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Abstract: The performance of artificial neural networks (ANNs) is highly influenced by the selection
of input variables and the architecture defined by hyper parameters such as the number of neurons
in the hidden layer and connections between network variables. Although there are some black-box
and trial and error based studies in the literature to deal with these issues, it is fair to state that a
rigorous and systematic method providing global and unique solution is still missing. Accordingly,
in this study, a mixed integer nonlinear programming (MINLP) formulation is proposed to detect
the best features and connections among the neural network elements while propagating parameter
and output uncertainties for regression problems. The objective of the formulation is to minimize
the covariance of the estimated parameters while by (i) detecting the ideal number of neurons,
(ii) synthesizing the connection configuration between those neurons, inputs and outputs, and
(iii) selecting optimum input variables in a multi variable data set to design and ensure identifiable
ANN architectures. As a result, suggested approach provides a robust and optimal ANN architecture
with tighter prediction bounds obtained from propagation of parameter uncertainty, and higher
prediction accuracy compared to the traditional fully connected approach and other benchmarks.
Furthermore, such a performance is obtained after elimination of approximately 85% and 90% of the
connections, for two case studies respectively, compared to traditional ANN in addition to significant
reduction in the input subset.

Keywords: artificial neural networks; error propagation; mixed integer nonlinear programming;
optimal input selection; parameter uncertainty

1. Introduction

Energy producers are globally struggling with the inadequacy of energy resources and
energy efficiency problems, which have become even more active in recent years due to
COVID-19 pandemics. Another issue to be addressed in today’s world is energy efficiency
which is a significant economic growth and prosperity metric. In particular, optimal
energy production, distribution, and consumption have vital importance on the economic
independence due to the increased energy efficiency. Accordingly, artificial intelligence (AI)
and machine learning (ML) have emerged to be nice candidates to improve the efficiency
of energy systems without requiring mass investments as opposed to converting all of the
energy processing units. Typically, a software can be linked to an energy system and can
alter its performance, and thus energy efficiency, using the state-of-the-art approaches on
AI and ML.

Artificial neural networks (ANNs) are sophisticated models being able to represent
complex relationships between inputs and outputs of a certain system/process. ANNs are
data driven and, in particular cases, considered as an alternative to first principles-models
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because it is challenging to derive and validate such models due to unknown driving forces
in the process and lack of spatial measurements [1]. The foundations of ANNs are laid by
Mcculloch and Pitts in [2], in which the neural activity working mechanisms are discussed.
Significant theoretical advancements have been achieved and these achievements have
resulted in a wide range of applications showing promising performance [3–5].

Various research activities have also led to different terminologies and applications
such as artificial intelligence, machine learning, and deep learning [6–9]. Murugan and
Natarajan designed a dynamic soft sensor to estimate the biomass concentration in a
complex pilot plant from easily measurable plant variables (i.e., pH) [10]. Kaur and Kumari
used ANNs to detect patterns and risks for diabetes [11]. The applications in mineral
processing are discussed in [12]. Moreover, ANN-related methods have found applications
in energy economics and finance [13]. In [14], an ANN model is developed to forecast
carbon emissions from several macroeconomic indicators such as economic growth. Air
pollution forecast studies have used ANNs widely as well [15]. ANNs are also employed in
advanced process automation technologies such as stochastic model predictive control [16].
MacMurray and Himmelblau showed the importance of nonlinear and complex processing
capability of ANNs in a packed distillation column [17]. Biswas et al. modeled the energy
consumption of residential sector through ANNs and showed a good match between
prediction and measurements [18]. In addition, there are several successful applications in
the literature in terms of using meta-heuristic and multi-verse optimization methods for the
improvement of machine learning models in general, resulting in more stable models. Such
meta-heuristic based hyper-parameter tuning methods might also improve the capacity
of neural networks if applied [19,20]. Ardiansyah et al. used ANNs for the prediction of
quality variables and design strategy for an extraction process [21].

Traditional fully connected ANN architectures (FC-ANNs), which are defined by hyper
parameters, are composed of single hidden layer in addition to input and output layers.
Usually, a trial and error procedure on hyper-parameters is applied until a satisfactory
training performance is obtained. Moreover, the number of connections, and the number
of tuning parameters increase with the number of inputs, outputs, and neurons. As a
result, FC-ANNs suffer from parameter identifiability issues due to multiple solutions, lack
of accountable measurements and over parametrization [22]. Overfitting and parameter
identifiability problems result in large prediction bounds and therefore poor prediction
performance, reducing the performance significantly especially in complex systems. Note
that there are some alternative methods to eliminate some of the aforementioned issues
using statistical measures [23]. The resulting uncertainty is also addressed in [24] using
Bayesian computation.

Group method of data handling (GMDH) [25] develops relatively smaller polynomial
models for the approximation of more complex models through elimination of unrelated
variables. At the same time, GMDH can be classified as a more sophisticated pruning
method. An external selection criterion, which is a nontrivial task to formulate with many
different alternatives [26], is used to define the existence or the elimination of a particular
network variable. Then, a sorting procedure [27] is applied for the selection of the best
architecture among many generated networks. Due to sorting, GMDH can be classified
under sequential approaches focusing on the elimination of neurons and inputs. In addition,
GMDH does not include covariance of parameters into the objective function.

Dua suggested solving a general mixed-integer optimization problem to eliminate
the connections of ANNs during training [28]. Both number of neurons and existence of
the interconnections are included in the objective function to be minimized together with
the training error. However, this formulation does not consider the parameter uncertainty
and the selection of optimum input variables. Resulting problem formulations in the case
studies are either mixed-integer linear programs with fixed parameter weights—which
are significantly easier problems to solve—or small-scale MINLPs with fixed structures,
fixed number of nodes and/or interconnections of the ANNs. Commercially available
programming language GAMS (General Algebraic Modeling System) is used to solve the
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corresponding optimization problems. This significant contribution shows that increased
performance can be achieved with fewer number of neurons and connections in ANNs.
Similarly, in recent studies, the authors showed that optimal structure detection for ANNs
can also be realized using more flexible mixed integer nonlinear programming and piece-
wise linear formulations [29–32].On the other hand, it is vital to state here that none of
these formulations include the parameter uncertainty covariance, which is again a critical
measure for reliable training and reduced overfitting for not only ANNs but also for almost
all types of machine learning applications for regression. Thus, for truly effective structure
detection for ANNs, uncertainty effect must also be incorporated into the existing MINLP
formulations proposed by the authors.

Another significant aspect of ANN training is the selection of optimal input variables
from a complex data set [33]. Usually, the leading signals are not known and the data
set contains correlated or redundant variables. In such cases, the optimal selection of
input variables becomes an important issue [34], which in turn calls for a robust method to
reduce the number of ANN parameters and the input subset selection to provide a more
robust identification.

Sun et al. utilized genetic algorithm for automatic design of convolutional neural
network architectures for image classification [35]. Benardos and Vosniakos proposed a
genetic algorithm to modify the ANN architecture [36]. In a similar fashion, Dua developed
a general mixed-integer program to eliminate some connections of ANNs during train-
ing [28]. Both the number of neurons and the existence of the interconnections are included
in the multi objective function in addition to training error. Yet, these formulations do
not consider the parameter uncertainty as a measure of overfitting and the reduction in
the input space. On the other hand, it has been shown that a similar performance can be
obtained with fewer neurons and connections.

In this study, a novel MINLP (mixed-integer nonlinear programming) formulation
is developed for the automatic synthesis and training of an optimal feedforward ANN
architecture (OA-ANN). Traditional ANN equations are modified and the training proce-
dure considers the parameter uncertainty to eliminate overfitting. Main contributions of
the proposed work are: (i) detecting ideal number of neurons and selection of inputs by
introducing binary variables in the MINLP formulation for regression problems through
a heuristic yet tailored solution algorithm and (ii) synthesizing the optimal information
flow between neurons, inputs and outputs are characterized by introducing binary variable
matrices as Abinary and Bbinary while minimizing the overfitting criterion by minimizing the
parameter covariance as another objective in the optimization for regression problems to
account for the tightening the prediction bounds of continuous output variables. To the
best of authors’ knowledge such an approach does not exist in the literature. Moreover, to
show the potential of improvement for energy systems, a case study about a strong data set
on energy consumption predictions is considered in this work.

The paper is structured as follows: In Section 2, the derivation of the ANN (OA-
ANN) expressions and the solution algorithm for the corresponding MINLP program are
explained. Results of the proposed formulation and comparisons to FC-ANN and literature
benchmarks are provided in Section 3. Finally, Section 4 concludes this study.

2. Materials and Methods

A typical feedforward ANN expression is given by:

y = f1(A · f2(B · u + C) + D) (1)

where f 1 and f 2 are output and hidden layer activation functions respectively; A and B are
weight matrices; C and D are bias vectors; u is input vector and y is output vector. Note that
identity activation function is used in this formulation at the input layer and it is not shown
in Equation (1) explicitly. The continuous ANN parameters A, B, C, and D are estimated
from preferably high number of samples. The dimensions of those parameters depend
on the number of inputs, outputs, and number of neurons (a hyper parameter), which
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is determined manually before training. In general, as the dimensions get larger, higher
number of connections and parameters are introduced, which in turn provides higher
capability of fitting to the training data.

The architecture given by Equation (1) represents a FC-ANN which transforms the
information in input, u, to the succeeding layers, and eventually to the output vector, y.
Addition of a higher number of hidden layers is a straightforward mathematical task as
more parameters, connections, and neurons are introduced. This task is in the concept of
deep learning, providing useful results in the literature [9,37].

FC-ANNs are traditionally trained through nonlinear optimization using the following
objective function:

MinA,B,C,D

N

∑
i=1
‖ f1(A · f2(B · ui + C) + D)− yi‖ (2)

where ui and yi are the ith input and output sample respectively; and N is the number of
samples used for the training.

Equation (2) takes the training error into account only and does not consider the
parameter identifiability or architecture efficiency issues. However, the practical and
structural limitations on the estimation of those parameters are vital in order to increase
overall model quality and prediction robustness, and to reduce overfitting. Otherwise, some
parameters might have little impact on the output while exhibiting strong correlations
among other parameters, making it almost impossible to identify them uniquely [38]
despite significant computational load. The outcome of such problem would be the large
variance in the ANN predictions due to the parameter uncertainty propagation to outputs
and the poor prediction accuracy in the test data once there is a significant difference
between training and the test data. In addition, the parameter correlation, which is caused
by inefficient model architecture and high number of parameters, results in significant
computational load during training or model update as optimization algorithm calculates
similar objective function with distinct decision variable values although new data are
collected for model correction in real time. An alternative straightforward method to avoid
the aforementioned problems would be to include more training data, but is practically not
useful mostly once the data are not measured in a distinct data regime. Another alternative
is the modification of the model itself either by lumping some parameters, removing some
of them by a statistical measure or fixing some of them to a particular value to reduce
the parameter correlation, thereby eliminate overfitting. However, this method cannot be
considered as automatic and requires significant manual effort.

One of the significant contributions of this work is the integration of the parameter un-
certainty propagation together with the proposed MINLP method, which will be discussed
later. Parameter covariance matrix is a measure of identifiability in complex models. Based
on the Cramer and Rao theorem [39], the inverse of the Fisher Information Matrix (FIM) is
a lower bound for parameter covariance matrix:

cov
(

p̂− pactual
)
≥ FIM−1 (3)

where p̂ is the vector of estimated parameters; pactual the actual value of the parameters;
FIM is calculated from:

FIM =
1
σ2 J JT (4)

where σ2 is the variance of the output error; J is the parameter sensitivity matrix which is
evaluated at a particular point. Small eigenvalues of FIM deliver large lower bounds for the
parameters, which theoretically means that all parameters cannot be identified uniquely.
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The parameter uncertainty can be propagated to the outputs through the traditional
error propagation formulation [40]:

covy = J · covp · JT (5)

where covy is the covariance matrix of outputs; covp is the covariance matrix of parameters.
Diagonal values of covy and covp provide an intuitive understanding of the uncertainty
since each element is the variance of the corresponding variable. From ANN perspec-
tive, once the values in covp decrease, corresponding ANN predictions deliver a tighter
uncertainty range, resulting in a more robust and reliable prediction generally [41]. As
a result, the selected features and connections of the neural network will provide more
robust prediction capability.

The modified ANN (OA-ANN) equation to be taken into account as opposed to the
standard formulation is given as:

y = f1(
(

A ◦ Abinary

)
· diag(P) · f2(

(
B ◦ Bbinary

)
· diag(U) · u + C) + D) (6)

where ◦ is the Hadamard product (element-wise multiplication) operator; Abinary and Bbinary
are matrices with binary elements, representing the connection existence of hidden layer
neurons with the output layer and hidden layer with the input layer respectively; P is
a binary vector which represents the existence of neurons; U is a binary vector which
represents the input selection; f 1 and f 2 are hyperbolic tangent activation function in this
paper. Furthermore, please note that f 1 and f 2 are usually decided before training manually.
Even though we propose to use hyperbolic activation functions in this study, suggested
framework is also extendable to take into account the type of the activation functions as
decision variables.

Mixed-integer programming typically considers the continuous and discrete decisions
together to implement an optimization objective subject to constraints. For neural networks,
the existence (or non-existence) of the features must be represented as a discrete, binary
(0–1) decision variable whereas the corresponding weight values for training are continuous.
The training formulation of OA-ANN is an MINLP problem and is given by:

MinA,Abinary ,B,Bbinary ,C,D,P,U ∑ diag
(
covp

)
+ γF

s.t.

F =
N
∑

i=1
‖ f1

(
(A ◦ Abinary) · diag(P) · f2

(
(B ◦ Bbinary) · diag(U) · ui + C

)
+ D

)
− yi‖

Abinary, Bbinary, P, U ∈ {0, 1}
Pmax > ∑

j
Pj > Pmin

Abinary,ij ≤ Pj
Bbinary,ij ≤ Uj

ALB × Abinary,j ≤ Ai,j ≤ AUB × Abinary,j
BLB × Bbinary,j ≤ Bi,j ≤ BUB × Bbinary,j

CLB × Pj ≤ Cj ≤ CUB × Pj
DLB ≤ D ≤ DUB

−4 = ALB, BLB, CLB, DLB
4 = AUB, BUB, CUB, DUB

(7)

where γ is a tuning parameter to leverage the multi-objective nature of the problem; Pmin is
the minimum number of hidden neurons; Pmax is the maximum number of hidden neurons.
Lower and upper bounds (LB and UB) of continuous variables are shown using subscripts.
These lower and upper bounds are set as −4 and 4, respectively.

Bbinary,ij is the existence of connection from the jth input as the input information
is transferred to ith hidden layer neuron. Once Bbinary,ij is zero, the connection between
jth input and ith neuron is eliminated since no information is transferred due to Bbinary,ij.
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Thus, once a particular column of Bbinary is zero; no information from the corresponding
input can be transferred to the hidden layer. Corresponding Uj is set as zero by the
algorithm. Similarly, once the value of P is zero, the information is not transferred through
the corresponding neuron, which therefore means that the neuron is eliminated. In parallel,
Abinary is the matrix of connection existence between hidden layer and outputs. All these
rules are enforced via introducing logic constraints to the formulation in (7).

Equation (7) considers the parameter covariance in the objective function in addition
to the training error, where both are highly influenced by the number of parameters
and the connections in ANN. From Equation (7), optimal synthesis and training of the
corresponding ANN can be employed automatically and simultaneously to obtain OA-
ANN. This way, selection of the features and proper conditions are achieved subject to
parameter uncertainty manifolds.

There are three types of methods to solve the corresponding mixed-integer type
optimization problems, namely evolutionary and derivative-based methods. Two of them
can also be combined in a hybrid sense to come up with meta-heuristic method, whose
application area has been widening lately [42–44]. Typically, rigorous and derivative-based
methods may require substantial computational power to solve the MINLP problems to
global optimality and is out of the scope of this paper. Yet, it must be here noted that
suggested formulations bring about the possibility to obtain global ANN structures when
solved with non-convex derivative-based methods. Therefore, in this study, an adaptive,
evolutionary, and heuristic solution algorithm together with a local optimization method
is suggested for solving the non-convex MINLP proposed in this paper. Please note that
similar adaptive methods described in the previous studies can also be utilized to solve
the resulting MINLP problems. This method can also be implemented using open-source
codes, which is another vital advantage over using many of the commercial solvers.

As mentioned earlier, an adaptive algorithm is selected and the main aim is to divide
the original problem into two parts. Accordingly, the solution is obtained through a
hierarchical decomposition of binary and continuous decision variables, as outer and
inner loops similar to [45–47]. Accordingly, the outer loop optimization is an integer
programming problem (IP) determining existence of the neurons (P), connections (ABinary,
BBinary), and selection of input variables (U). After the outer loop is utilized, the inner loop
will decide on the optimal weight values for a fixed neural network topology at the current
iteration. This decomposition allows faster and effective solution of the original method
albeit global optimal cannot be guaranteed.

The outer integer program is given by:

MinAbinary ,Bbinary ,P,U ∑ diag
(
covp

)
s.t.

F ≤ γ′

Abinary, Bbinary, P, U ∈ {0, 1}
Abinary,ij ≤ Pj
Bbinary,ij ≤ Uj

Pmax > ∑
j

Pj > Pmin

(8)

where γ’ is the maximum desired training error. Note that, the multi objective optimization
formulation in Equation (7), is further modified and training error term is considered as a
constraint to avoid the difficulty in the determination of γ. In practice, larger value of γ in
the solution of Equation (7) may result in over simplification of the model, which in turn
causes poor training performance.
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The inner loop optimization problem is given by:

minA,B,C,DF
s.t.

F =
N
∑

i=1
‖ f1

(
(A ◦ Abinary) · diag(P) · f2

(
(B ◦ Bbinary) · diag(U) · ui + C

)
+ D

)
− yi‖

ALB × Abinary,j ≤ Ai,j ≤ AUB × Abinary,j
BLB × Bbinary,j ≤ Bi,j ≤ BUB × Bbinary,j

CLB × Pj ≤ Cj ≤ CUB × Pj
DLB ≤ D ≤ DUB

−4 = ALB, BLB, CLB, DLB
4 = AUB, BUB, CUB, DUB

(9)

The inner loop is a nonlinear programming problem (NLP), used typically for training
a particular architecture iterate given by Problem (8). The IP given in (8) is solved via the
MIDACO solver [48,49], whereas (9) is solved via the open-source IPOPT code [50] on an
Intel i5 processor with 8GB of RAM running MATLAB 2020a.

Overall heuristic solution algorithm is shown in Figure 1.
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The inner and outer loops are iterated sequentially until the pre-specified convergence
(stopping) criterion is reached for the original problem. In this study, this criterion is on the
change of the original problem objective, with a value of 0.01. Finally, it is still noteworthy
to mention that better solution algorithms can be used while this study mainly focuses
on the MINLP approach to combine the feature and structure detection together with the
parameter uncertainty prediction for regression problems.

3. Results

This study focuses on two publicly available benchmarks from [51,52]. The perfor-
mance of the proposed approach is compared to FC-ANN (fully connected) and several
other publications which focus on the same dataset. In addition, GMDH (group method of
data handling) results are also provided using [53]. We decided to compare the proposed
method with the GMDH so as to provide a benchmark using an active subject for pruning.

The performances are evaluated using mean absolute error (MAE), mean square error
(MSE), root mean square error (RMSE), coefficient of variation (CV), and mean uncertainty
(MU), which are statistical criteria defined in this study, and are calculated from:

MU =
∑N

i=1

√
(covy,ii)
N

MAE =
∑N

i=1|yprediction,i−ymeasurement,i|
N

RMSE =

√
∑N

i=1(yprediction,i−ymeasurement,i)
2

N

CV =

√
∑N

i=1(yprediction,i−ymeasurement,i)
2
/N

∑N
i=1 ymeasurement,i/N

(10)
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where yprediction,i is the prediction of the ith sample output; ymeasurement,i is the measurement
of the ith sample output; N is the number of samples; covy,ii is the ith diagonal element
of covy.

3.1. Case Study 1

The data set collected by the U.S. Census Service on Boston housing prices and the
affecting factors are under consideration [54]. The dataset contains 506 different samples of
13 inputs and single output as shown in Table 1. Randomly selected 50% of the data is used
for training and normalized for numerical purposes.

Table 1. Variables of the case study 1.

Mean Standard Deviation Minimum Maximum

Inputs

1 per capita crime rate by town 3.6 8.6 0.0 89.0

2 proportion of residential zones for
lots over 25K sq.ft. 11.4 23.3 0.0 100.0

3 proportion of non-retail business
acres per town 11.1 6.9 0.5 27.7

4 Charles River dummy variable 0.1 0.3 0.0 1.0
5 nitric oxides concentration 0.6 0.1 0.4 0.9
6 average number of rooms per dwelling 6.3 0.7 3.6 8.8

7 fraction of owner-occupied units
prior to 1940 68.6 28.1 2.9 100.0

8 weighted distances to five Boston
employment centers 3.8 2.1 1.1 12.1

9 index of accessibility to radial highways 9.5 8.7 1.0 24.0
10 full-value property-tax rate per $10,000 408.2 168.5 187.0 711.0
11 pupil-teacher ratio by town 18.5 2.2 12.6 22.0

12
1000 (Bk-0.63) 2 where Bk is the

proportion of a particular resident
group in town

356.7 91.3 0.3 396.9

13 % lower status of the population 12.7 7.1 1.7 38.0

Output Median value of owner-occupied
homes in $1000s 22.5 9.2 5.0 50.0

Boston housing dataset is specifically chosen as a case study since it contains relatively
low number of samples, and overfitting is highly likely when high number of parameters is
introduced. In addition, it has many inputs based on residential and cultural measurements
which contain some correlation inherently; and thus, input selection and elimination
become an important issue.

Figure 2 includes training and test performances of a FC-ANN containing 10 neurons
in the hidden layer. The FC-ANN contains 151 continuous parameters to be estimated.
Accurate estimation of such a high number of parameters is theoretically challenging and
likely to result in overfitting, considering 253 training samples with 13 inputs.

FC-ANN delivers a relatively better training performance due to high number of
connections, neurons, and inputs. On the other hand, a significant performance drop
is observed for the test data due to overfitting, in this particular relatively smaller case
study. The error bars of the predictions are obtained from (5), using the uncertainties in the
parameters after the training. Please note that these measures could represent prediction
robustness and reliability. (6) delivers the mean value of the predictions based on the mean
parameter values at a particular architecture. Due to probable overfitting in FC-ANN, the
prediction uncertainty and error are significantly large, which in practice means predictions
might not be reliable.
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Table 2 provides detailed statistical comparisons based on the common measures. The
performance increase is obtained through optimal architecture design and training. Note
that all OA-ANN test errors and prediction uncertainty range are lower than FC-ANN as
shown in Table 2, in this particular case. Corresponding OA-ANN architecture, which does
not explicitly demonstrate the bias connections, is shown in Figure 4.
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Table 2. Results of case study 1.

OA-ANN FC-ANN [55] [56] GMDH

training

MAE 0.050 0.013 - - -
MSE 0.004 0.0003 - - 0.006

RMSE 0.067 0.019 - - 0.078
RMSE * 3.086 0.849 - 3.369 -

MU 0.018 0.278 - - -

test

MAE 0.058 0.097 - - -
MSE 0.009 0.024 - - 0.012

RMSE 0.096 0.155 0.187 - 0.119
RMSE * 4.331 6.990 - 7.602 -

MU 0.018 0.195 - - -

∑ diag
(
covp

)
0.533 27998 - - -

Neuron 2 10 - 20 8
Inputs 11 13 13 6 6

Connections 22 151 - - 65
* Calculated without data normalization.
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As shown in Figure 4, in this particular case, only two neurons (although maximum ten
are allowed) are introduced with the elimination of proportion of non-retail business acres
per town and nitric oxides concentration from the input set. Note that there is no connection
between the corresponding input and any hidden neuron. In addition, OA-ANN contains
a significantly fewer number of connections among variables; for instance, Charles River
dummy variable provides information in the calculation of the output variable, through the
1st hidden neuron only. Furthermore, the connection line widths are scaled by the absolute
values of the corresponding weight.

The OA-ANN, using fewer network elements, provides a comparable performance
with the benchmarks in the literature and GMDH. In [55], an extreme learning machine
confidence weighted method is proposed using 79% of the whole data in training. Ref. [56]
used 60% of the whole data, and reported radial basis neural network results using dif-
ferent number of neurons. Ref. [57] also refers to various other models and provides a
performance comparison on Boston housing dataset with test RMSE* values between 3.206
and 7.610. In our particular case, OA-ANN has better performance compared to most of
the other approaches.

3.2. Case Study 2

Our second case study is related to predicting the electricity consumption of a building.
The dataset includes relatively higher number of samples, being with 4208 points, and
is directly taken from PROBEN 1 benchmark problem set [52]. The dimension of the
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input vector is 14 in total as some of the inputs are lumped into each other in the original
dataset [58]. The electricity consumption (WBE) is predicted based on year, month, date,
day of the week, time of day, outside temperature, outside air humidity, solar radiation and
wind speed. The statistical description of the dataset is summarized in Table 3.

Table 3. Statistical description of case study 2.

Inputs Output

Mean 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.0 0.0 0.6 0.3 0.1 0.2 0.3
Standard
Deviation 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.6 1.0 0.2 0.2 0.2 0.1 0.1

Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −1.0 −1.0 0.0 0.0 0.0 0.0 0.1
Maximum 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0 0.9 0.7

Performance of the proposed OA-ANN on the prediction of building electricity con-
sumption is compared with fully connected ANN (FC-ANN) and GMDH, and two well-
known benchmarks using the same dataset taken from the literature [59]. In [59], the
authors used single hidden layer feedforward ANN structure employing hyperbolic tan-
gent activation functions. They introduced identification, additive, and subtractive phases
into their training algorithm as opposed to classical methods and sequentially analyzed the
effects of the number of inputs and the number of neurons. 70% of the whole data are used
for all phases described in the paper. Results showed that reducing the geometry of the
ANNs could yield much better test results.

In [60], a hybrid genetic algorithm-adaptive network based fuzzy inference system
is proposed to train feedforward artificial neural networks. 70% of the whole data are
used for training. This paper also proposes an optimization-based training method and
reduces the size of the ANNs using sequential analysis. However, this method is not an
automatic and simultaneous design and training method and does not take the covariance
of parameters into account.

The proposed method is implemented with 15 maximum number of hidden neurons
(Pmax), using 70% of the whole data for training. Same training and test dataset, input and
neuron numbers are implemented to FC-ANN and GMDH for fair and clear comparison.
All results are reported in Table 4.

Table 4. Results of case study 2.

OA-ANN FC-ANN [59] [60] GMDH

training

MSE 0.0026 0.0009 0.008 - -
MAE 0.042 0.038 - - -
CV 12 10 12 9.6 11.3

RMSE 0.051 0.03 0.09 - 0.07
MU 0.0043 0.015 - - -

test

MSE 0.002 0.0043 0.02 - -
MAE 0.041 0.06 - - -
CV 9.3 11 13 10 11.1

RMSE 0.046 0.065 0.14 - 0.069
MU 0.0044 0.016 - - -

∑ diag
(
covp

)
2.8 1.2 × 106 - - -

Neuron 5 15 4 4 6
Inputs 6 14 10 5 7

Connections 23 241 49 29 55

Results for OA-ANN show that the method proposes to use six inputs, being year,
month, type of day, temperature, solar radiation, and wind speed.
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As shown in Figure 5, in this particular case, 5 neurons (out of 15) are selected. Similar
to first case study, the connection line widths are scaled by the absolute values of the
corresponding weight.
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Table 4 provides detailed statistical comparisons based on the common measures.
Coefficient of variation (CV), which is used in other benchmarks, is also included into
this case study [60]. Table 4 shows that OA-ANN includes 23 connections among all
variables in total, which is significantly fewer than the FC-ANN. Accordingly, OA-ANN
exhibits poor training performance than the FC-ANN in all statistical metrics except mean
uncertainty. On the other hand, OA-ANN provides better test performance than the
traditional FC-ANN in spite of using fewer numbers of inputs, neurons and connections.
Such improved prediction quality increase is obtained with almost 90% decrease in the
number of connections compared to FC-ANN.

Similarly, the benefit of size reduction and pruning for ANNs in the context of opti-
mization can be observed from [60], whose performance is relatively better compared to
other benchmark studies using the same dataset [59]. Even though OA-ANN has poorer
training performance compared to [60], OA-ANN exhibits the best test performance among
all benchmarks reported in this paper, both in terms of reduced standard deviation and
test error. The main reason for this observation is the fact that OA-ANN considers the
covariance of the parameters as an optimization metric to be minimized, in addition to the
training objective function. As a result, uncertainty regions of the OA-ANN predictions
are tightened, as shown in Table 3. This tightening ultimately brings about much fewer
values for MU, CV and ∑ diag

(
covp

)
, which in turn enhances both accuracy and precision

of model predictions.

4. Conclusions

This study focuses on the simultaneous optimal architecture ANN design and training
algorithm under parameter uncertainty and uncertainty propagation considerations for
regression problems; in contrast to traditional approaches where the structure is fixed by
predefined hyper parameters based on trial and error procedure. The existence of the
connections, the selection of input variables and the determination of the number of hidden
neurons together with connection weights are under consideration. The main aim of this
formulation is to obtain the optimal ANN structure, and to train this structure with the
most dependable input variables considering the parameter identifiability issues to deliver
a prediction with lower confidence interval, or to be more precise, uncertainty.

The proposed approach integrates the design and training simultaneously through an
MINLP problem which is decomposed for the utilization in successively solved smaller
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optimization problems, mainly IP and NLP. The MINLP problem involves the training
error and the parameter covariance matrix as an uncertainty measure. It also ensures the
selection of identifiable set of parameters, resulting in a more robust prediction performance.
Furthermore, the MINLP problem includes extra logic constrains for a more efficient
solver performance.

The proposed MINLP formulation is comprehensive, sophisticated, and modifiable to
other ANN types (i.e., recurrent ANNs, convolutional neural networks). However, similar
to many machine learning algorithms, ANNs suffer from nonconvex optimization problem
due to nonlinear activation functions and the performance is highly sensitive to initial
guess and optimization algorithm, which might deliver local optimum with different ANN
weights despite processing same training data. The proposed formulation further increases
the complexity of the training problem by introducing binary variables to represent the
existence of a particular network element. Such a desirable theoretical superiority calls for
mixed-integer optimization algorithms whose global optimum finding capability is still
limited with a complex nonconvex problem and require significant computational load due
to rigorous formulation. On the other hand, convex MINLP solvers, similar to heuristic
optimization algorithms, deliver a local optimum with a significant and computation time
increases drastically since all variables are modified simultaneously in the iterations. For
such considerations, in this study, a pseudo-decomposition is applied to obtain a satis-
factory ANN architecture and performance through computationally favorable heuristic
method. The proposed heuristic solution method also suffers from local optimality issues
since no explicit modification is implemented to handle nonconvexity related problems.
The integer programming stage in the nested algorithm enables the evaluation of any black-
box formulation in the inner loop; but makes the overall solution exposed to failures once
the tuning of the corresponding stage optimization problem is poor or not compatible with
the inner loop. In addition, the interactions of the layers might bring additional infeasibility
problems since there the problems process different constraints. Some linking constraints
are introduced to tighten the search space and bring computational efficiency. However,
the proposed pseudo-decomposition benefits from rigorous formulations in the inner loop
where nonlinear programming is performed with sophisticated mathematical develop-
ments including algorithmic differentiation. The development of pseudo-decomposition
through using more sophisticated optimization algorithms with a better tuning combined
with feasibility cuts and pumps would further increase the computational efficiency, which
is under consideration for our future works.

The proposed approach is implemented on two publicly available datasets which are
studied extensively in the literature. It is shown that, the current approach provides a better
test performance despite increased training error. Finally, the current research activities
focus on extending the suggested framework for deep and recurrent neural networks and
for synthesizing more efficient neural network-based controller structures.
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45. Pintarič, Z.N.; Kravanja, Z. The Two-Level Strategy for MINLP Synthesis of Process Flowsheets under Uncertainty. Comput. Chem.
Eng. 2000, 24, 195–201. [CrossRef]

46. Chen, X.; Li, Z.; Yang, J.; Shao, Z.; Zhu, L. Nested Tabu Search (TS) and Sequential Quadratic Programming (SQP) Method,
Combined with Adaptive Model Reformulation for Heat Exchanger Network Synthesis (HENS). Ind. Eng. Chem. Res. 2008, 47,
2320–2330. [CrossRef]

47. Chen, X.; Li, Z.; Wan, W.; Zhu, L.; Shao, Z. A Master-Slave Solving Method with Adaptive Model Reformulation Technique for
Water Network Synthesis Using MINLP. Sep. Purif. Technol. 2012, 98, 516–530. [CrossRef]

48. Schlüter, M.; Gerdts, M.; Rückmann, J.J. A Numerical Study of MIDACO on 100 MINLP Benchmarks. Optimization 2012, 61,
873–900. [CrossRef]

49. Schlueter, M. MIDACO Software Performance on Interplanetary Trajectory Benchmarks. Adv. Space Res. 2014, 54, 744–754.
[CrossRef]

50. Biegler, L.T. Large-Scale Nonlinear Programming: An Integrating Framework for Enterprise-Wide Dynamic Optimization.
Comput. Aided Chem. Eng. 2007, 24, 575–582. [CrossRef]

51. Olson, R.S.; La Cava, W.; Orzechowski, P.; Urbanowicz, R.J.; Moore, J.H. PMLB: A Large Benchmark Suite for Machine Learning
Evaluation and Comparison. BioData Min. 2017, 10, 36. [CrossRef]

52. Prechelt, L. Proben1: A Set of Neural Network Benchmark Problems and Benchmarking Rules; Universitat Karlsruhe: Karlsruhe,
Germany, 1994; Technical Report 21/94.

53. GMDH Group Method of Data Handling. Available online: http://www.gmdh.net/ (accessed on 23 March 2020).
54. Harrison, D.; Rubinfeld, D.L. Hedonic Housing Prices and the Demand for Clean Air. J. Environ. Econ. Manag. 1978, 5, 81–102.

[CrossRef]
55. Shang, Z.; He, J. Confidence-Weighted Extreme Learning Machine for Regression Problems. Neurocomputing 2015, 148, 544–550.

[CrossRef]
56. Tsekouras, G.E.; Tsimikas, J. On Training RBF Neural Networks Using Input-Output Fuzzy Clustering and Particle Swarm

Optimization. Fuzzy Sets Syst. 2013, 221, 65–89. [CrossRef]

http://doi.org/10.3390/rs12060956
http://doi.org/10.1016/j.ces.2021.117273
http://doi.org/10.1016/j.compchemeng.2022.107850
http://doi.org/10.1109/TCYB.2020.3000725
http://www.ncbi.nlm.nih.gov/pubmed/32598287
http://doi.org/10.1016/j.jhydrol.2012.10.019
http://doi.org/10.1109/TCYB.2020.2983860
http://www.ncbi.nlm.nih.gov/pubmed/32324588
http://doi.org/10.1016/j.engappai.2006.06.005
http://doi.org/10.1002/cjce.20660
http://doi.org/10.1109/LSP.2005.859498
http://doi.org/10.1021/jp003484u
http://doi.org/10.1109/TFUZZ.2020.2998174
http://doi.org/10.1080/0954898X.2020.1849841
http://www.ncbi.nlm.nih.gov/pubmed/33390063
http://doi.org/10.1016/j.jbi.2005.03.003
http://www.ncbi.nlm.nih.gov/pubmed/16337569
http://doi.org/10.1016/S0098-1354(00)00512-3
http://doi.org/10.1021/ie071245o
http://doi.org/10.1016/j.seppur.2012.06.039
http://doi.org/10.1080/02331934.2012.668545
http://doi.org/10.1016/j.asr.2014.05.002
http://doi.org/10.1016/S1570-7946(07)80119-2
http://doi.org/10.1186/s13040-017-0154-4
http://www.gmdh.net/
http://doi.org/10.1016/0095-0696(78)90006-2
http://doi.org/10.1016/j.neucom.2014.07.009
http://doi.org/10.1016/j.fss.2012.10.004


Processes 2022, 10, 1716 16 of 16

57. Kim, E.H.; Oh, S.K.; Pedrycz, W. Design of Double Fuzzy Clustering-Driven Context Neural Networks. Neural Netw. 2018,
104, 1–14. [CrossRef]

58. Mira, J.; Álvarez, J.R. Computational Methods in Neural Modeling. In Proceedings of the 7th International Work-Conference on
Artificial and Natural Neural Networks, IWANN 2003, Maó, Menorca, Spain, 3–6 June 2003; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2003; Volume 1, ISBN 9783540402107.

59. Karatasou, S.; Santamouris, M.; Geros, V. Modeling and Predicting Building’s Energy Use with Artificial Neural Networks:
Methods and Results. Energy Build. 2006, 38, 949–958. [CrossRef]

60. Li, K.; Su, H.; Chu, J. Forecasting Building Energy Consumption Using Neural Networks and Hybrid Neuro-Fuzzy System: A
Comparative Study. Energy Build. 2011, 43, 2893–2899. [CrossRef]

http://doi.org/10.1016/j.neunet.2018.03.018
http://doi.org/10.1016/j.enbuild.2005.11.005
http://doi.org/10.1016/j.enbuild.2011.07.010

	Introduction 
	Materials and Methods 
	Results 
	Case Study 1 
	Case Study 2 

	Conclusions 
	References

