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Abstract: Banana is the most cultivated fruit plant in the world. It is produced in Latin America, Asia
and Africa. India and China are the world’s largest banana producers, with almost 41% of the world’s
production. This fruit reaches a total world production of 158.3 million tons per year. However,
during their production cycle, the banana agroindustry produces large volumes of solid waste derived
from overripe fruit. It contributes between 8–20 percent of the waste (around 100 kg of banana waste
for every ton of banana produced). Therefore, the use of overripe banana waste represents a huge
opportunity for bioenergy production. This work demonstrates that banana waste can be further used
for power generation using a microbial fuel cell (MFC) coupled with anaerobic digestion (AD). First,
the maximum methane production (MMP), methane production rate (MPR) and biochemical methane
potential (BMP) were measured using an anaerobic batch bioreactor for 64 days of monitoring. Finally,
the digestate generated from AD was used in the MFC to determine the polarization curve, maximum
voltage, maximum power density (MPD), resistance and current. As a result, the AD generated an
MMP of 320.3 mL, BMP of 373.3 mLCH4/gVS and MPR of 18.6 mLCH4/Lb·day. The MFC generated
286 mV (maximum voltage), 41.3 mW/m2 (MPD), 580.99 Ω (resistance) and 0.0002867 A (current).
Both processes together produced a total bioenergy of 13.38 kJ/gVS. This coupled system showed a
suitable and promising use of banana waste for ecofriendly bioenergy generation. Therefore, this
feedstock could be taken advantage of for generating sustainable processes and developing a circular
economy in the banana agroindustry.

Keywords: banana waste; ecofriendly bioenergy; biochemical methane potential; bioelectricity;
sustainable processes

1. Introduction

The International Energy Agency [1] reports that in 2040, the total energy demand in
the world will increase by 60%, and most of this consumption will come from developing
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countries. Likewise, it is predicted that due to greenhouse gas emissions generated from
the consumption of fossil fuels [2,3], an increase in global warming between 1.4 and 5.8 ◦C
will be reached by the end of the century if measures are not taken to mitigate this problem,
all the economies and ecosystems of the world will suffer serious consequences [4,5].
These perspectives have forced humankind to generate clean energy from renewable
sources to stop relying on fossil fuels. Therefore, the use of renewable energy sources is
an effective measure that can be adopted to mitigate the growing energy demand, at the
same time as improving the current and future global outlook. Hence, the importance of
waste valorization by different biotechnological processes to allow the development of
sustainability in full correspondence with the Sustainable Development Goals [6].

In this respect, the banana is the most cultivated fruit plant and is considered the
fourth most crucial fruit plant in the world because it is a basic product for the family
basket. It is produced in Asia, Latin America and Africa, each one contributes around 51,
33 and 14%, respectively, of the total production. The world’s banana production reached
162.9 million tons per year in 2020: 119.8 million tons under the banana crop item (74%) and
43.1 million tons under the plantain crop item (26%) [7]. Conversely, it is common to see
the 119.8 million tons figure erroneously being cited as representing the global production
of bananas because it usually does not consider the plantains. Nonetheless, the banana
agroindustry generates large volumes of solid waste derived from the maintenance and
harvesting process, highlighting the pseudostems, leaves, rachis, fruit that do not meet
the required quality standards and overripe fruit. This last one contributes between 8 and
20 percent of the waste [8], which happens to make a putrescible organic solid waste
(POSW). The POSWs accumulated in sanitary landfills generate pollutants for aquifers and
soil in the place where they are discarded, representing serious environmental and public
health dangers [9]. Further, it is a resource loss if dumped directly without recovery.

On the other hand, considering that the amount of urban solid waste (USW) gen-
erated per capita in 2019 in Mexico was 0.944 kg/day, of which 46.42% corresponds to
organic waste [10], it can be estimated that a person generates a contribution of organic
waste of 159.94 kg/year. If one compares this value with the production of banana waste
(76,480 tons/year), this agroindustry in Mexico generates pollution like that produced by
478,180 people. This shows that this waste’s poor disposal and management can cause
environmental problems. However, several researchers have reported that the use of this
fruit waste represents additional sources of renewable biomass due to its high content of
organic matter, is highly biodegradable and does not compete directly with food produc-
tion. Therefore, it could be used as feedstock for the generation of bioenergy in the form of
biogas [11], biomethane [12] or bioelectricity [13] by biotechnological bioprocesses.

Anaerobic digestion (AD) and microbial fuel cells (MFC) are biotechnological bio-
processes that have turned out to be novel alternatives since they have the advantage of
coupling the treatment to produce bioenergy and/or electricity. AD has been an attractive,
inexpensive technology whose products (biomethane) have a high added value, a very
profitable and economically feasible alternative for developing countries. This technology
constitutes a viable solution to reduce the volume and concentration of organic matter in
the waste, improving its quality [14,15]. This biological degradative process is carried out
by a series of a chain of interconnected biological reactions in which the biodegradable
organic matter of a substrate is transformed into a mixture gas of methane (55–75%), CO2
(25–45%), hydrogen, hydrogen sulfide and traces of other products under a joint effort of
various microbial groups. A consortium of bacteria (i.e., hydrolytic, fermentative, obligate
hydrogen-producing, homoacetogenic and syntrophic acetate oxidizing) and methanogenic
archaea (i.e., acetoclastic and hydrogenotrophic) are involved in this process; the latter
being very sensitive to oxygen. Hence, this process is strictly anaerobic. It is a complex
multi-stage process with the presence of very different and closely dependent microbial
populations [16]. Despite potential applications of this technology, very few works related
to the use of banana overripe waste have been reported. Some researchers have reported the
use of banana stems, peduncles, peels, bulbs, leaf sheaths and leaf blades [17–25]. However,



Processes 2022, 10, 1552 3 of 17

the yields for biogas and methane production found in the literature are low, showing that
these substrates are not fully biodegraded, even after many days.

The MFC is an emerging technology that could help solve two of the most critical
problems facing today’s society: the energy crisis and pollution generated by solid waste.
MFC is a device that uses microorganisms to convert the chemical energy present in a
substrate into electrical energy; this is possible when, under certain conditions, some
microorganisms transfer the electrons produced in their metabolic activity to an electrode
(anode) instead of to a natural acceptor electron (as oxygen) [26]. This technology comprises
two cells, one anaerobic and the other aerobic, divided by a permeable proton exchange
membrane. The anaerobic cell contains the organic substrate that, when oxidized by the
action of microorganisms, generates electrons, protons and CO2. Further, an electrode is
placed in each of the cells. The anode in the anaerobic cell and the cathode in the aerobic
cell; once the electrons are released in the anodic cell, they are captured by the anode and
subsequently transferred to the cathode through an external circuit [26–28]. Simultaneously,
protons are generated in the anodic cell that migrates to the cathodic cell through the
permeable membrane, where they combine with oxygen from the air to be reduced to water
with the electrons that they capture directly from the cathode, creating a current flow [27,29].
Despite potential applications of this technology, very few works have explored the use of
banana waste, such as peel [30,31], and much fewer have explored overripe banana waste.

Both anaerobic technologies are distinguished from other power generation systems
because they operate efficiently at room temperature and even at low temperatures; they
degrade the organic matter present in the waste and can be used in the production of
bioenergy simultaneously at a minimum cost; they produce less CO2 than any other current
technology that uses fossil fuels to generate energy. The few emissions of this gas do not
require any type of treatment; therefore, the potential of these technologies is enormous.
However, the processes proposed here are very different in terms of technology readiness
level [32]. AD is a well-known process, and MFC is still in its beginning, and much more
research is necessary. Even more, both technologies are operated in a coupled fashion. In
addition, as only a few studies have examined the bioenergy potential of BW, a deeper and
more investigation is necessary. Therefore, this research aimed to valorize the overripe
banana waste-to-energy using an MFC coupled with AD.

2. Materials and Methods
2.1. Banana Waste (BW)

The banana samples were collected in the market located in Tuxtla Gutiérrez, Chiapas,
Mexico (latitude 16◦44′39′′ N and longitude 93◦06′18′′ W). Bananas in their last ripening
phase (level 7 on the Von Loesecke scale) [33] were searched for to simulate the use of
market waste about to be discarded. The banana peel and pulp were separated, then the
pulp was ground in an industrial blender at a ratio of 1:1.25 banana/water. Later, it was
stored in clear plastic bags with 20 mL of the sample at −20 ◦C until used.

2.2. Anaerobic Granular Sludge (AGS)

The AGS was collected from a stabilized UASB type digester of the wastewater
treatment plant (WWTP) from Chiapa de Corzo, Mexico (latitude 16◦39′50′′ N and latitude
93◦01′01′′ W). The average characteristics of AGS used were pH (7.2), TS (18.4 g/L), TVS
(11.2 g/L), TVS/TS ratio (0.61), organic matter (61.4%), inorganic matter (38.5%) and SMA
(0.22 gCOD/gVSS·day). Subsequently, to activate the AGS, it was fed with a synthetic
solution [34].

2.3. Anaerobic Digestion (AD) Process

The AD process was evaluated using the system shown in Figure 1. Glass batch
bioreactors (400 mL working volume) on a laboratory scale coupled with a CO2 trap were
used. These bioreactors were inoculated with AGS from WWTP and fed with BW, a positive
(synthetic solution) and negative control (distilled water) such as a substrate. The test unit
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contained 3 gCOD of the substrate (BW and positive control), 1 g TVS of AGS as inoculum,
40 mL of phosphate buffer solution, 2 mL of macronutrient solution, 1 mL of micronutrient
solution and it was made up to 400 mL with distilled water. The pH was adjusted to
7.8 with (8 M) NaOH solution [32]. Each bioreactor was incubated at mesophilic conditions
(35 ◦C) in a hot chamber over a 64-day duration. During the bioreactors’ evaluation period,
the methane production was measured with MilliGascounters (MGC) (RITTER, North
Rhine-Westphalia, Germany) daily.
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batch bioreactor, (2) safety valves, (3) glass CO2 trap, (4) RITTER MilliGascounters.

2.4. Microbial Fuel Cell (MFC)

Figure 2 shows the microbial fuel cell used in the study, which has been used as a basis
for the configuration presented by Rincon-Catalán et al. [32]. Two rectangular acrylic cells
with a volume of 220 mL and 95% operating volume were made. Nafion N-117 (Sigma-
Aldrich, Darmstadt, Germany) was used as the permeable proton exchange membrane
between both cells. In the anaerobic cell, the hexagonal-shaped graphite (KOH-I-NOOR
HARDTMUTH, České Budějovice, Czech Republic) anode was used, which was covered to
maintain the anaerobic conditions. On the other hand, in the aerobic cell, the cathode of
the same material and shape as that anode was used. Further, this cell was subjected to
aeration. For the connection of the circuit, 0.30 mm copper wire (Unitech, Medley, FL, USA)
was used.

The anode inoculation was carried out with anaerobic sludge from a natural wetland
(latitude 16◦37′5′′ N and latitude 93◦5′39′′ W). For this process, the electrode was immersed
in the anaerobic sludge for 10 days until the formation of a biofilm on the surface of the
electrodes. Later, the colonization of the biofilm with a scanning electronic microscope
(AXIO IMAGER A1, Carl Zeiss, Oberkochen, Germany) was observed. Finally, the MFC
was fed with digestate generated from the AD of BW over a 21-day duration to determine
the maximum voltage, polarization curve, power density, resistance and current according
to that reported by Rincón-Catalán [34].
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(cells connection), (9) computer for data analysis.

2.5. Analysis Methods
2.5.1. Characteristics Analysis

The characteristics of the banana waste, such as density, pH, chemical oxygen demand
(COD), total solids (TS) and total volatile solids (TVS), were analyzed according to the
Standard Methods for Examination of Water and Wastewater [35]. The percentage of mois-
ture, organic and inorganic matter content was determined according to the Association of
Official Analytical Chemists [36].

The COD was performed using the standard technique for the closed reflux, col-
orimetric analysis using a dry thermostat reactor (HACH DRB200, Ames, IA, USA) and
Spectrophotometer UV-VIS (HACH DR5000, Ames, IA, USA). For the TS and moisture
determination, 10 mL of sample were dried at 105 ◦C using a horizontal drying oven
(ECOSHEL 9023A, Texas, USA). The samples were thereafter heated to 550 ◦C for 3 h to
determine the TVS content using a muffle furnace (Felisa AR-340, Zapopan, Jalisco, Mexico).
The organic matter content was estimated using the TVS/TS ratio, and the inorganic matter
content was obtained by the difference of 100% minus the content of organic matter. The
pH was determined using a portable pH meter (HACH sensION156, Ames, IA, USA). The
density was calculated by measuring the water displacement of a 5 g of sample in a 250 mL
graduated cylinder. Finally, the result was generated by the definition of absolute density.

2.5.2. Methane Analysis

The biochemical methane potential (BMP) [16], the biodegradability index [37], max-
imum methane production (MMP) [38] and methane production rate (MPR) [34] were
determined according to the following modifications. Briefly, the BMP and percentage of
biodegradability were obtained using Equations (1) and (2), respectively. The accumulated
volume of methane was converted to standard conditions for temperature and pressure.
The accumulated methane was plotted versus time kinetics until the speed was constant.
At this last point of constant speed is where the value of BMP (mLCH4/gVS) took place.

BMP =
VCH4

OM
(1)
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where BMP (mLCH4/gVS) is the biochemical methane potential, VCH4 is the methane-
accumulated volume (mLCH4) during the experiment in standard conditions of tempera-
ture and pressure, and OM is the organic matter (gVS).

Biodegradability index (%) =
BMP

490 mLCH4/gVS
(2)

where 490 is the theoretical volume of methane per gram vs. removed at normal tempera-
ture and pressure (T = 273 ◦K; p = 1 atm).

The MMP value was obtained when the kinetics of methane production (CH4 accumu-
lated vs. time) became asymptotic, and MPR was determined using Equation (3).

MPR =
MMP
VB·t

(3)

where MPR (mLCH4/Lb·day) is the methane production rate, MMP is the maximum
methane production (mLCH4), VR is the bioreactor volume (L) and t is the time (days).

2.5.3. Bioelectricity Analysis

The voltage was determined using a MUL-600 PC-interfaced multimeter (STEREN,
Mexico City, Mexico). Voltage measurements were made at 15-min intervals for 5 days.
Subsequently, the voltage values were converted to current units using the resistance value
(1 kΩ). Later, the power of the MFC was calculated according to Equation (4).

P = I·V (4)

where P (W) is the power, I (A) is the current and V (mV) is the voltage.
Finally, the power density expressed as the power per unit area of the anode electrode

is calculated using Equation (5).

PD =
I·V
A

(5)

where PD (mW/m2) is the power density, and A (m2) is the surface area of the anode electrode.
All the analyses and experiments in this study were performed in triplicate.

2.5.4. Organic Matter Removal Efficiency and Power Generation

In both processes, the following parameters, pH, COD, TS and TVS, were determined
according to the Standard Methods for Examination of Water and Wastewater [35]. The
COD, TS and TVS removal efficiency were determined according to Equation (6) [39].

E(%) =
Cin f − Ce f f

Cin f
(6)

where E (%) is the removal efficiency, Cinf is the influent concentration and Ceff is the
effluent concentration. This equation was used to calculate the efficiency of all moni-
tored parameters.

2.6. Statistical Methods

All the data obtained were expressed as the mean ± standard deviation (SD), and the
statistical significance was determined using ANOVA (analysis of variance) followed by
Tukey’s test for multiple comparisons. The values were considered significantly different at
p < 0.05, the statistical program Graphpad Prism version 6.0. was used (GraphPad Software
Inc. La Jolla, CA, USA).
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3. Results and Discussion
3.1. Physicochemical Characterization

The results of the average characteristics of BW are listed in Table 1. The results
obtained show that this type of waste has a pH of 4.5 ± 0.1, which classifies it as acid waste.
This low value is due to the maturity stage of the banana since the pH ranges between 5.0
and 5.8 for the pulp of the green fruit and between 4.2 and 4.8 for the ripe fruit derived from
the presence of malic, citric and oxalic acid [40,41]. The moisture content of the pulp was
89.75 ± 0.2. Commonly, the range oscillates between 82 and 86%. Although the moisture
content in this waste is high, it requires more water to be added to promote hydrolysis
in AD.

Table 1. Physicochemical characterization of BW.

Parameter BW

Density (g/mL) 0.997 ± 0.09
pH 4.5 ± 0.10

COD (g/L) 147.7 ± 0.50
TS (g/L) 102.5 ± 2

TVS (g/L) 95.3 ± 3
TVS/TS ratio 0.93 ± 0.03
Moisture (%) 89.75 ± 0.2

Inorganic matter (%) 6.9 ± 2.9
Organic matter (%) 93 ± 2.9

Each value represents the mean of three replicates ± SD.

According to the TVS/TS ratio, the BW has a high content of organic matter (93 ± 2.9%)
that is suitable for an AD. A similar result was reported by Balat and Balat [42]. Conversely,
Kalia et al. [43] and González-Sánchez et al. [44] reported a lower content (11 and 19%,
respectively) of organic matter because they used waste banana stem and peel, which were
not used in this study. It also presented a COD of 147.7 ± 0.5 g/L. A similar result was
obtained by González-Sánchez et al. [44], who evaluated different agro-industrial wastes
with the potential for methane production by AD. Although the BW has a high content of
organic matter (TVS and COD), it does not indicate that it is 100% biodegradable. For this
reason, anaerobic biodegradability tests were carried out through the calculation of the
BMP to determine its value.

3.2. Anaerobic Digestion

The results of methane production from the AD of BW, positive and negative control,
are shown in Figure 3a. As can be seen, methane production was higher in the positive
control, since it is a 100% biodegradable substrate, it was easily assimilated by the mi-
crobial consortium present in the AGS; it reached an MMP of 968 ± 7.4 mL and MPR of
56.2 ± 1.12 mLCH4/Lb·day. Regarding the evaluation of the BW (Figure 3a), this showed
an exponential phase (Log phase) that was almost immediate; therefore, this waste shows
a high affinity with the inoculum. This is since waste has a high content of simple car-
bohydrates and the rest of the polymeric materials are easily hydrolyzable because of
their high state of maturity. However, even when BW is easily hydrolyzed, the MMP
and MPR were 320.3 ± 5.5 mL and 18.6 ± 0.4 mLCH4/Lb·day, respectively. The lower
value of MPR is mainly due to the substrate type, particle size and low inoculum–substrate
interaction (batch reactor without agitation) since, according to Angelidaki et al. [45], the
size and substrate type can be very important parameters in the MPR rather than for the
MMP from a given substrate, as well as the inoculum–substrate interaction. Because of
these parameters, the decomposition rate in the hydrolysis stage is generally the limiting
step of AD when solid organic matter is used as the substrate [46], causing a low value
of MPR. However, despite the above, the microorganisms managed to adapt and reach
the stationary phase on day 43. Finally, the negative control generated 8.9 ± 0.2 mL of
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methane; this low production was due to the absence of substrate and the catabolism of the
same sludge.
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Figure 3. Cumulative methane production (a) and biochemical methane potential test (b). Each
kinetics value represents the mean of three replicates ± SD.



Processes 2022, 10, 1552 9 of 17

On the other hand, once the amount of methane produced was obtained and knowing
the concentration of COD added to the batch bioreactors of the experiments, the BMP
test was determined (Figure 3b). This parameter is a respirometry test that indicates the
anaerobic biodegradability of a substrate. Further, it quantitatively determines the potential
of a substrate to be transformed into methane by the action of an anaerobic microbial
consortium, so the theoretical MMP generated can be determined by the stoichiometry
of mineralization of a mole of methane using reaction 1. Thus, the theoretical maximum
methane production will be 490 mLCH4/gVS [47].

CH4(g) + 2O2(g) → CO2(g) + 2H2O(l) ∆H = −802 kJ (Reaction 1)

As expected, the positive control generated a BMP value (480.5 ± 11.6 mLCH4/gVS)
is very close to the theoretical MMP because the substrate used was 100% biodegradable.
On the other hand, the BMP value of the BW was 373.3 ± 9.4 mLCH4/gVS. Lower BMP
values from BW were reported by several authors [18–24,48] since the banana waste (stem,
bulbs, petioles-midribs, leaf blades, leaf sheaths, rachis stems, floral stalks, peels and
peduncles) used by them had lower biodegradability, because the high lignin contents of
their BW strongly affect their digestibility, and, consequently, affect their BMP performances
compared to the pulp used in this work. BMP and biodegradability obtained from the
present study were comparable to those in the previous studies (Table 2).

Table 2. BMP and biodegradability reported by previous studies.

BW
Time BMP Biodegradability

Ref.(Days) (mLCH4/gVS) (%)

Peels 45 203-352 41.4–71.8 [11]
Stem 40 232 47.3 [18]

Leaf blades

188

98 20

[20]

Petioles-midribs 127 25.9
Leaf sheaths 141 28.7
Floral stalks 144 29.3

Bulbs 150 30.6
Rachis stems 162 33

Peels 12 251–284 51.2–57.9 [21]
Peduncles

132
162–257 33–52.4

[22]Green peels 208–303 42.4–61.8
Bulbs 228–304 46.5–62
BW n.d. 316 64.5 [23]

Peduncles 100 210–260 * 60–74.2 [24]
Peels 30 268–331 54.6–67.5 [48]
Pulp 64 373.3 ± 9.4 76.2 ± 1.6 This work

BMP (Biochemical Methane Potential), BW (Banana Waste). * (mLCH4/gCOD).

This value obtained is considered promising since it indicates that the anaerobic
biodegradability of BW was 76.2 ± 1.6% (indicates the percentage of the organic matter
present in the feedstock that can be converted to methane). The power generated in the AD
process was calculated from the BMP, where the volume value was converted to mass in
units of moles using the ideal gas equation (PV = nRT). Later, the moles were converted to
energy (kJ), considering that 1 mole of methane produces 802 kJ using Equation (1). BW
generated 13.37 kJ/gVS; this value is high compared to the theoretical power production
(17.55 kJ/gVS) and other reported results [20,22,49]. Hence, 1 kg of banana overripe waste
can generate 1568 kJ. Based on these values (BMP, biodegradability and power generation),
this waste shows great potential for energy valorization in AD.

3.3. Microbial Fuel Cell

The MFC was operated over a 21-day duration. The image generated by a scanning
electron microscope (Figure 4) shows the presence of microorganisms after the electrode
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(anode) was immersed in the anaerobic sludge for 10 days; as it is evident, the electrode
was colonized until the formation of a biofilm rich in anaerobic microorganisms (e.g., bacilli
and coccobacilli). In addition, the presence of fungal filaments was observed; the latter can
be due to traces of oxygen from the starting operations in the system.
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Figure 4. Microorganisms present in the anode biofilm from a scanning electron microscope.

As shown in Figure 5, the electricity is immediately generated in the MFC after
anode inoculation. The maximum voltage generated was 286 mV due to the metabolic
oxidation process of organic materials contained in the digestate and for the anaerobic
microorganisms present in the biofilm generated on the graphite electrode. The salinity
of the substrate improved the conductivity and, therefore, the internal resistance of the
system, which allows a higher rate of electron transfer, observing that maximum potential.
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Figure 5. Voltage generation by MFC from BW digestate-feeding.

To know the behavior of the MFC, a polarization curve was made to determine the
internal resistance of the cell. The highest point of the curve corresponds to the point where
the internal and external resistances are equal. In this way, in Figure 6 a plateau area that
encompasses four points can be observed. By superimposing this plateau on the current vs.
potential graph, an area of the second graph is obtained to calculate the equation of the line;
the slope of this equation is the internal resistance of the system, whose value is 580.99 Ω.
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In the graph (Figure 6) of current vs. power, the power and current tend to increase up
to a certain limit; after that, the power begins to decay concerning the increase in current
density, which indicates a typical behavior of microbial fuel cells [50].
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Figure 6. Polarization curve by MFC from BW digestate-feeding.

It can also be seen in Figure 6 that two regions of the three characteristic regions
in the polarization curves correspond to a rapid drop in voltage concerning low current
densities that are associated with activation overpotentials since they are energy losses in
the initiation of oxidation-reduction reactions. Then, it is observed that the voltage drops
linearly concerning the current, and it is in this region where the ohmic overpotentials are
dominant, which suggests that one has a low activation loss but a higher ohmic loss, which
means that the losses come from their electrodes rather than food and microbial activity [51].
The current and power as a function of the surface area of the exposed electrode are shown
in Figure 7. The maximum values were 41.3 mW/m2 for power density, and 0.0002867 A for
current density generated in the MFC fed with BW digestate. Table 3 shows the comparison
of MPD and maximum voltage from the present study with previous studies.
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Figure 7. Power density and current generated by MFC from BW digestate-feeding.
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Table 3. MPD, max voltage, and internal resistance reported by previous studies.

BW Max Voltage
(mV)

MPD
(mW/m2)

Internal
Resistance (Ω) Ref.

Peels 125–146 11.3–13.1 3500–4200 [32]

Peels 237.1 23.74 n.d. [33]

Peels 760 160 32 [34]

Pulp 286 41.3 580.99 This work
MPD (Maximum Power Density), n.d. (not determined).

The MPD and maximum voltage obtained in this research are greater than the average
range of peel banana waste (real substrates) [13,30] because the use of lignocellulosic
waste is more difficult to biodegrade, even the crushed carbohydrates present in the
overripe banana pulp. This research even exceeds some values obtained from molecules
such as lactate [52] and acetate [53,54]. However, it showed lower values than reported
by Abdallah et al. [32] since they evaluated two sets of four MFCs, each connected in
series. The power generated in the MFC process was calculated from the average of
watts (8.33 × 10−6 W) generated during the measurement; later it was multiplied by the
monitoring time (7035 min) in seconds to obtain the value in Joules (W·s). The result was
divided by the TVS (2.5 gVS/L) that entered the system and was multiplied by the volume
of the anode cell (0.21 L) to obtain how much power was generated from one gram of VS.
The digestate from BW in MFC generated 6.69 × 10−3 kJ/gVS. The power generation in
the MFC is mainly due to the degradation (catabolism of anaerobic microorganisms) of
organic matter by electrogenic bacteria, which, in 5 days, oxidized a percentage (8–10%) of
the organic matter contained in the digestate.

Table 4 shows the organic matter removal efficiency such as COD, TS and TVS for both
processes. This system evaluated (AD-MFC) generated a removal efficiency concerning
the COD of 85.4 ± 1.0%, TS of 43.5 ± 1.9% and TVS of 62.9 ± 1.8%. These high COD
and TVS removal efficiency are attributed to the that the BW presents a high biodegrad-
ability (76.2 ± 1.6%), which allowed the microorganisms present in the AGS of the AD
and the anaerobic sludge of the MFC to easily degrade the organic matter present. This
high COD and TVS removal efficiency is attributed to the high biodegradability presented
by the substrate used (BW). This value obtained is considered promising compared to
the biodegradability results reported by other researchers [11,18,20–24,48] because they
used other banana waste such as leaf blades, petioles-midribs, leaf sheaths, floral stalks,
bulbs, rachis stems, peels, peduncles and green peels. However, TS removal efficiency
was lower; this event is attributed to the presence of inorganic matter (salts) derived from
substrate conditioning. Therefore, it was difficult for both microbial consortia to remove
the corresponding inorganic part. Although, it has been reported that the presence of these
inorganic salts in the MFC facilitates the transfer of electrons, improves the stable output
voltage, shortens the treatment processing time and reduces the internal resistance [55].
This research is the first to report a coupled system (AD + MFC) for banana waste treat-
ment. Thus far, there have been no reports about these coupled systems for banana waste
treatment by domestic and international academic papers in professional journals.

The total power generation from both processes was 13.38 kJ/gVS. Therefore, this
waste from being used by the banana agroindustry in Mexico would allow it to generate
around 41.52 × 106 kWh/year. It is known that the average consumption of electrical
energy registered in a home (developing country) is 3000 kWh/year. It concluded that this
technology could satisfy the energy needs of 13,843 homes.
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Table 4. Organic matter removal efficiency by AD and MFC.

Parameter

AD MFC ET (%)

Influent
(g/L)

Digestate
(g/L) E1 (%) Digestate

(g/L)
Effluent

(g/L) E2 (%)

COD 3.337 ± 0.2 0.544 ± 0.05 83 ± 1.7 0.544 ± 0.05 0.485 ± 0.03 10 ± 1.7 85.4 ± 1.0
TS 27.81 ± 1.7 20.3 ± 0.8 27 ± 2.2 20.3 ± 0.8 15.7 ± 0.2 22 ± 1.7 43.5 ± 1.9

TVS 6.2 ± 0.4 2.5 ± 0.1 59 ± 1.8 2.5 ± 0.1 2.3 ± 0.07 8 ± 0.8 62.9 ± 1.8
pH * 7.8 ± 0.1 7.2 ± 0.3 - 7.2 ± 0.3 6.9 ± 0.2 - -

* Dimensionless unit. E1 is removal efficiency by AD; E2 is removal efficiency by MFC; ET is total removal
efficiency. Each value represents the mean of three replicates ± SD.

4. Conclusions

The BW has a biodegradability value of 76.2 ± 1.6% with 95.3 gVS/L; therefore, it
has great potential as a feedstock for bioenergy production in the form of biomethane and
bioelectricity if it is used as a substrate in the MFC coupled with AD. The AD generated an
MMP of 320.3 mL, MPR of 18.6 mLCH4/Lb·day and BMP of 373.3 mLCH4/gVS. Further, the
MFC generated a maximum voltage of 286 mV, a power density of 41.3 mW/m2, a resistance
of 580.99 Ω and a current of 0.0002867 A. These values showed the potential to produce
extra energy to that already produced in the AD. This coupled system showed a high
potential for COD removal (85.4 ± 1.0%) and at the same time, generated total energy up to
13.38 kJ/gVS from both treatment processes. With the use of these technologies, waste could
be taken advantage of, such as BW, for generating sustainable processes and developing a
circular economy in the banana agroindustry. Further, this study thus posits that this MFC-
AD integrated system could be useful for energy recovery and waste treatment processes
(e.g., livestock waste, municipal waste, fruit/vegetable waste, including wastewater of
different origins).

In addition, it is recommended to evaluate the feasibility of co-digestion with other
food residues (solid or liquid), implement a mixing system that allows increasing the
contact time between the inoculum and substrate, carry out a previous adaptation of the
inoculum, continuously operate both coupled systems, implement other types of electrodes
(different shapes or materials) and large scale evaluation; all this with the aim of increasing
performance in the production of bioenergy and minimizing pollution.

5. Statement of Novelty

Banana wastes (pulp, peel, etc.) are generally sent to open dumps or decompose
on the spot without being used, becoming an environmental problem. These wastes
have the potential to be treated and transformed into value-added by-products. Here it
is demonstrated that both systems can operate coupled and fed with banana waste for
methane and bioelectricity generation. At the same time, these coupled processes reduce
the environmental impact caused by the banana agroindustry, in addition to the great
potential for the valorization of banana waste as a feedstock for bioenergy production.
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Abbreviations

∆H Change in Enthalpy
% Percentage sign
A Area
AD Anaerobic digestion
AGS Anaerobic granular sludge
BMP Biochemical methane potential
BW Banana waste
Ceff Effluent concentration
Cinf Influent concentration
CH4 Methane
CO2 Carbon dioxide
COD Chemical oxygen demand
E Removal efficiency
E1 Removal efficiency by AD
E2 Removal efficiency by MFC
EDTA Ethylenediaminetetraacetic acid
EET Extracellular electron transfer
ET Total removal efficiency
g/L Grams per liter
gCOD Grams of chemical oxygen demand
gCOD/gVSS Grams of chemical oxygen demand per gram of volatile suspended solids
gTVS Grams of total volatile solids
gVSS Grams of volatile suspended solids
H2O Water
I Current
kg/year Kilogram per year
kJ Kilojoule
kJ/gCOD Kilojoule per gram of chemical oxygen demand
kWh/year Kilowatt-hour per year
Lb Liters of bioreactor (bioreactor volume)
m2 Square meter
MFC Microbial fuel cell
mL Milliliter
mLCH4/gCOD Milliliters of methane per gram of chemical oxygen demand
mm Millimeter
MMP Maximum methane production
MPR Methane production rate
mW Milliwatts
mW/m2 Milliwatts per square meter
OM Organic matter
O2 Molecular oxygen
◦C Degrees Celsius
P Power
PD Power density
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pH Potential of hydrogen
POSW Putrescible organic solid waste
SMA Specific methanogenic activity
ton Tonne
ton/year Tonne per year
TS Total solids
TVS Total volatile solids
TVS/TS ratio Total volatile solids to total solids ratio
UASB Upflow Anaerobic Sludge Blanket
USW Urban solid waste
V Voltage
VSS Volatile suspended solids
W Watts
W·s Watts per second
WWTP Wastewater treatment plant
Ω Ohm
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