, the
restitution coefficient between the seed and the contact material, and the static friction
coefficient were all obtained through experiments. Thus, the value range of the sim-
ulation parameters was determined, and then, significance analysis of the simulation
parameters was carried out by using the PB test design method through the direct shear
test in the simulation. It was found that the static friction coefficient between seed–seed
had the most significant effect on the results. On this basis, the value of the simulation
parameters was further confirmed through the path of steepest ascent method;

(3) The piling tests and the bulk density test were both adopted for further modeling
verification. With the increase in the number of filing spheres, the simulated results were
consistent with those obtained experimentally in the piling test and the bulk density
test. Except for the 7-sphere of Jinong 1 and 9-sphere of Jinong 2 in the piling test,
and the 9-sphere of Jinong 2 in the bulk density test, the mean value of the simulated
results fluctuated within the standard deviation of the experimental results. The mean
values of the simulated results were all within the margin of the standard errors of the
experimental results. Thus, the feasibility and rationality of the Cyperus esculentus seed
models established and the parameters’ selection in this paper were further verified;

(4) Future research will be conducted as follows: The established seed model and the
simulation parameters selected will be applied to the analysis of the working process
of the seed metering device and the cleaning apparatus of the Cyperus esculentus seeds
in simulations. In addition, other types of irregular seed modeling will be studied to
enrich the theory of irregular seed modeling.
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Nomenclature

DEM Discrete element method
MS Multisphere method
PB Plackett–Burman
ANOVA Analysis of Variance
L Length, mm
W Width, mm
T Thickness, mm
E* Young’s modulus, MPa
F Normal force to the seed, N
µ Poisson’s ratio, dimensionless
D Deformation of the seed, mm
R Minimum curvature radii of the seeds with the compression probe and undersurface, mm
R′ Maximum curvature radii of the seeds with the compression probe and undersurface, mm
KU Constant
H′ Thickness of the seed when compressed, mm
L′ Length of the seed when compressed, mm
G* Shear modulus, MPa
e* Coefficient of restitution, dimensionless
H Rebound height of the seed, mm
H Release height of the seed, mm
v0 Release velocity of seed No. 1, m/s
v1 Velocity of seed No. 2 after collision, m/s
v2 Velocity of seed No. 1 after collision, m/s
h1 Rebound height of seed No. 2 after collision, mm
h2 Rebound height of seed No. 1 after collision, mm
G Gravitational acceleration, m/s2

m Mass, g
θ Angle between the inclined apparatus and horizontal plane, ◦

µs Coefficient of static friction, dimensionless
Ez, Ey Young’s moduli of particle z and y, MPa
µz, µy Poisson ratios of particle z and y, dimensionless
R* Equivalent radius, mm
Rza, Ryb Radii of elemental sphere a and b, mm
δzap Normal overlap
m* Equivalent mass, g
mza, myb Masses of elemental sphere a and b, g
xza, xzap Position vectors of the center of elemental sphere a and the contact point p
ξzap Total tangential displacement of elemental sphere a, mm
vn

zap, vt
zap Relative normal and tangential velocities of elemental sphere a at the contact point p, m/s

N, P Numbers of elemental spheres and contact points
xz Position vector of the center of particle z
µr Coefficient of rolling friction, dimensionless
^
ωz Unit angular velocity of particle z, rad/s
V Volume, m3

Ix, Iy, Iz Moment of inertia, kg·m2

a Half of the length of the seed, mm
b Half of the thickness of the seed, mm
c Half of the width of the seed, mm
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