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Abstract: Minimizing the makespan is an important research topic in manufacturing engineer-
ing because it accounts for significant production expenses. In bakery manufacturing, ovens are
high-energy-consuming machines that run throughout the production time. Finding an optimal
combination of makespan and oven idle time in the decisive objective space can result in substantial
financial savings. This paper investigates the hybrid no-wait flow shop problems from bakeries.
Production scheduling problems from multiple bakery goods manufacturing lines are optimized us-
ing Pareto-based multi-objective optimization algorithms, non-dominated sorting genetic algorithm
(NSGA-II), and a random search algorithm. NSGA-II improved NSGA, leading to better convergence
and spread of the solutions in the objective space, by removing computational complexity and adding
elitism and diversity strategies. Instead of a single solution, a set of optimal solutions represents
the trade-offs between objectives, makespan and oven idle time to improve cost-effectiveness. Com-
putational results from actual instances show that the solutions from the algorithms significantly
outperform existing schedules. The NSGA-II finds a complete set of optimal solutions for the cases,
whereas the random search procedure only delivers a subset. The study shows that the application of
multi-objective optimization in bakery production scheduling can reduce oven idle time from 1.7% to
26% while minimizing the makespan by up to 12%. Furthermore, by penalizing the best makespan a
marginal amount, alternative optimal solutions minimize oven idle time by up to 61% compared to
the actual schedule. The proposed strategy can be effective for small and medium-sized bakeries to
lower production costs and reduce CO2 emissions.

Keywords: bakery manufacturing; efficiency; multi-objective optimization; NSGA-II; no-wait flow shop

1. Introduction

With the recent rapid growth of industrial automation, manufacturing processes have
increased efficiency in resource usage while minimizing economic costs. Concurrently,
carbon dioxide (CO2), a significant byproduct of many manufacturing processes, strongly
affects climate change and global warming. As a result, environmental policies, such as
carbon emission reduction, have been extensively studied, in addition to cost reduction.
The distribution and scheduling of processing tasks among energy-consuming machines
directly affect overall energy consumption and, as a result, CO2 emissions [1]. Much
attention has been paid to finding optimized schedules for a production facility with the
lowest possible makespan and energy consumption in this context.

The flow shop scheduling problem (FSSP) has been studied as one of the most effective
decision-making tools in manufacturing processes. It was shown to be a non-deterministic
polynomial-time (NP)-hard problem with a few exceptions [2]. The problem becomes more
complicated as the number of machines in the various processing phases increases [3].
However, to achieve efficient production with an optimal schedule, FSSP has been widely
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applied, irrespective of the type of manufacturing facility. In the simplified model, m
machines operate a set of n products that is characterized as a combinatorial optimization
problem in the literature. The permutation FSSP is a version of FSSP in which all the
machines process each product in the same order.

A variant of FSSP, known as no-wait FSSP, refers to an arrangement where the wait-
ing time between two consecutive processing stages of a product is unacceptable. The
production environment for many products in the food, chemical, and pharmaceutical
sectors is commonly considered a no-wait FSSP, such as bakery products. In such cases,
the start time of the first operation of a product can be scheduled independently; however,
the following stages are performed without interruption and delay. In practice, many flow
shop problems are more complicated than just enforcing the no-wait rule. As a result,
adjustments to the simplified flow shop model have been extensively studied to meet
the needs of particular manufacturing processes, such as bakery [4–8], ice cream [9] and
chemical processes [10] and pharmaceutical processes [11]. In bakeries, the processing
route of products is identical in terms of the number and order of processing tasks, which
is not the case for the permutation flow shop. As a result, the scheduling problem in bakery
manufacturing can be categorized as a hybrid no-wait FSSP. However, Hecker et al. [5]
simplified this into a permutation flow shop and increased the production efficiency of a
German bakery with 40 products by minimizing makespan by 8.6%. Huber and Stucken-
schmidt [8] only optimized the schedule for baking to serve customers in a retail store with
freshly baked goods. In their investigation of a small-scale Spanish bakery production line,
Babor et al. [4] observed that the existing production schedule is substantially inefficient. In
addition to makespan, the authors took oven idle time into account and simplified the two
objectives into a single objective using a linear weighting approach. Using this method, the
authors optimized the investigated production to a satisfactory level while minimizing the
makespan and oven idle time by 28% and 8%, respectively [4]. However, this method has
drawbacks because the weighting factors are entirely determined by personal preference,
which may result in a suboptimal solution. Additionally, the optimizer produces poor
results when attempting to solve multi-objective problems with non-convex Pareto fronts
that are unknown beforehand.

The goals of optimized manufacturing, which have been extensively studied in the lit-
erature, are the minimization of the makespan, total tardiness, and total flow times [12–17].
A variant of FSSP, known as the green flow shop scheduling, has an environmental criterion,
such as carbon emissions. Qu et al. [18] explored the trade-offs between makespan and
energy usage. Lu et al. [19] studied a permutation flow shop problem to minimize the
total energy consumption using a hybrid multi-objective algorithm. Li et al. [20] proposed
rescheduling an ongoing production using machine learning and optimization to deal with
real-time exceptions. Lu and Qiao [21] used an adaptive evolutionary algorithm to address
a hybrid flow shop scheduling problem and showed that the proposed technique effec-
tively lowers unnecessary energy usage. Similarly, numerous studies had reducing energy
consumption in manufacturing plants as an objective of scheduling optimization [22–24].

1.1. Motivation

Although many studies have been conducted on production scheduling problems,
only a few authors have contributed to bakery manufacturing [4–6,8,25,26]. According to
reports, small and medium-sized bakeries in EU countries still lack optimal production, and
bakers primarily plan production schedules based on previous experiences [4,5]. Due to the
poorly optimized production planning in small and medium-sized bakeries, large bakeries
with modern manufacturing technologies substantially dominate the market. This provides
a vast opportunity to explore production efficiency and make small and medium-sized
bakeries competitive in the market.
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1.2. Novelty

Minimizing makespan is the main focus in bakery manufacturing because it accounts
for the majority of the production costs. The baking stage consumes the largest portion
of the energy, ranging from 26% to 78% depending on the product category [27]. Saving
production costs by means of minimizing both makespan and energy waste due to oven
idle time increases the profit margin. A few studies considered the machine idle time when
aiming to optimize the production cost [5,28]. In practice, the manufacturing facility and
production infrastructure determine the constraints of the flow shop model. To the best of
our knowledge, no previous research has explained the mathematical construction of the
flow shop model for bakeries with constraints that bakers routinely follow.

1.3. Contributions

This study proposes a hybrid no-wait flow shop scheduling model (NWFSSM) for
bakery manufacturing with a detailed description of the constraints of the mathematical
model. Small and medium-sized bakeries have limitations when measuring and recording
energy consumption data for machinery. Instead, we use the idle time of the machines that
consume energy while performing no tasks. To the best of our knowledge, no previous
research has implemented multi-objective optimization to reduce makespan and oven idle
time (OIDT) in real bakery manufacturing scheduling problems. By performing the Pareto-
based multi-objective optimization algorithm NSGA-II and random search procedure, the
bakery production is optimized, resulting in a set of improved schedules. Additionally,
the opportunity to reduce total manufacturing expenditure is explored by contrasting the
trade-offs between makespan and OIDT.

2. Introduction to a Bakery Manufacturing Process

In bakeries, for most products, flour, water, yeast, and salt are mixed and kneaded
to produce dough. The yeast is employed to initiate fermentation in the dough. In this
process, in addition to aroma precursors, CO2 is produced as a desired leavening agent to
enhance the product texture and volume. Temperature and humidity significantly impact
CO2 production because they influence the yeast fermentation of sugars. Therefore, bakers
determine the duration, temperature, and humidity of the fermentation chamber where the
mixed and kneaded dough will be proved. The fermentation process is one of the most
important quality determinants, and changes in process parameters affect the end product’s
quality. As a result, it is critical to stick to the time limits set for operations, including
kneading, dough rest, and proofing [29,30]. The processing tasks follow a sequence, i.e.,
each task is a prerequisite to the following. Furthermore, permitting a task to continue for
an additional duration implies overtreatment and a delay in the next; both are undesirable
outcomes. Therefore, the next task begins without delay as soon as the previous one
finishes.

Figure 1 shows the most straightforward processing route for bakery products. The
manual transfer of unfinished items from one machine to another is called the transfer
phase. Since the duration and machine settings for a task are predetermined and cannot
be changed, we assume the energy consumption during its operation time to be constant,
regardless of the schedule’s level of optimization. However, the idle time changes based on
the schedule, as does the energy consumption owing to this idle time.

There are two types of machines and equipment in a bakery: those that require no
preparation time and those that need preparation time prior to an operation. The idle time
of machines in the first group is unimportant because energy consumption during that
phase is prevented by turning them off; this applies to most machines, such as kneaders.
However, machines in the latter group run even when they perform no task. As the
preparation time for these machines causes a delay in processing, doing so is convenient
for bakers. A baking oven is an excellent example of the group that needs time to achieve
the setpoint temperature before baking begins and is, therefore, left running throughout.
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Reducing the idle time of such machines is of interest, as it directly influences the cost of
production.
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In practice, bakers aim to keep the makespan as short as possible because, like many
other manufacturing processes, this accounts for a more significant part of the costs. It
has been demonstrated that a production schedule with the shortest makespan does not
mean that machines have the shortest idle time. Instead, many solutions produce the same
makespan, but the idle time is unevenly distributed [4,6].

3. Materials and Methods

This paper investigates six bakery manufacturing problems (BMP) from a small-scale
bakery in Denmark. Most of the bakery products in the problems are similar, with a few
differences, such as adding and removing one or more products, which distinguishes
them from each other. The computer language Python 3.7 [31] was used to implement the
NWFSSM, as well as to perform the simulation and optimization on a computer running
Windows 10 as the operating system with a configuration of an Intel Core i5 at 4 × 3.20 GHz,
8.00 GB ram.

3.1. Problem Definition and Modeling

The schematic diagram for the bakery production scheduling optimization procedure
is shown in Figure 2. Information about products, machines, and personnel work schedules
is required for bakery production scheduling optimization. For a product, the duration
of each processing task and the machines that can carry out the task are fundamental to
optimization. Furthermore, manual operations must be explicitly recorded to maintain a
continuous process flow. Since the employees are limited in number, their working plan is
necessary to allocate the task among them accordingly. Based on the collected information
and any given production sequence, a schedule is simulated using proposed NWFSSM.
To begin with, the bakery’s actual production sequence is used to determine the current
makespan and OIDT. The next stage involves running an optimization algorithm to find
optimal solutions with a minimized makespan and OIDT. NWFSSM is used to simulate the
production schedule each time the algorithm delivers a new production sequence. During
the optimization process, the calculated makespan and OIDT are employed as quality
criteria to contrast generated production sequences. The optimization is carried out until a
stopping criterion is met.
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In bakeries, many machines are often available to complete a task, such as a stone oven,
oven chamber A, and oven chamber B for baking. The duties assigned to the machines are
determined by their functionality and the product requirement. As a result, a product that
requires a baking chamber can be assigned to either oven chamber A or oven chamber B
rather than the stone oven. Sometimes the dough of more than one product is prepared and
kneaded to take advantage of the same ingredients and resource capacity. However, after
completing a few tasks, the dough separates to conduct additional treatments, which are
distinct from one another. There is no general procedure for separating dough, as it depends
on the product recipe, machine functionality, and machine capacity in the following stages.
Since the dough for the products is common, none of them can be scheduled independently
at any time. Therefore, it is convenient to organize the bakery products into different
groups (G) based on predecessor constraints.

Table 1 shows an example of production data for one group with one pre-product and
three products (P). Each product in a group has a bowl processing time, indicating how
long it must wait after the processing of the group has started. One product in a group has
no waiting time, meaning it has no predecessor and, thus, can start at any time.

Table 1. A simplified structure of data for one product group.

Group
(G)

Product
(P)

Bowl Time
(W) [min] Product Name Stage

(s) Stage Name Processing
Time [min]

Machine (M)/
Employee (E)

1

1 0 Pre-product 1 Preparation 8 Employee
2 Kneading 17 Kneader

2 25 Product A

1 Dividing 10 Divider
2 Shaping 17 Employee
3 Proofing 50 Proving chamber
4 Baking 35 Oven A

3 35 Product B 1 Dividing 7 Divider
2 Shaping 5 Employee
3 Dough rest 33 Dough rest cabinet
4 Rolling 32 Rolling machine
5 Baking 18 Oven B

4 47 Product C 1 Refining 6 Employee
2 Dough rest 12 Dough rest cabinet
3 Proofing 67 Proving chamber
4 Baking 17 Oven B
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The rest of the products in a group must wait for a certain period to initialize the
processing. This waiting time specifies the time difference between two products within a
group; however, there is no time difference between the two stages of a product. In the data
shown in Table 1, the pre-product has no predecessor. Products A, B, and C, in contrast,
can start after the pre-product with bowl process periods of 25 min, 35 min, and 47 min,
respectively. Here, the bowl process period is the sum of the duration of preparation,
kneading, and bowl resting period. Product A has no bowl resting period, as it begins right
after the kneading is completed. In contrast, product B and product C have bowl resting
periods of 10 min and 22 min, respectively. In practice, a manufacturing line has several
product groups like this, which must be produced as efficiently as possible. The efficiency
of production is determined by the order in which these groups are produced.

Figure 3 shows the schedule for a group of products using the data presented in
Table 1. The dough is prepared and kneaded together before being split into several items,
signifying that the pre-product is the predecessor for other items. Similarly, after the
dividing for product A is completed, the dividing for product B begins, indicating the
presence of a machine block. Product C has a recipe-based predecessor and starts after
shaping for product A is completed. Meanwhile, the processing of the products runs in
parallel, without waiting until the final stage is completed.
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In another scheme, despite the initial treatments being wholly separate and different,
two or more unfinished products are later merged. In practice, it is inefficient to run
an energy-consuming device when part of its capacity is unused, which wastes energy.
Therefore, bakers combine goods from various processing routes, but have similar machine
requirements to perform the following task: baking in the same oven, at the same tempera-
ture, for the same amount of time. In such instances, hybrid NWFSSM should arrange the
schedule so that the start time for the combined stage is the same. Figure 4 illustrates the
schedule of three products that are to bake together. Ideally, in the flow shop model, one
machine can perform one task of one product at a time. However, to meet the demands of
an actual situation, we consider that an oven can simultaneously perform the same task for
several products in the same group. The hybrid NWFSSM is explained in Appendix A.
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Multi-objective optimization is applied in many real-world problems when a process
must fulfill multiple criteria or objectives that conflict with one another. The advantage is
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that several optimal solutions show distinct tradeoffs between the objectives that facilitate
decision-making. Given a decision space χ, mapped into R for q objective functions
f1 : χ→ R, . . . , fq : χ→ R , a multi-objective optimization problem can be stated as

follows.

min f1(x), . . . , min fq(x); x ∈ χ and q > 1 (1)

where f1(x), . . . , fq(x) are conflicting objective functions such that satisfying one function
can result in other functions being unsatisfied.

Pareto dominance is a fundamental idea in multi-objective optimization that pre-
cisely describes objective values. The benefit of using Pareto dominance is that it elimi-
nates the need for additional information from the problem set when comparing objec-
tive vectors. To define the Pareto dominance, given two vectors in the decision space,
→
a =

{
a1, . . . , aq

}
and

→
b =

{
b1, . . . , bq

}
and

→
a is said to dominate

→
b (
→
a 4

→
b ) if and only

if
→
a d ≤

→
b d for every d ∈ {1, . . . , q} and

→
a d <

→
b d for at least one of d ∈ {1, . . . , q}. In

words,
→
a dominates

→
b , if

→
a is not worse in any objective and better in at least one objective

than
→
b [32,33].
The Pareto efficiency, also known as Pareto optimality, refers to the solutions in a

decision space, where improving one of the objectives causes at least one of the others
to deteriorate. The collection of Pareto optimal solutions expressing the best trade-offs
between the objectives are known as non-dominated solutions, forming the Pareto frontier
(PF). Figure 5 describes the concept of the Pareto frontier where solutions A, B, and C are
Pareto optimal solutions and represents PF for two objective functions, f1 and f2. Solution
D is dominated by solution B because it improves f1 while not worsening f2, and thus is not
a Pareto optimal. The Pareto dominance operator can be used to separate weak solutions
like D from the solutions in PF.
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decision-making. Given a decision space 𝜒, mapped into ℝ for 𝑞  objective functions 𝑓 : 𝜒 →  ℝ, . . . , 𝑓 : 𝜒 → ℝ, a multi-objective optimization problem can be stated as follows. 𝑚𝑖𝑛 𝑓 (𝑥), . . . , 𝑚𝑖𝑛 𝑓 (𝑥);  𝑥 ∊ 𝜒 𝑎𝑛𝑑 𝑞 > 1 (1)

where 𝑓 (𝑥), . . . ,  𝑓 (𝑥) are conflicting objective functions such that satisfying one function 
can result in other functions being unsatisfied. 

Pareto dominance is a fundamental idea in multi-objective optimization that pre-
cisely describes objective values. The benefit of using Pareto dominance is that it elimi-
nates the need for additional information from the problem set when comparing objective 
vectors. To define the Pareto dominance, given two vectors in the decision space, 𝐚 ={𝑎 , . . . , 𝑎 } and �⃗� = {𝑏 , . . . , 𝑏 } and 𝐚 is said to dominate �⃗� (𝐚 ≼ �⃗� ) if and only if 𝐚 ≤�⃗�  for every d ∊ {1, . . . , q} and 𝐚 < �⃗�  for at least one of d ∊ {1, . . . , q . In words,  𝐚  domi-
nates �⃗�, if 𝐚 is not worse in any objective and better in at least one objective than �⃗� 
[32,33]. 

The Pareto efficiency, also known as Pareto optimality, refers to the solutions in a 
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(PF). Figure 5 describes the concept of the Pareto frontier where solutions A, B, and C are 
Pareto optimal solutions and represents PF for two objective functions, 𝑓  and 𝑓 . Solu-
tion D is dominated by solution B because it improves 𝑓  while not worsening 𝑓 , and 
thus is not a Pareto optimal. The Pareto dominance operator can be used to separate weak 
solutions like D from the solutions in PF. 
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3.2. Optimization Algorithms

A product group sequence is a set of discrete numbers that expresses a solution to a
problem, such as {1, 2, . . . , N} for N groups. Each number indicates a product group, and
the order in which the numbers appear in the sequence indicates when the product’s process
begins. From a mathematical standpoint, for N product groups, there are N! potential
solutions, with each consisting of N unique integers.

In Appendix B, Algorithm A1 shows the structure of NSGA-II that finds a set of
Pareto optimal solutions [34]. Many studies have performed this algorithm as a classical
approach to solve multi-objective optimization problems [35–38]. Figure 6 illustrates the
general procedure for NSGA-II. Initially, it has a random population (POt=0) of size I
where members of the population are called individuals {1, 2, . . . , i, i + 1, . . . , I}. One
individual is a sequence of product groups. Individuals are evaluated using NSFSSM to
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find their fitness vectors, which are made up of objective values. The population is sorted
into different ranks using the fast non-dominated sorting approach, which is explained later.
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The offspring (Qt=0) of the same size I is created using crossing over and mutation
operators. A binary tournament selection routine is employed to find parents from the
current population to construct an offspring individual. In this process, four random
individuals from the current population (POt=0) are compared and the individual with
the best rank is chosen as one of the parents. The same procedure is followed to select
another parent to perform crossing-over and mutation. The combined population of size 2I
(Rt=0 = POt=0 + Qt=0) is formed. After evaluation, the population is sorted into different
ranks. The best parent individuals for POt are chosen from the combined population. Since
the combined population is double in size (2I) compared to the actual population size (I),
a screening procedure is employed. The selection criterion is the individuals’ fitness, with
the best rank taking priority.

If individuals at the best rank, such as F0, are insufficient to fill the population slot, the
nearest ranks are sequentially utilized until the population size is I. When a rank contains
more individuals than the empty slots, it is difficult to establish the precise I size of the
best population. Therefore, a crowding distance operator (Figure 7) that computes the
distance between the individuals in one front is performed. The crowding distance for
border solutions is set to infinity as an exception. The individuals are sorted in descending
order of crowding distance to choose the solutions of higher crowding distance first and
fulfill the remaining slot in the parent population POt. Figure 6 illustrates that the F2
front, which carries more individuals than the empty slot for POt, falls under the crowding
distance sorting.

The description of the non-dominated sorting operator is as follows. The population
is sorted into different ranks, Fr where r = {0, 1, 2, . . .}, based on the Pareto dominance
operator (Figure 8). In other words, the fitness of individual i is compared with that of other
individuals, i + 1, i + 2, . . . , I. There are three conceivable outcomes when comparing
two individuals; say i and i + 1: i dominates i + 1, i + 1 dominates i, or no one dominates
none. Finally, the number of other individuals that dominate individual i is recorded
as the sum of domination. The sum of domination determines the rank of i. The rank
starts from F0 and i can be a member of this rank if no other individuals dominate it (sum
of domination is 0). The rank F0 contains the individuals that provide Pareto optimal
solutions to the problem. An increase in the value of r in Fr signifies a decline in Pareto
strength. The individuals in F1 forms an independent front; however, all of them are
suboptimal compared to the individuals in rank F0 (Figure 8). Similarly, based on the
individual’s dominance level, the entire population is ordered into distinct ranks. The
larger an individual’s sum of domination, the higher the r value for its front Fr, implying a
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weaker solution to the problem. This approach is known as fast non-dominated sorting,
which divides the population into separate fronts [34].
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The crossover operator in NSGA-II creates a new production sequence (offspring) from
two separate parent sequences. Combining segments from distinct sequences allows for
product groups to be repeated and eliminated, effectively breaking the solution technique.
Figure 9 shows an example of the single-point crossover between parent solutions, X1 and
X2 (N = 7) using the proposed Algorithm A2, shown in Appendix B.

The offspring o1 is taken from the parent X1; only X1,SC1 is randomly shuffled (Figure 9a).
To form offspring o2 (Figure 9b), X1,SC1 , and X2,SC2 should be taken. However, it is clear
that {2, 3} will be repeated and {5, 6} will be removed from the offspring. Therefore, the
elements in X2,SC1 which are not present in X1,SC1 with this order, are considered to avoid
repeating the same numbers in O2.

Furthermore, we apply swap and reversion mutation operators to two randomly
selected regions to maintain a higher level of population variety (Figure 10). In swap
mutation, two numbers in one individual are randomly chosen and swapped so that they
exchange their locations. In contrast, all the numbers between two random points are
reversely ordered in reversion mutation. The parameter settings of NSGA-II are shown in
Table 2.
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Section 1 of the parent X1.
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Table 2. Parameter settings for NSGA-II.

Parameters NSGA-II

Termination criteria 100 iterations
Population size 50

Selection Binary tournament selection
Crossover Single-point crossover

Crossover rate 1
Mutations Swap and reversion mutation

Mutation rate 1
Product groups

The Pareto-based multi-objective random search algorithm (RSA) procedure is as
follows.

• Step 1. Initialize the number of iterations and evaluate a random solution using hybrid
NWFSSM. Save the fitness vector with makespan and OIDT in a repository of non-
dominated solutions. The main loop of the random search algorithm starts from the
next stage.

• Step 2. Generate a new random product group sequence and calculate its fitness using
hybrid NWFSSM.
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• Step 3. Using the Pareto dominance operator, compare the fitness of the new solution
to the repository solutions. The new solution should only be added to the repository if
none dominates it. Otherwise, discard the new solution.

• Step 4. Erase an old solution from the repository if the newly added solution domi-
nates it.

• Step 5. Repeat the procedure from Step 2 to Step 4 to complete the number of iterations.
The members of the repository are the set of Pareto optimal solutions for a given
problem.

In 20 trials, employing each of the problems separately, it was observed that the Pareto
fronts for the NSGA-II exhibited no improvement from 100 to an increase in the iteration for
up to 500 iterations. In practice, production scheduling is routinely carried out, and finding
optimized schedules within the shortest computational time is preferable. Therefore, in
this study, NSGA-II was performed with a population size of 50 for 100 iterations, while
RSA was performed with 5200 iterations to achieve approximately the same computational
time. Depending on the problems, the computational time varied from 16 min to 20 min.
The Pareto front (PF) for a problem is not initially known. Therefore, we take collective
non-dominated solutions from the algorithms and refer to them as the PF to compare the
performance of the individual algorithm.

The algorithms’ performance was assessed using Equations (2) and (3), which calculate
the closest proximity to the PF (CPF) [39] and the maximum spread of the solutions in the
front (MSF) [40], respectively. A smaller CPF value indicates that the front of an algorithm
is near the PF and thus performs better. In contrast, a higher MSF value indicates the better
performance of an optimization algorithm.

CPF =

√
∑L

l=1 D2
l

L
(2)

where L is the number of solutions in the Pareto front and Dl is the Euclidean distance
between the lth solution and its nearest solution in the front found by the Algorithm that is
under evaluation.

MSF =

1
q

q

∑
i=1

[
min

(
f max
i , Fmax

i
)
−max

(
f min
i , Fmin

i
)

Fmax
i − Fmin

i

]2
1/2

(3)

where q is the number of objectives, f max
i and f min

i are the maximum and minimum values
of the ith objective in PF, respectively, Fmax

i and Fmin
i are the maximum and minimum values

of the ith objective in the front, provided by the algorithm under evaluation.
The conversion rate (CR) from best makespan to OIDT reduction in alternative Pareto

solutions is calculated using Equation (4).

CR =

OIDT bms−OIDT aps
OIDT bms

MSP aps−MSP bms
MSP bms

(4)

where OIDT bms and MSP bms are oven idle time (OIDT) and makespan at the best
makespan solution, respectively, and OIDT aps and MSP aps are OIDT and makespan
at an alternative Pareto solution point, respectively.

4. Results and Discussion

This section presents the actual state of efficiency and optimization results obtained
from the bakery. Table 3 shows the current state of efficiency of the schedules. The
makespan and OIDT explain the similarities across the cases: the average makespan is
443 min, with a standard deviation of 13 min, while the average OIDT is 338 min, with a
standard deviation of 31 min.
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Table 3. The actual state of the efficiency of the production schedules, collected from the bakery.

Instance Number of Products Makespan [min] OIDT [min]

BMP-I 36 419 333
BMP-II 42 442 328
BMP-III 39 446 341
BMP-IV 42 439 352
BMP-V 44 450 391
BMP-VI 48 461 285

Figure 11 shows the fitness of the individuals generated in one NSGA-II runtime. The
color gradient here represents the distinct rank of individuals from 100 generations; a value
of 0 in the color bar is the best rank. The population density near the best ranks is the
lowest. The color gradient nearly shows the ideal shape for the Pareto frontier. However,
the shape of the Pareto front, and, ultimately, the rank F0, may differ in real problems.
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Figure 12 displays the Pareto solutions obtained for BMP-I. The RSA only delivered
two of the seven Pareto solutions, whereas the NSGA-II provided the entire Pareto front
with seven solutions. Despite a 69 min rise in makespan, the drop in OIDT over the front
was just 65 min. The solutions G2 from NSGA-II and R1 from RSA had the same makespan,
but R1 showed a 14% higher OIDT (>120 min), demonstrating how obtaining a solution at
a minimum makespan can contribute to energy waste. The optimal solution G1, which was
closest to the existing solution and offered a reduction in makespan and OIDT of 12% and
27%, respectively.

The RSA generated more solutions in objective space for BMP-II than the NSGA-II, but
none was optimal (Figure 13). In contrast, the NSGA-II presented all three PF-contributing
solutions. Against a range of two times larger makespan, the Pareto line produced a
difference of 46 min on the OIDT axis, indicating that the gain in OIDT across the front is
minimal. However, the existing solution was largely dominated by two solutions (G1, and
G2), with G1 being the closest, reducing makespan by 13% and OIDT by 27%.
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The actual BMP-II schedule was inefficient; compared to the closest Pareto solution
G1, it had a 12% longer makespan and a 1.7% longer OIDT. The PF revealed that, compared
to solution G1, solution G5 extends the makespan by 11 min while reducing OIDT by 52%
and minimizing the makespan by 9.6% from the actual state.

Figure 15 shows BMP-IV solutions, illustrating the shortest front with only two Pareto
alternatives within a range of 1 min makespan. The RSA failed to find any Pareto solution to
this problem. However, results from NSGA-II showed that the OIDT achieved a significant
140 min reduction over the front, meaning that a vast gain in OIDT is possible. The results
showed that, instead of a minimum makespan solution at G1, the solution with a minimum
OIDT (G2) could be a better option, since it offers a 50% reduction in OIDT by losing only
1 min of makespan. Compared to the actual schedule, the solution at G2 improved this by
9.3% and 61%, respectively, in terms of makespan and OIDT.

The BMP-III solutions showed a sharp drop in OIDT (194 min) over the front (Figure 14).
The NSGA-II provided six optimal solutions, with the RSA sharing only one.
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With a Euclidean distance of 35 min, the real solution to the problem of BMP-V was
close to the best makespan solution (G1) (Figure 16). The optimal point G1 improved
efficiency by minimizing the makespan by 7.5% and OIDT by 2%. However, within a
makespan range of 46 min, other front-end options reduced OIDT by up to 50%. Instead
of finding an optimal solution with the smallest OIDT, the RSA generated a number of
suboptimal options.

The NSGA-II presented six Pareto solutions for BMP-VI, represented in Figure 17.
Despite being suboptimal, the existing schedule was the closest to one optimal solution (G4)
with a slightly longer makespan (0.9%) and OIDT (9.8%). Compared to other production
plans, the actual schedule for this problem shows the lowest OIDT. However, the obtained
optimized solutions show that there are still alternative solutions that can improve the
production efficiency. In comparison to the actual level of efficiency, solutions G2 and G5
both exhibited a substantial reduction in makespan and OIDT, respectively. Additionally,
G2 demonstrated a considerable improvement in OIDT, while only slightly increased
compared to the best makespan for this problem.
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RSA had the highest CPF, and lowest MSF for all the instances, meaning that NSGA-II
outperformed this (Table 4). The NSGA-II had a CPF of 0 and an MSF of 1 for the problems,
which indicates that it carried all the optimal solutions in its front, while RSA found a
subset of them. For BMP-I and BMP-II, the random front was closest to NSGA-II; however,
it failed to obtain even a single optimal solution for BMP-II.

The trade-offs between the decision variables, makespan, and OIDT, as determined by
Equation (4), are shown in Table 5. To calculate the conversion rate from makespan to OIDT,
the fitness of several solution points is compared to the best makespan solution (G1). In
other words, by penalizing 1% of the best makespan, the data indicate the amount of gain
in OIDT at each optimal point. The results reveal that solution G2 for BMP-I reduced OIDT
by 5% for every percentage increase in makespan from the lowest makespan. The best
conversion rate for BMP-II, BMP-III, BMP-IV, BMP-V, and BMP-VI was 1.5, 74.6, 197.0, 6.8,
and 24.9, respectively. This demonstrates that the solution with the shortest makespan had
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a larger OIDT for the instances. However, for most cases, the gain in OIDT was substantially
more significant at the solution next to the best makespan.
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Table 4. Performance comparison of algorithms.

Instances
CPF MSF

NSGA-II RSA NSGA-II RSA

BMP-I 0 18 1 0.73
BMP-II 0 8 1 0.71
BMP-III 0 100 1 0.80
BMP-IV 0 125 1 0.47
BMP-V 0 48 1 0.72
BMP-VI 0 24 1 0.90

Table 5. Tradeoffs between makespan and OIDT; gain in OIDT [%] by losing 1% of makespan relative
to the best makespan solution (G1) obtained by NSGA-II.

Solution BMP-I BMP-II BMP-III BMP-IV BMP-V BMP-VI

G1 - - - - - -
G2 5.0 1.5 74.6 197.0 3.7 24.9
G3 1.3 0.7 14.9 - 6.8 5.4
G4 2.3 - 11.4 - 6.4 3.4
G5 2.2 - 19.5 - 6.3 3.8
G6 1.2 - 1.9 - 4.3 1.3
G7 1.4 - - - - -

The studied problems were taken from the same bakery and had only a few changes
in the range of products. However, the Pareto front and optimal solutions for them are
substantially different. As a result, the tradeoffs between makespan and OIDT were found
to be completely different from each other.
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5. Conclusions

This study investigated six hybrid flow shop schedules from bakeries to obtain the
shortest makespan and options for reducing energy waste. A hybrid flow shop model is
proposed, which simulates and evaluates a scheduling solution while considering the real
constraints. The multi-objective optimization methods, non-dominated sorting genetic
algorithm (NSGA-II), and random search procedure were performed to find efficient
production schedules.

NSGA-II found the optimal solutions with the best trade-off between makespan and
OIDT for the instances. In contrast, RSA performed the worst, delivering a partially optimal
set of solutions. The findings revealed that the investigated production schedule could be
made more efficient by reducing the makespan by up to 12%. In most cases, the OIDT was
drastically under-optimized, resulting in energy waste—a single-objective optimization
with only makespan reduction may overlook this. By taking both makespan and OIDT
into account, the optimizers can provide even more options and effective solutions for
lowering manufacturing costs and CO2 emissions. The trade-offs between objectives show
that, by raising the best makespan by 1%, the gain in OIDT can be as high as 197. As a
result, rather than focusing only on makespan reduction, a combination of makespan and
OIDT reduction expands the opportunity to lower overall production costs.

The combined efficiency of multiple production lines in the same bakery can be
evaluated using a distributed flow shop scheduling model as a reference for future inves-
tigations. The impact of exchanging a set of products between the production lines on
overall production efficiency could be an interesting research topic.
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Appendix A

This section describes the formulation of a hybrid no-wait flow shop scheduling model
(NWFSSM) for bakery manufacturing. Table A1 shows the notions that were used to explain
NWFSSM.
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Table A1. Nomenclature.

Notations

Constants

N Number of group of products
n Number of products in a group
m Number of machines
e Number of employees

Sets
G Set of product groups; G = {1, 2, . . . , N}
P Set of products in group g; P = {1, 2, . . . , n}
M Set of machines; M = {1, 2, . . . , m}
V Set of oven compartments; V ⊂ M
U Set of machines with unlimited capacity; U ⊂ M
E Set of employees; E = {1, 2, . . . , e}

Indexes
g Index of groups; g = 1, 2, . . . , N
p Index of products in group g; p = 1, 2, . . . , n
k Index of machines; k = 1, 2, . . . , m
l Index of employees; l = 1, 2, . . . , e
s Index of the processing stage
t Index of production runtime in minute.

Variables
Wg, p Time difference between product p and its predecessor in group g

PTg,p,s Processing time at stage s of product p in group g

PTg,p,k Processing time of product p in group g at machine k
STg,p,s Start time for the operation at stage s of product p in group g
CTg,p,s Completion time of stage s of product p in group g
startk The time when machine k starts its first operation
endk The time when machine k finishes its last operation
startl The time when employee l starts the work.
endl The time when employee l finishes the work.

Og, p,s,k

{
1,
0,

if the product p in group g is processed on machine k at stage s
if otherwise

Og, p,s,l

{
1,
0,

if the product p in group g is processed by employee l at stage s
if otherwise

The makespan and oven idle time (OIDT) are calculated from the hybrid NWFSSM
using Equations (A1) and (A2), respectively. In bakeries, one oven may have several
compartments, which bakers use independently for different products. The sum of the
idle time of all compartments is used to calculate OIDT. Hence, OIDT can be bigger than
the makespan.

Makespan = max
(
CTg,p,s

)
∀g ∈ G, ∀p ∈ P (A1)

OIDT = ∑m
k=1(endk − startk −∑N

g=1 ∑n
p=1 ptg,p,k ) ∀g ∈ G, ∀p ∈ P, ∀k ∈ V (A2)

The hybrid NWFSSM is described as follows.

Min (Makespan) (A3)

Min (OIDT) (A4)

which is subject to
STg,1,1 ≥ 0 ∀g ∈ G (A5)

STg,p,1 = STg,1,1 + Wg, p ∀g ∈ G, ∀p ∈ P \ {1} (A6)

PTg, p,s > 0 ∀g ∈ G, ∀p ∈ P, ∀k ∈ M (A7)
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CTg,p,s = STg,p,s + PTg,p,s ∀g ∈ G, ∀p ∈ P (A8)

STg,p,s+1 = CTg,p,s ∀g ∈ G, ∀p ∈ P (A9)

∑m
k=1 Og, p,s,k ≤ 1 ∀g ∈ G, ∀p ∈ P, ∀k ∈ M (A10)

N

∑
g=1

∑n
p=1

CTg,p,s

∑
t=STg,p,s

Og,p,s,k ≤ (CTg,p,s − STg,p,s) ∀g ∈ G, ∀p ∈ P, ∀k ∈ M \ (U ∪ V) (A11)

N

∑
g=1

∑n
p=1

CTg,p,s

∑
t=STg,p,s

Og,p,s,k ≤ n(CTg,p,s − STg,p,s) ∀g ∈ G, ∀p ∈ P, ∀k ∈ V (A12)

N

∑
g=1

∑n
p=1

CTg,p,s

∑
t=STg,p,s

Og,p,s,k ≤
N

∑
g=1

n ∀g ∈ G, ∀p ∈ P, ∀k ∈ U (A13)

startl < endl ∀l ∈ E (A14)

∑e
l=1 Og, p,s,l ≤ 1 ∀g ∈ G, ∀p ∈ P, ∀l ∈ E (A15)

N

∑
g=1

∑n
p=1

CTg,p,s

∑
t=STg,p,s

Og,p,s,l ≤ (CTg,p,s − STg,p,s) ∀g ∈ G, ∀p ∈ P, ∀l ∈ E (A16)

STg,p,s ≥ startl ∀Og,p,s,l = 1, ∀g ∈ G, ∀p ∈ P, ∀l ∈ E (A17)

CTg,p,s ≤ endl ∀Og,p,s,l = 1, ∀g ∈ G, ∀p ∈ P, ∀l ∈ E (A18)

∑m
k=1 Og, p,s,k + ∑e

l=1 Og,p,s,l ≤ 1 ∀g ∈ G, ∀p ∈ P, ∀k ∈ M, ∀l ∈ E (A19)

The objective functions, minimization of makespan, and oven idle time (OIDT) are
shown in Equations (A3) and (A4), respectively. Constraint (A5) implies that the start
time for the predecessor product of any group can be ≥ 0. Constraint (A6) describes this
for successor products in the group. Constraint (A7) ensures that the processing time for
any stage is greater than 0 min. Conditions (A8) and (A9) guarantee the no-wait state
between two consecutive product stages. Constraint (A10) indicates that an operation from
a product can occupy only one machine. Except for the ovens (k ∈ V) and the machine
with unlimited capacity (k ∈ U), any machine can only perform one task at a time, as
defined by constraint (A11). In contrast, constraint (A12) relaxes ovens for multiple items
from the same group. Constraint (A13) states that machines with unlimited capacity can
perform any number of tasks at a time. Condition (A14) ensures that the working shift of
employees is valid for task allocation. Constraints (A15) and (A16) limit the number of
employees assigned to a single task and the number of tasks assigned to a single employee
at any given time, respectively. Constraints (A17) and (A18) confine the task allocation
among employees within their working time. Condition (A19) defines the limitation to
occupying either an employee or a machine for a task. It is worth mentioning that a few
tasks in the bakery process require no machine and employee, such as dough rest.
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Appendix B

Algorithm A1. Non-dominated sorting genetic algorithm II (NSGA-II)

1: Initialize population PO0, iteration t = 0
2: Fast non-dominating sorting
3: while t ≤ total iteration do
4: Qt = ∅//Initialize offspring population
5: for all i ∈ {1, 2, . . . , I } do//create offspring until the size of Qt is I
6: Select parents (x1, x2) x1 ∈ POt and x2 ∈ POt
7: rc i

t = recombine (x1, x2 )//crossover

8: mu i
t = mutate

(
rc i

t )//mutation

9: Qt = Qt ∪mu i
t//insert new offspring in Qt

10: Rt = POt ∪ Qt//combine parent and offspring population
11: F = fast non-dominated sorting (Rt )//F = (F1 , F2, . . .) all non-dominated

fronts of Rt
12: POt+1 = ∅ and r = 0//Initializing new parent solutions and the best rank
13: while |POt+1|+ |Fr| ≤ I do//until the parent solution is filled
14: Crowding distance operator (Fr)
15: POt+1 = POt+1 ∪ Fr//insert individuals from ith non-dominated front

in POt + 1
16: r = r + 1
17: sort individuals in descending order
18: POt+1 = POt+1 ∪ Fr [1 : (I − |POt+1 |)]//add first (I − |POt+1 |) individuals of Fr
19: t = t + 1//increase the generation

Algorithm A2. Single-point crossover for product sequence

1: Select parents (x1, x2) x1 ∈ POt and x2 ∈ POt

2: b = random number between 1 and N//random crossover point
3: o1 = o2 = x1[ 1 : b] //initializing offspring o1 and o2
4: o1 = random shuffle (o1) ∪ x1[b + 1 : N]
5: x2,SC1_unique = {x : x ∈ x2[1 : b] and x /∈ o2}//ignore repeating same element
6: x2,SC2 = x2[b + 1 : N]
7: t = 1
8: for all e ∈ x2,SC2 do
9: if e /∈ o2//if the element is not in o2
10: o2 = o2 ∪ e//include the element e in o2
11: else
12: o2 = o2 ∪ x2, SC1_unique [t]//include the t-th element from x2,SC1_unique in o2

13: t = t + 1
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