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Abstract: Identifying combustion regimes is important for understanding combustion phenomena
and the structure of flames. This study proposes a combustion regime identification (CRI) method
based on rotated principal component analysis (PCA), clustering analysis and the back-propagation
neural network (BPNN) method. The methodology is tested with large-eddy simulation (LES)
data of two turbulent non-premixed flames. The rotated PCA computes the principal components
of instantaneous multivariate data obtained in LES, including temperature, and mass fractions of
chemical species. The frame front results detected using the clustering analysis do not rely on any
threshold, indicating the quantitative characteristic given by the unsupervised machine learning
provides a perspective towards objective and reliable CRI. The training and the subsequent application
of the BPNN rely on the clustering results. Five combustion regimes, including environmental air
region, co-flow region, combustion zone, preheat zone and fuel stream are well detected by the BPNN,
with an accuracy of more than 98% using 5 scalars as input data. Results showed the computational
cost of the trained supervised machine learning was low, and the accuracy was quite satisfactory. For
instance, even using the combined data of CH4-T, the method could achieve an accuracy of more
than 95% for the entire flame. The methodology is a practical method to identify combustion regime,
and can provide support for further analysis of the flame characteristics, e.g., flame lift-off height,
flame thickness, etc.

Keywords: non-premixed; identification; principal component analysis; cluster; back-propagation
neural network

1. Introduction

Non-premixed flames constitute a specific class of combustion processes where fuel
and oxidizer are separated before burning, and have been adopted in many advanced
combustion applications, such as gas turbines, direct-injection engines, and furnaces [1].
Complex multiple regimes, including fuel stream, oxidizer stream, mixing layers of fuel and
oxidizer streams, etc., appear in non-premixed flames. Therefore, a global characterization
parameter could not reflect all location conditions. Accurate and detailed combustion
regime identification (CRI) in non-premixed flames is helpful to understand combustion
phenomena, the structure of the flame and the flame characterizations, such as ignition
delay time, flame lift-off height, flame thickness, flashback, etc., and further help to study
the energy transfer, the transport and change of species, the interactions between flow and
reaction, and combustion modeling [2–5]. In the present work, we propose a method to
characterize the local regimes within turbulent non-premixed flame, and validate it in two
well-known flames.

Flame index method [6] is the first kind of numerical method proposed to identify
different combustion regimes. Basically, it evaluates the alignment of fuel and oxidizer
gradients and, thus, gives an indication of the nature of the local combustion regime
ranging between premixed flame and diffusion flame. After years of development, this
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method has made great progress [2,5]. However, the main disadvantage of the flame index
method is that it depends on a large number of field data, and requires detailed fine-scale
information including gradients. Hartl et al. [2] and Butz et al. [7] have proposed a gradient
free regime identification (GFRI) method, which combines the mixture fraction, the heat
release rate (HHR), and the chemical explosive mode to detect and characterize premixed
versus non-premixed reaction regimes; however, a considerable amount of computation is
still required to process the data [4].

In experiments, it is not easy to apply the flame index method since high resolution
combustion field data are difficult to obtain. Before the introduction of the flame index
method, experimenters used planar laser-fluorescence (PLIF) imaging technology to study
the flame structure, and the identification of combustion zone has been quite reliable [8,9].
Most of the efforts have concentrated on the measurement of OH distribution because of its
high abundance in flames and the coincidence of OH transitions with high-power excimer
laser wavelengths [8]. For this reason, OH distribution is often used to characterize the
reaction regime in simulations. For instance, in direction numerical simulations of turbulent
non-premixed flames, Kerkemeier [10] has adopted a commonly used OH-threshold to
define the autoignition event, and the iso-surface of YOH = 10−4 is used as a marker of
flame front. Flame front identification using the OH-threshold, however, cannot give
sufficient information about important chemical reaction paths, fuel consumption rate
and HRR. Analyses have indicated the distribution of HCO correlates well with peak
HRR. Since the PLIF measurements of HCO distribution seem not to be feasible, studies
have proposed the use of the product of OH and CH2O PLIF intensities to identify frame
fronts [9]. The threshold of chemical species has become an important indicator in reaction
regime identification in both experimental and numerical studies [3,8,9], because it only
requires a little thermochemical information and the amount of computation is very low.
However, it also has two main disadvantages: (1) it usually can only distinguish the reaction
regime from other regimes by identifying the flame front; and (2) the identification results
are highly sensitive to the critical value of the scalar threshold.

Machine learning is a powerful tool for multivariate analysis and can offer an alterna-
tive to traditional statistical methods for CRI and analysis of dynamic tracking of the flame.
Jigjid et al. [11] have developed a predictive tool based on neural networks to identify
combustion modes in MILD combustion. Wan et al. [4] have adopted a convolutional neural
network (CNN) trained by the GFRI results of the experimental data from a laboratory
scale burner [2,7]. This CNN method offers a pixel-wise accuracy of more than 85%, and,
compared to the flame index method and the GFRI, it is ultra-fast, making it possible to
envision real-time CRI for advanced flame control.

The CNN method proposed by Wan et al. [4] relies on the GFRI to provide training data
to make predictions. An accurate and reliable database is very important for supervised
machine learning. However, the GFRI still needs to manually determine the threshold
strength of scalars to determine the classifications of combustion regime, and also it is quite
computationally expensive [4]. Unsupervised learning is a fast and reliable method to
analyze and classify data. It can label the combustion categories in the turbulent combustion
field more objectively, rather than based on a-priori knowledge. Barwey et al. [12] have
adopted the K-means, a commonly used clustering algorithm, to achieve CRI in detonation
waves enabling local source term modeling. Himanshu et al. [13] have adopted another
clustering algorithm to characterize MILD combustion. These studies have shown the
potential of unsupervised learning techniques in characterizing flames. Thus, this study
proposes the use of clustering analysis to distinguish the quantitative characteristics of the
combustion field. Referring to the study by Wan et al. [11], the accurate flame classification
results can be used as the input of the neural network. Unlike previous recognition methods
(e.g., Wan et al. [11]), this study proposes a novel machine learning-based CRI method that
requires only a small number of scalars to obtain high accuracy. The turbulent combustion
flame database is briefly described in the subsequent section, and the proposed CRI method
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is detailed in Section 3. Then, the method is tested over two flames to examine its capability
of CRI.

2. Large-Eddy Simulation Database

The data used in this study were from the high fidelity 3-dimensional (3D) LESs [14–17]
of two well-known turbulent non-premixed flames, a jet-in-hot-co-flow MILD combustion
case, HM1 [18], and Sandia Flame D [19]. The chemistry was modeled using the GRI-Mech
2.11 [20], which contained 277 elementary chemical reactions of 49 species.

The fuel jet mixture of the HM1 consisted of 80% CH4 and 20% H2 (percent-by-mass
basis), and the co-flow consisted of 3% O2, 5.5% CO, 6.5% H2O, and 85% N2 (percent-
by-mass basis). The experimentally reported mean temperatures suggested that the fuel
jet and shroud air temperature profiles were uniform with values of 305 K and 300 K,
respectively. The mean co-flow temperature was approximately 1300 K. The numerical
setup followed the description of the experiment, which consisted of an insulated and
cooled central fuel jet with a diameter of 4.25 mm and co-flow with a diameter of 82 mm.
The experimentally reported bulk flow velocity of the fuel stream was 73.5 m/s, and
the corresponding Reynolds number was 10,000. The fuel jet of the Sandia Flame D
contained 25% CH4 and 75% air (percent-by-volume basis), and the equivalence ratio of
the pilot/co-flow was 0.77. The experimentally reported mean temperatures suggested
that the fuel jet and shroud air temperature profiles were uniform with values of 294 K
and 291 K, respectively. The mean pilot/co-flow temperature was approximately 1880 K.
The fuel nozzle bore a diameter of 7.2 mm and was enclosed by a pilot/co-flow nozzle
with a diameter of 18.2 mm. The bulk fuel jet velocity of Flame D was 49.6 m/s, and the
corresponding Reynolds number was 22,400.

3. Identification Method
3.1. Principal Component Analysis

The LES of turbulent flames can yield a large number of 3D-space data, including
three velocity components, pressure, temperature, mass fractions of species in reaction, etc.
Multivariate analysis methods consist of many techniques that can be used to analyze a
set of data to answer complex questions involving more than two variables. In this study,
temperature and chemical data were used to identify combustion regimes. However, due
to the huge amount of data, if it is not processed by dimension reduction, the subsequent
calculation cost is greatly increased. For this reason, the study adopted rotated principal
component analysis (PCA, also known as proper orthogonal decomposition) [21] to exclude
the coexistence of chemical overlapping information, and conducted a pre-sort and a
dimension reduction of data.

In specific, the application of PCA decomposed the multivariate data that made up
the original data into a linear combination of empirical orthogonal basis vectors, which are
called principal components (PCs). These basis vectors are the eigenvectors of a covariance
matrix computed from a data matrix containing multivariate data from LES data.

For LES dataset X which contains n samples and N original variables, PCs will
be determined through the eigenvalue problem. The covariance of X, S, is defined as
S = 1/(n − 1)XTX, where the superscript T indicates the transpose matrix. Through the
computation of determinant of S, det|S-LI|, where I is an identity matrix, the eigenvalue
problem is now obtained as S × Ai = Li × A, in which Ai represents ith eigenvector
(1 ≤ i ≤ N) and Li is the ith eigenvalue. The eigenvectors of S in descending order of the
corresponding eigenvalues are the PCs. Some investigators use the correlation matrix;
however, the use of the covariance matrix reduces sensitivity to noise (redundant infor-
mation) in the data [22,23]. These unrotated PCs are basic functions of the original data
set of the multivariate profiles through the LES domain and then linear combinations of
the unrotated PCs can be used to describe and reconstruct these data profiles. The data
reconstruction can also be accomplished after applying either an orthogonal or oblique
rotation to the PCs. The use of PCA ensures that the analyst’s biases do not affect the
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quantitative results, only their subjective physical interpretation. The rotated PCA is useful
merely as a dimension reduction technique, and is ineffectual for identifying modes of
variability of physical data [22–24]. For the multi-PC phenomena described later in the
study, the corresponding cluster of data points spreads across a vector subspace with as
many dimensions as there are PCs needed to describe the phenomena. In specific, the study
adopted the rotated PCA, which assists in compressing and extracting useful information
from the original matrix by removing redundant information and finally obtaining the PCs
used in the subsequent analysis and calculation.

In this study, the initial thermochemical data of two cases were 50-dimensional data
(including temperature and mass fractions of 49 species). We used MATLAB to perform
PCA analysis of the data. Figure 1 shows can see that for both cases, the first five PCs
contained more than 95% of the information of 50 scalars. In order to reduce computational
cost, these five-PC datasets retained after rotated PCA were used for subsequent analysis.
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3.2. Clustering Analysis

The application of techniques of artificial intelligence, which can be used for analysis
of complex multivariate data and prediction of nonlinearities, can potentially be useful in
analyzing data, including turbulent combustion. After using rotated PCA to extract useful
data from the original by removing redundant information, it was necessary to analyze
the data to distinguish the characteristics of different combustion states. One of the vital
means in dealing with the data was to classify or group them into a set of categories or
clusters. Clustering algorithm is a branch of machine learning and belongs to unsupervised
learning. The goal of clustering is to separate a finite unlabeled data set into a finite and
discrete set of natural hidden data structures. Figure 2 shows a schematic diagram of
combustion clustering, and scatters of temperature and fuel concentration are presented
as an example. Clustering classification of scatters of low temperature and high fuel
concentration represented fuel inlet; scatters of high temperature and low fuel concentration
were located in the combustion zone; and the air inlet was characterized by low fuel
concentration and low temperature. Connecting the fuel inlet and the combustion zone
represented all reaction paths, while connecting the combustion zone and the air inlet was
dominated by the heat transfer process. This diagram is only a two-dimensional diagram
using fuel and temperature. If different scalars were used for analysis, the distribution of
scatters would show different characteristics. For example, in the preheating area (yellow
scatters in Figure 2) connecting the fuel inlet and the combustion zone, the concentration
of CH2O is very high, while it is very low in other regions. The concentrations of major
products, such as H2O, CO, and CO2, were high in the region represented by orange in
Figure 2. Although the high-dimensional scalar distribution was difficult to represent by a
two-dimensional scatter diagram, the example in Figure 2 presents the multi-dimensional
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clustering analysis and can objectively classify multidimensional thermochemical data to
distinguish various regimes.
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The study can use many clustering algorithms, but here we adopted two of the more
commonly used algorithms. K-means [24] clustering algorithm is the earliest proposed
clustering algorithm, and the K-means and its variants have been widely studied and
applied in different scientific fields. The K-means requires the user to pre-specify the
number of clusters present in the dataset. The K-means algorithm partitions a given set
of data in a manner such that the squared-error function is minimized for a pre-specified
number of clusters. The squared error function (E) is defined as:

E = ∑K
K=1 ∑xεSk

‖X− Zk‖2, (1)

where K is number of specified clusters, the d-dimensional Zk denotes the center of kth
cluster and X represents a d-dimensional data vector belonging to the cluster Sk. The
K-means algorithm aims to minimize the sum of squared distances between all points and
the cluster centers. Compared with other clustering algorithms, the K-means clustering
has an obvious advantage of fast calculation speed [25], which is also the first clustering
algorithm used in this study.

Furthermore, this study also adopted the self-organizing maps (SOM) neural network
method [26] for data analysis to compare with the results using K-means to see the reliability
of clustering. The SOM is an unsupervised learning method to analyze various data sets,
including those with missing values, and Chen et al. [27] have demonstrated that the
SOM is a superior clustering technique. The SOM performs dimensionality reduction
and classification and projects a high-dimensional input space onto a low dimensional
topology so as to allow the number of data clusters to be visualized/determined by manual
inspection. The computational steps of SOM algorithm are described below.

Step 1 (Initialization): Let Xi, i = 1,2, . . . , n, be the d-dimensional vectors to be clustered.
Select small random values for the initial weights, Wij(0), and fix the initial learning rate
(α̂0) and the neighborhood. Wij(0) is the d-dimensional weight vector associated with the
node at location (i, j) of a 2-dimensional grid array

Step 2 (Determining the best matching unit (BMU)): Select a sample pattern, X, from the
data set and determine the BMU (Cij) at training iteration t, using the minimum Euclidean
distance criterion.

‖X−WCij‖ = min
ij
‖X−Wij‖; i = 1, 2 . . . L; j = 1, 2 . . . L; (2)
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where ||.|| is the Euclidean norm and L denotes the number of rows (and also columns)
in the square 2-D SOM grid.

Step 3 (Weight updating): Update all the weights according to the Korhonen learn-
ing rule;

Step 4: Increment the iteration index, t, by unity and decrease the magnitude of the
learning rate, α̂0(t), accordingly; shrink, then neighborhood, NCij(t) of the BMU

Step 5: Repeat steps 2–4 until the change in the weight magnitudes is less than the
specified threshold or the maximum number of iterations is reached.

In this study, the input layer of SOM neural network were related variables of com-
bustion (temperature and mass fractions of species), and the output layer was a multi-
dimensional spatial model (neuron). The more neurons, the more details are represented.
The neuron nodes of the input variables and the output variables were trained to gener-
ate the neuron with the smallest n-dimensional distance until the clustering result was
obtained. Both clustering analyses were performed using MATLAB.

3.3. Back-Propagation Neural Network

Clustering analysis is a reliable classification method. However, if it is applied to
a large amount of data, it still requires a great computational cost. Nonetheless, when
performing local identification of the flow field, or when only limited data were available
in the experiment, clustering analysis could be inaccurate. Previous study [4] has shown
that supervised learning can offer accurate CRI after sufficient training. Artificial neural
network (ANN) is a machine learning algorithm that simulates the human neural structure,
which can be applied to both regression and classification problems. A standard neural
network consists of many simple, connected processors called neurons, each producing
a sequence of real-valued activations [28]. Back-propagation neural network (BPNN)
algorithm is a simple and efficient method to correct the weight of neurons which was
firstly developed by Dreyfus in 1973 [29]. The BPNN is a supervised learning algorithm.
Its idea is to first calculate the gradient of the objective function to the output value of
each neuron recursively through the chain rule, and then use the chain rule to calculate the
gradient of the weight parameters on the edge. As shown is Figure 3, the network structure
was a fully-connected neural network, which consisted of an input layer, an output layer,
and a hidden layer.
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The activation function adopted in this BPNN was the Softmax function to convert the
output values of the multi-classification into relative probabilities:

Softmax(yi) =
eyi

∑C
c=1 eyc

, (3)
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the yi is the output value of the ith node, and C is the number of output nodes. Loss
function is the cross-entropy loss function:

H(y, y∗) = −∑ y·lny∗, (4)

the y represents the exact probability distribution and y* represents the probability distri-
bution of the predicted outcome.

In this study, the BPNN was trained by clustering results, and the network gradually
“learns” the input/output relationship of interest by adjusting the weights to minimize the
error between the actual and predicted output patterns of the training datasets. In specific,
we used clustering analysis results of multiple instantaneous thermochemical data from
the LESs of the HM1 and the Sandia Flame D as the training set, and then performed the
BPNN predictions of two cases using the instantaneous thermochemical data at different
times. The training of the BPNN was performed using the TensorFlow Python library. Once
trained, returning the identification results from an input was almost instantaneous.

4. CRI with Clustering

The data of this study were the temperature and mass fractions of 49 species of the HM1
and the Sandia Flame D. Through rotated PCA, we retained five PCs as clustering input
data. According to the analysis of the Davies-Bouldin index and flame structure, the optimal
number of clusters was five, and Table 1 summarizes the five clusters representing five
different states in the flames. Cluster 1 described environmental air. Cluster 2 represented
the co-flow region, and cluster 3 referred to a state in which reactions were active, and
the concentrations of active species, such as OH, were intense. Cluster 4 represented the
combustion preheating stage, where temperature was not high, and the concentrations
of some typical species, such as CH2O, were intense, and cluster 5 represented the fuel
inflow stream.

Table 1. Regimes represented by different clusters.

Number of Cluster Regime

Cluster 1 Air (A)
Cluster 2 Co-flow (CO)
Cluster 3 Combustion Zone (CZ)
Cluster 4 Preheat (P)
Cluster 5 Fuel (F)

The analysis of artificial intelligence based on clustering algorithm is a mathematical
technology capable of giving the quantitative characteristic indices of thermochemical
data [30]. Figure 4 shows an example of scatter plots of temperature and mass fractions
of OH and CH2O in the mixture fraction space in the HM1, and reveals the differences
between the five clusters and their physical characteristics. Z is element-based Bilger
mixture fraction [25], which is defined as:

Z =

0.5(YH−YH,2)
WH

+
2(YO−YO,2)

WC
− (YO−YO,2)

WO
0.5(YH,1−YH,2)

WH
+

2(YO,1−YO,2)
WC

− (YO,1−YO,2)
WO

, (5)

where Yi is the total mass fraction of element i, and Wi is the atomic mass of element i.
The subscripts 1 and 2 refer to values in the fuel and air streams. The calculations of Yi for
elemental carbon, hydrogen, and oxygen should include all species in the mechanism. The
characteristics of the environmental air regime included low temperature and low OH and
CH2O concentrations. In contrast, although the temperature and OH concentration in the
fuel regime were also low, due to the chemical reactions gradually entering the preheating
stage, it already had a certain concentration of CH2O. The temperature in the co-flow regime
was significantly higher than 800 K, but the concentrations of OH and CH2O were low and
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close to the side of the environmental air. The characteristics of the combustion zone were
significantly different than others. When the combustion was intense, the temperature
was high. Owing to a large amount of OH production and CH2O consumption, the OH
concentration was high and close to the fuel regime, and the CH2O concentration was high
but close to the air regime. In the preheating stage of combustion, because there was not
much OH production, although the temperature and CH2O concentration were not low,
the OH concentration was low.
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Figure 5 compares the clustering results obtained by two clustering algorithms (the
K-means and the SOM) in the HM1 and the Sandia Flame D. R is the radial distance
from the center. The correlation coefficients between the K-means and SOM results were
0.999 and 1.000 for the HM1 and the Sandia Flame D, respectively. This implied that the
two clustering algorithms could deliver almost the same clustering results in the two flames,
and the classifications embodied in the clustering would objectively represent the different
quantitative characteristics in the flame data.
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Furthermore, Figures 6 and 7 compare the differences between the results obtained
using the K-means clustering and the threshold method. Figure 6 embeds the isolines (20%
of its maximum value) of HRR into the clustering results. It is a basic means to characterize
the combustion zone with high HHR [3,8,9]. Since it is difficult to measure HRR directly in
experiments, many methods [13] characterize flames by predicting HRR, and then measure
the geometric parameters, such as flame thickness and wrinkle. It was evident that the
combustion zone identified by the clustering algorithm was highly consistent with the
results of the HRR threshold method. In addition, it should be noted that the clustering
algorithm could not only judge the combustion zone, but also identify other characteristic
regimes (such as the preheat zone), and the threshold method must use other variables,
such as CH2O, etc.
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algorithms (K-means and SOM) in the HM1.

As mentioned earlier, the OH-threshold method is often used to represent the combus-
tion zone [13]. However, the flame front would appear differently in shape and thickness
when different critical values of OH concentration are used. As shown in Figure 7, the
flame front structure in the HM1 case would be significantly different for using YOH = 10−4

and YOH = 10−5. For all threshold methods, including the GFRI method mentioned above,
there exists the same problem of threshold selection. In specific, when using the threshold
method to determine the combustion zone, if different variables are used, such as HRR
or OH concentration, or the threshold value is different, these may affect the results, thus
affecting further analysis, such as obtaining the flame lift-off height, flame thickness, etc.
Using multidimensional clustering analysis algorithm to carry out CRI obviously would not
produce such a problem. The frame front results detected using the K-means and the SOM
are identical, indicating that the quantitative characteristic index given by unsupervised
machine learning is more objective and reliable.

5. CRI with BPNN Trained by Clustering Results

Combustion regime identification with rotated PCA and clustering has been shown
to be robust and accurate [30]. Although PCA can cut down the number of variables and
reduce CPU cost for clustering, a large amount of computations is still required to process
the data and predict the corresponding combustion regime. Moreover, in experimental
measurements or industrial applications, it is usually difficult to obtain multiple scalar fields
as the data source for clustering analysis, and clustering analysis with limited data could
be fallacious. Therefore, this study attempted to adopt the supervised machine learning
to provide an ultra-fast and reliable CRI based on limited thermochemical properties, and
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also tried to perform accurate CRI with fewer data, which is investigated in this section to
the minimum data required for accurate CRI and the possible required data types.

For the evaluation of BPNN results, we still adopted the method of examining the
flame structure, and compared it with the flame structure obtained using the cluster analysis.
We also compared the BPNN result with the clustering result by three quantitative methods.
Since the K-means CRI result and the SOM CRI result described above are nearly identical,
we used the K-means result as the comparison object here. The accuracy rate, which is
defined as the ratio of the number of correctly identified samples to the total number
of samples, was used to evaluate the identification accuracy of the whole domain. The
combustion zone is the focus of many studies. Thus, we can extract the data of combustion
zone and binarize the flame into the flow field, and then calculate the correlation coefficient
and the F1 score between the two results. The F1 score follows: 2/F1 = (FP + TP)/TP + (FN +
TP)/TP, where comparison results are divided into four categories, true positive (TP, where
combustion zone identified using the K-means clustering is identified as combustion zone),
false positive (FP, where non-combustion zone identified using the K-means clustering
is identified as combustion zone), false negative (FN, where combustion zone identified
using the K-means clustering is identified as non-combustion zone) and true negative
(TN, where non-combustion zone identified using the K-means clustering is identified as
non-combustion zone). Note that TN was not used in the evaluation of the F1 score.

According to the corresponding scalars represented by the first few major PCs char-
acterized by PCA shown in the previous study [30], and taking into account the chemical
species that are usually measured in experiments, we used the five scalars, including
temperature and mass fractions of CH4, CO, OH, and CH2O as the input data of the BPNN.
Figure 8 shows the BPNN results of CRI using these five scalars. This was very consistent
with the previous clustering results shown in Figure 4. In specific, the recognition accuracy
in the HM1 was 98.64%, and the recognition accuracy in the Sandia Flame D was 98.88%. In
both cases, selecting these five dimensions as the input data for the BPNN could accurately
achieve CRI of the flame.
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Considering the very limited data available for experimental measurements, in order
to provide a simple method to determine the combustion regimes, we reduced the number
of input variables step by step to see the accuracy of the BPNN results of CRI. It was also a
test of the reliability of the BPNN method used in this CRI study and the minimum limit
of input required for identification. Of course, reducing the dimension of the input data
could also reduce the computational cost during CRI. Figure 9 shows the identification
result after removing one of the five variables used in the identification shown in Figure 8,
and Figure 10 presents quantitative indicators of identification accuracy. It was clear that,
overall, the identification of four variables here were quite reliable. Overall, all identification
accuracies were very high, remaining at a level of more than 95%. Except in the HM1, the
identification accuracy dropped to almost 80% if the temperature was absent among the
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variables, due to the existence of large high-temperature co-flow region. In the Sandia
Flame D, however, the pilot/co-flow region was small, so the absence of temperature
did not affect the identification very much. In the Sandia Flame D, the most influential
factor was the absence of fuel (i.e., CH4). Since the identified fuel region was large, the
absence of fuel reduced the identification accuracy to 90%. As for the identification of
the combustion zone, all identifications maintained a high accuracy. The F1 score and the
correlation coefficient were maintained above 70%, and most of them were above 80%.
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Furthermore, Figure 11 shows the identification result using three variables, and
Figure 12 presents quantitative indicators of identification accuracy. Note that the iden-
tification accuracy in the HM1 was reduced to 85% without temperature, and, thus, the
results without temperature input are not shown here. Again, the overall identification
was still good. Obviously, the 3-dimensional CRI results in the presence of temperature
were basically above 95%; except in the Sandia Flame D, where the absence of fuel made
the identification accuracy lower, which was 91.6%. For the identification of the combus-
tion zone, the F1 value and the correlation coefficient were both higher than 0.7 for all
tests. Especially the combinations of CH2O-OH-T and CH4-CO-T could better capture the
combustion zone.
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At last, Figure 13 shows the identification result using two variables, and Figure 14
presents quantitative indicators of identification accuracy. The overall identification was
acceptable, except for the identification based on temperature and OH profiles. In the
HM1, the combinations of CH4-T and CH2O-T yielded good overall identification accuracy,
while for the combustion zone, the combinations of CH4-CO and CH2O-OH yielded better
accuracy. In the Sandia Flame D, the combinations of CH4-T, CH4-CO and CH2O-T yielded
good overall identification accuracy, while for the combustion zone, the combinations of
CH4-CO and CH2O-T yielded better accuracy. Overall, the CH4-T combination yielded
the best identification accuracy, both for the entire flame and the combustion zone. These
two thermochemical quantities were also a group of scalars that could be relatively easily
measured in real time in experiments.
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6. Conclusions

A BPNN was trained to identify combustion regimes in two well-known turbulent
non-premixed flames. The LES data was first processed with rotated PCA, and clustering
analysis to generate a pixel-wise CRI database.

The application of rotated PCA can reduce 50-dimensional thermochemical data
(including temperature and mass fractions of 49 species) to 5-dimensional input data, while
retaining almost 95% of the information. This enables subsequent analysis to greatly reduce
computation cost. Furthermore, the clustering analyses showed that these 5-dimensional
data can be divided into 5 clusters, and, according to the thermochemical characteristics they
represent, they are distinguished as: environmental air region, co-flow region, combustion
zone, preheat zone and fuel stream. The results showed that these five regimes were well
detected by the machine learning method with an accuracy of more than 98% using 5 scalars
as input dataset.

Compared to other CRI approaches, such as the flame index method, the GFRI method
etc., the proposed method avoids using any artificially determined thresholds for identifi-
cation and does not require any scalar gradients. The computational cost of the method
is very small. However, the CRI accuracy is quite satisfactory, for instance, even using
the combined data of CH4-T. The BPNN identification can achieve an accuracy of more
than 95% for the entire flame. The method is a practical method to identify the combustion
regime for industrial applications, and a support for further analysis of the characteristics
in turbulent flames.
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