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Abstract: A new class of selective antagonists of the N-Methyl-D-Aspartate (NMDA) receptor subunit
2B have been developed using molecular modeling techniques. The three-dimensional quantitative
structure–activity relationship (3D-QSAR) study, based on comparative molecular field analysis
(CoMFA) and comparative molecular similarity index analysis (CoMSIA) models, indicate that
steric, electrostatic and hydrogen bond acceptor fields have a key function in the analgesic activity
against neuropathic pain. The predictive accuracy of the developed CoMFA model (Q2 = 0.540,
R2 = 0.980, R2 pred = 0.613) and the best CoMSIA model (Q2 = 0.665, R2 = 0.916, R2 pred = 0.701) has
been successfully examined through external and internal validation. Based on ADMET in silico
properties, L1, L2 and L3 ligands are non-toxic inhibitors of 1A2, 2C19 and 2C9 cytochromes, predicted
to passively cross the blood–brain barrier (BBB) and have the highest probability to penetrate the
central nervous system (CNS). Molecular docking results indicate that the active ligands (L1, L2 and
L3) interact specifically with Phe176, Glu235, Glu236, Gln110, Asp136 and Glu178 amino acids of
the transport protein encoded as 3QEL. Therefore, they could be used as analgesic drugs for the
treatment of neuropathic pain.

Keywords: 3D-QSAR; ADMET; neuropathic pain; analgesic activity; molecular docking; NMDA

1. Introduction

Chronic pain is one of the most frequent reasons for medical consultations [1], and can
be considered as a critical cause of morbidity and disability [2]. For this reason, a variety
of analgesics have been designed to treat chronic pain, such as opioids, antidepressants,
anticonvulsants, and nonsteroidal anti-inflammatory drugs (NSAIDs) [3]. However, opioid
analgesic (OA) treatment of chronic pain remains controversial, its efficacy is unclear, and
it has been associated with undesirable secondary effects [4], similar to those of morphine,
such as constipation, nausea, vomiting, pruritus, drowsiness, cognitive impairment, res-
piratory depression, tolerance, physical dependence and addiction [3,5]. Consequently,
the search for new potent non-opioid analgesics (NOA), more effective on the central
nervous system (CNS), is an absolute priority [3] because they are highly desired in med-
ical practice [6]. In this regard, the pain control is a world health problem, indicating an
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ever-increasing need for the discovery of new molecules with better analgesic activity and
reduced secondary effects [7]. For this purpose, novel isoxazole, piperidine linker moieties,
and phenylpiperazine derivatives, illustrated in Figure 1, show potential as analgesic drugs,
and have been introduced to treat these types of acute and chronic diseases, reacting similar
to selective antagonists of the N-Methyl-D-Aspartate (NMDA) receptor subunit 2B that
inhibit the binding of [3H]-ifenprodil to brain membranes and do not cause side effects
associated with non-selective N-Methyl-D-Aspartate receptor antagonists [8]. NMDA re-
ceptors are ligand-gated cationic channels expressed in brain tissue and naturally activated
by the simultaneous action of glutamate and glycine [9]; in addition, they are required for
both brain development and many higher order functions [10]. At the same time, they
can cause the death of neurons as a result of receptor hyperactivation [9]. Consequently,
NMDA receptors are considered as high profile therapeutic targets in the treatment of
pain and neurodegenerative diseases such as Alzheimer’s, Huntington’s and Parkinson’s
disease [11]. The present study is conducted using three-dimensional quantitative structure
activity relationships (3D-QSARs) a commonly used technology to discover new drugs,
identifying high affinity ligands for a targeted protein [12,13]. The robustness, predictability
and reliability of the established CoMFA and CoMSIA models have been examined with
the help of a cross validation technique for the training set (26 molecules), and external
validation for the test set (6 molecules), as a crucial and decisive step to judge the prediction
accuracy of the constructed model for a novel database [14,15]. During the second part, we
predicted ADMET in silico properties [16] of 32 molecules compared to a co-crystallized
ligand (ifenprodil) as an anti-hypertensive agent, with neuroprotective activity through
its effects on N-Methyl-D-Aspartate (NMDA) receptors [17], based on the BOILED-Egg
predictive model and Lipinski, Ghose, Muegge, Veber and Egan rules. Lastly, the pre-
dicted inhibitors (L1, L2 and L3) were chosen for molecular docking simulations to study
their intermolecular interactions towards the active sites of the protein target encoded as
3QEL [18], and this approach has been validated using docking validation protocol [19].
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included 26 compounds that were used to build the model, and the second one (test set) 
included 6 compounds to validate the established model, as marked in Table 1. 
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(12, 15–32) derivatives.

2. Materials and Methods
2.1. Experimental Database

To establish the 3D-QSAR models, we selected a set of 32 compounds from the recently
published work of Anan, K et al., including NR2B-selective antagonists that inhibit the
binding of [3H]-ifenprodil to rat brain membranes [8], as summarized in Figure 1. Then, we
randomly divided this complete set into two subsets: the first one (training set) included
26 compounds that were used to build the model, and the second one (test set) included
6 compounds to validate the established model, as marked in Table 1.
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Table 1. The studied compounds and their observed activities of pIC50 order.

Compounds R1 R2 R3 R4 X Y pIC50 (bind)

1
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H H H CH CH2 7.1
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H H H N None 6

16 *
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Table 1. Cont.

Compounds R1 R2 R3 R4 X Y pIC50 (bind)
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* indicates test set molecules.

2.2. Optimisation and Alignment

With the assistance of SYBYL-X 2.0 software (Tripos, Inc., St. Louis, MO, United States
of America USA), we first constructed the thirty-two molecules, which were optimized
using the Tripos force fields and Gasteiger–Huckel atomic partial charges. Then, the conver-
gence parameter of the Powell gradient algorithm was specified to be 0.001 kcal/(mol.A),
with a maximum of 10,000 iterations to guarantee the conformational stability for each
molecular system by making the energies in Kcal/mol completely minimized [20–22]. In
the second stage, we aligned the set of molecules as one of the most significant steps to
ensure the robustness of the CoMFA and CoMSIA models [23,24].

2.3. Development of 3D-QSAR Models

3D-QSAR models were generated via CoMFA and CoMSIA studies, using the partial
least squares (PLS) analysis [25,26], where the steric and electrostatic fields of the CoMFA
model were produced with a default energy cutoff of 30 kcal/mol. The attenuation factor
and column filtering were defined as default values of 0.3 and 2.0 kcal/mol, respectively.
Moreover, many additional physico-chemical descriptors, such as the hydrogen bond
acceptor (HBA), hydrogen bond donor (HBD) and hydrophobic fields, were additionally
calculated for the CoMSIA model in the identical conditions. A total of sixteen various
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combinations of fields were considered to develop the best CoMSIA model, as shown in
Table 2.

Table 2. The statistical results of CoMFA and CoMSIA models in various molecular field combinations
using partial least squares analysis.

Q2 R2 SEE F ONC R2pr
Fractions

Steric Electrostatic Hydrophobic Donor Acceptor

CoMFA 0.540 0.980 0.110 124.198 7 0.613 0.857 0.143 - - -
CoMSIA/SEA 0.667 0.903 0.228 37.421 5 0.420 0.304 0.524 - - 0.172
CoMSIA/SEH 0.592 0.821 0.296 33.700 3 0.110 0.141 0.221 0.638 - -
CoMSIA/SED 0.704 0.908 0.218 51.754 4 0.465 0.399 0.601 - 0 -
CoMSIA/SHD 0.537 0.755 0.347 22.618 3 0.131 0.204 - 0.796 0 -
CoMSIA/SHA 0.568 0.763 0.341 23.641 3 0.015 0.161 - 0.678 - 0.161
CoMSIA/SDA 0.320 0.564 0.462 9.505 3 0.522 0.5 - - 0 0.5
CoMSIA/EHA 0.617 0.817 0.300 32.718 3 0.018 - 0.209 0.634 - 0.157
CoMSIA/EHD 0.579 0.756 0.338 35.624 2 0.010 - 0.211 0.789 0 -
CoMSIA/EDA 0.665 0.916 0.238 19.365 9 0.701 - 0.627 - 0 0.373
CoMSIA/HDA 0.546 0.762 0.342 23.449 3 0.025 - - 0.801 0 0.199

CoMSIA/EHDA 0.617 0.817 0.300 32.718 3 0.018 - 0.209 0.634 0 0.157
CoMSIA/SHDA 0.568 0.763 0.341 23.641 3 0.015 0.161 - 0.678 0 0.161
CoMSIA/SEDA 0.667 0.903 0.228 37.421 5 0.420 0.304 0.524 - 0 0.172
CoMSIA/SEHA 0.620 0.808 0.307 30.844 3 0.007 0.122 0.172 0.568 - 0.138
CoMSIA/SEHD 0.592 0.821 0.296 33.700 3 0.110 0.141 0.221 0.638 0 -
CoMSIA/SEHDA 0.620 0.808 0.307 30.844 3 0.007 0.122 0.172 0.568 0 0.138

Abbreviations: Q2: the cross-validation determination coefficient, R2: the non-cross-validation determination
coefficient, SEE: the standard estimation error, F: the Fischer test value, ONC: the optimum number of components,
and R2 pr: the external validation determination coefficient.

2.4. Partial Least Squares (PLS) Analysis

To model the linear relationship between a set of structural predictors and the response
variable (analgesic activity of pIC50 order) with a good quality of adjustment and a good
predictive power [27,28], we have applied the partial least squares regression (PLSR)
technology, with the help of SYBYL-X 2.0 software. The cross-validated determination
coefficient (Q2) for an optimum number of principal components (ONC) was calculated
using the leave-one-out (LOO) procedure, and the non-cross-validated determination
coefficient (R2), F-test value and the standard estimation error (SEE) were calculated using
the non-cross validation procedure. Where the best 3D-QSAR model was based on the
optimum values of Q2, R2 must be greater than 0.5 and 0.6 [29,30] for the optimum number
of components (ONC) and lowest standard error of estimation (SEE), respectively. To
examine the reliability of the generated model, which was developed on 26 molecules
(training set), we performed the external validation technique, using the ‘predict’ function
included in the SYBYL package. Then, based on the previously developed model which
was saved in sln format, we predicted the analgesic activities of pIC50 order for 6 novel
molecules (test set), as illustrated in Table 3. The required condition: R2 ext > 0.6 was
verified afterwards using Excelstat software [31].

Table 3. The results of external validation corresponding to CoMFA and CoMSIA/EDA models.

Compounds
Number Observed pIC50

Predicted pIC50 of
CoMFA

Predicted pIC50 of
CoMSIA/EDA

9 * 6 8.2 6.7
12 * 7.8 9.6 7.3
16 * 6.9 9.7 7.4
17 * 7.6 10.0 7.4
24 * 7.8 10.2 7.4
29 * 7.3 10.6 7.5

* Indicates the test set molecules.
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2.5. ADMET In Silico Pharmacocinetics

To identify the new drug with a high success level and reduced experimental study du-
ration, it is mandatory to examine the absorption, distribution, metabolism, excretion and
toxicity (ADMET) of these substances in the human organism before beginning the inves-
tigative process. [32,33], satisfying a few basic rules including Lipinski’s [34], Veber’s [35],
Ghose’s [36], Egan’s [37,38] and Muegge’s [39] regulations. This technology is equally
applicable to remove the substances with potentially unfavorable physiological features,
considering the pharmacokinetic qualities and toxicity [40]. For this purpose, we evaluated
pharmacokinetic in silico characteristics of novel tested compounds as analgesic drugs
against neuropathic pain, through the use of SwissADMET [41] and pkCSM [42] online
servers, respectively.

2.6. Molecular Docking Modeling

Molecular docking is often used in computational chemistry to accelerate drug dis-
covery at early stages. For this project, the molecular modeling technique was based on
the cell key phenomenon, where the best position of the ligand or drug candidate (the
agent) is the key that can open the cell (or protein) to finally have a more stable complex
by energetic order [43]. We started this study by extracting the protein responsible for
the GluN2B subunit [44], coded as 3QEL.pdb from the protein data bank file [17], discov-
ered by the X-ray diffraction method, in machine simulation with a resolution equal to
2.60 Å [45]. Then, we performed the dissolvation, removing all the water molecules bound
to the protein; then we deleted the sodium atom and the suspended ligands, while adding
the polar hydrogens using the discovery studio software, for the reason that the cavity
method works best [46]. After the preparation of the protein and quoting its active sites, we
launched the docking calculation in AutoDock 4.2 software [47]. With the help of algorithm
AUTOGRID, we were able to centralize the grid box, putting the sizes 100, 100, and 100
in its three-dimensional structure with a spacing of 0.375 Å, and executing ten genetic
algorithms, for a sum of 2,500,000 evals. Finally, we obtained the strongest complex out
of the fifty obtained conformations [48], and we visualized 3D and 2D interactions of the
protein–ligand with the use of discovery studio 2021 [49].

3. Results and Discussion
3.1. Molecular Alignement

To ensure the reliability and accuracy of CoMFA and CoMSIA models, the three-
dimensional molecular structures of test and training sets were completely minimized
and then aligned on the most active compound (molecule 22), which was selected as the
template. N,N-diethylacetamide is the common core resulting from the superposition of
the molecules on the template, as displayed in the Figure 2.
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3.2. 3D-QSAR Analysis

The present 3D-QSAR study was performed using comparative molecular field analy-
sis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) as two classical
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methods used to investigate the quantitative correlations between 3D molecular descriptors
and inhibitory activity [50]. The statistical results presented in Table 2 indicate that the
CoMFA model obtained for an optimum number of principal components (ONC = 7) using
the partial least squares analysis is given by an excellent non-cross-validated determination
coefficient R2 = 0.98 (much higher than 0.6), a good cross-validated determination coeffi-
cient Q2 cv of 0.540, a high predictive value for the external validation of test set R2 pred of
0.613, with a minimal standard estimation error SEE of 0.110 and F-test value of 124.198.
According to the Golbraikh and Tropsha study, the established model is efficient and robust,
because it has been successfully validated using the external validation performed for the
test set (R2 pred superior than 0.6), and the internal validation performed for the training
test with the help of cross-validation technique (Q2 cv superior than 0.5) [30]. Therefore, the
CoMFA analysis indicates that the biological activity of the pIC50 order is affected by steric
and electrostatic fields with a contribution rate of 85.7% and 14.3%, respectively. More-
over, we developed 16 various models from the comparative molecular similarity index
analysis (CoMSIA), which included five three-dimensional descriptors, such as steric (S),
electrostatic (E), hydrogen bond acceptor (HBA or A), hydrogen bond donor (HBD or D)
and hydrophobic (H) fields; however, only the CoMSIA/EDA model was validated using
internal and external validation. This mathematical model was produced for an optimum
number of components (ONC = 9) using the partial least squares analysis, and given by a
very good non-cross-validated determination coefficient R2 = 0.916 (much higher than 0.6),
a good cross-validated determination coefficient Q2 cv of 0.665, and a high predictive value
for the external validation of test set R2 pred of 0.701, with a minimal standard estimation
error SEE of 0.238 and an F-test value of 19.365. Although the Golbraikh and Tropsha
statistical criteria were verified, the non-cross-validated determination coefficient (R2), the
cross-validated determination coefficient (Q2 cv) and the external validation of test set
(R2 pred) were greater than 0.6, 0.5 and 0.6 respectively; as such, the CoMSIA/EDA model
was successfully validated, indicating that electrostatic and hydrogen bond acceptor fields
have a key function in the analgesic activity against chronic pain, with a contribution rate
of 62.7% and 37.3%, respectively.

3.3. A Graphical Explanation of CoMSIA/EDA and CoMFA Models

The structural features influencing the development of biological activity were visu-
alized using the contour maps of the 3D-QSAR models [51], as shown in Figure 3, where
the compound 22 structure was chosen as a reference. The green contours displayed
in Figure 3A, contributing 80%, indicate the regions where bulky clusters can enhance
the biological activity, while the yellow contours, contributing 20%, indicate the regions
where bulky clusters decrease the activity. Moreover, 80% of favorable contribution of
the electrostatic field is expressed by the blue contours, and 20% of unfavorable contri-
bution of the electrostatic field is represented by the red contours, as illustrated in the
Figure 3B. In addition, the magenta-colored contour maps with 80% contribution indicate
the hydrogen bond acceptor field that reinforces the activity, while the red contours of 20%
contribution indicate the disadvantaged region, as shown in Figure 3C. We have noted
the absence of the hydrogen bond donor (HBD) field, as shown in Figure 3D, since the
results presented in Table 2 confirm no impact of HBD in the COMSIA models; therefore,
steric (A), electrostatic (B) and hydrogen bond acceptor (C) fields are the main factors
that influenced the biological activity. Additionally, we observed a green contour in meta
and para positions, especially for the isoxazole derivatives, indicating that the selection
of the voluminous substitution group in this area is necessary to make the ligand more
active. Moreover, we detected a blue contour in the same disubstituted aromatic cycle in
the meta and para positions, which makes the molecule most active. We also discovered,
in the reverse part of the template molecule, a very important magenta contour in the
[Oxazol-2(3H)-one] group, explaining the high activity of the inhibitor.
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3.4. ADMET In Silico Pharmacocinetics

Based on ifenprodil as an anti-hypertensive agent, with neuroprotective activity
through its effects on N-Methyl-D-Aspartate (NMDA) receptors [17], we have tested
the thirty-two molecules using BOILED-Egg as an accurate and reliable predictive model.
This model is strongly applicable in the context of medicinal chemistry and drug discovery,
focused on the evolution of lipophilicity, defined by the logarithm of the partition coefficient
between n-octanol and water solvents (LogP O/W) in the Y-axis, as a function of polarity,
given by the topological polar surface area (TPSA) in the X-axis [52]. Figure 4 presents
only the L1, L2 and L3 ligands that are part of the yellow Egan Egg, due to the fact that
they have a TPSA inferior to 80 Å2; as such, they are the inhibitors with the greatest ability
to cross the blood–brain barrier (BBB). In contrast, the other 29 molecules, which are part
of the white egg zone, are most likely to be absorbed from the gastrointestinal tract [53].
Consequently L1, L2 and L3 inhibitors, as well as ifenprodil as a co-crystallized ligand,
were further examined using adsorption, distribution, metabolism, excretion and toxicity
(ADMET) pharmacokinetic parameters on the basis of Lipinski, Veber, Egan, Muegge and
Ghose rules [33,54]. Compared to ifenprodil, the results successively presented in the
Tables 4 and 5 clearly illustrate that the three inhibitors respect the Lipinski thresholds,
and satisfy the favorable violation numbers of Veber, Egan, Muegge and Ghose without
exception. Moreover, they have efficient absorption at the level of human intestine (IAH
over 89%), and a significant distribution, due to the fact that their volumes of distribution
in humans are intended to be superior to −0.44 Log L/kg. At the blood–brain barrier (BBB),
their permeabilities are significantly higher than −1 Log BB, except for the ligand L3. At
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the level of the central nervous system (CNS), they have permeabilities outside the (−2 to
−3 Log PS) range, so they all access the central nervous system (CNS). In addition, they are
all predicted to be inhibitors of the 1A2, 2C19 and 2C9 cytochromes; however, ifenprodil
has been predicted to be an inhibitor of 1A2 and 2D6 cytochromes. Consequently, L1, L2
and L3 ligands are engineered as non-poisonous operators for the central nervous system
(CNS), because of their high potential to cross the blood–brain barrier (BBB).
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Table 4. Physicochemical parameters prediction of ifenprodil, L1, L2 and L3 ligands on the basis of
Lipinski, Veber, Egan, Muegge and Ghose regulations.

Physical and Chemical Properties
Lipinski

Viola-
tions

Veber
Viola-
tions

Egan
Viola-
tions

Ghose
Viola-
tions

Muegge
Viola-
tions

Ligands
number

Molecular
weight
(g/mol)

Molar re-
fractive
index

Rotatable
bonds

Number

Log P (Oc-
tanol/Water)

Hydrogen
bond ac-
ceptors

H-bond
donors

Number

Threshold ≤500 40 ≤ MR
≤ 130 <10 <5 ≤10 <5 Yes/No Yes/No Yes/No Yes/No Yes/No

L1 336.39 97.50 5 2.26 4 1 Yes Yes Yes Yes Yes
L2 354.38 97.46 5 2.41 5 1 Yes Yes Yes Yes Yes
L3 370.83 102.51 5 2.53 4 1 Yes Yes Yes Yes Yes

Ifenprodil 323.43 101.49 5 3.47 3 1 Yes Yes Yes Yes Yes

Table 5. ADMET properties prediction of ifenprodil, L1, L2 and L3 ligands.

Absorption Distribution Metabolism Excretion Toxicity

Ligands
number

Intestinal
Absorption

(human)
VDss (human) BBB per-

meability
CNS per-
meability

Substrate Inhibitor
Total Clearance AMES

toxicityCYP

2D6 3A4 1A2 2C19 2C9 2D6 3A4

Numeric
(% Absorbed)

Numeric (Log
L/kg)

Numeric
(Log BB)

Numeric
(Log PS) Categorical (Yes/No) Numeric (Log

mL/min/kg)
Categorical
(Yes/No)

L1 94.525 0.191 −0.965 −2.361 Yes Yes Yes Yes Yes No Yes 0.264 Not toxic
L2 89.981 0.346 −0.176 −2.53 No Yes Yes Yes Yes No No 0.197 Not toxic
L3 89.079 0.475 −1.138 −2.376 No Yes Yes Yes Yes No No 0.156 Not toxic

Ifenprodil 92.417 1.23 0.046 −1.079 Yes Yes Yes No No Yes No 0.993 Not toxic
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3.5. Molecular Docking

The results of molecular docking were concentrated on the transport protein of
3QEL.pdb connected to ifenprodil as a novel N-Methyl-D-Aspartate (NMDA) receptor
antagonist that selectively inhibits receptors, including the NR2B subunit [55]. The crystal
structure of this receptor was extracted from the protein data base (PDB) through the use
of the X-ray diffraction process at a reasonable resolution equal to 2.6 Å [17,56]. Thus,
the results of the intermolecular interactions established between L1, L2 and L3 ligands
and the 3QEL encoded protein were compared to experimentally produced intermolecular
interactions among the targeted protein and co-crystallized ligand (ifenprodil) thanks to
the ProteinsPlus online server [57], which revealed that Phe176, Glu236 and Gln110 amino
acids are the active locations of the targeted protein in its D-chain, as pictured in Figure 5.
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3.6. Docking Validation Protocol

To validate the accuracy of the docking technique, we tested the efficiency of its
algorithms, predicting the conformation of the ifenprodil as a co-crystallized ligand by
means of the re-docking process, which is mainly based on the overlay of the docked ligand
on the ligand attached to the protein in its D chain, as illustrated in Figure 6. Here, 3D (a)
and 2D (b) visualizations of chemical interactions established between the docked ifenprodil
(binding energy of −5.45 kcal/mol) and the responsible protein prove that Phe176, Glu236
and Gln110 amino acids are similar to those experimentally produced for co-crystallized
ifenprodil. Additionally, the superposition result illustrated in Figure 6c reveals a root
mean square deviation (RMSD) of 0.395 Å, smaller than 2, which provides an accurate pose
prediction. Therefore, the molecular docking protocol is successfully validated [19].
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3.7. Molecular Docking Modeling for L1, L2 and L3 Ligands

Although the docking protocol was successfully validated, we docked L1, L2 and L3
inhibitors penetrating the blood–brain barrier (BBB) in the same active sites of the protein
encoded as 3QEL, and we arrived at the molecular docking results presented in Figure 7.
Firstly, the ligand L1 forms two hydrogen bonds, established between Asp136 and Glu178
amino acids and nitrogen atoms of the pyrazole group, with a nuclear distance of 4.69 Å and
4.08 Å, respectively. Moreover, it forms with the same group a chemical bond of amide-pi
stacked-type with Phe176 amino acid at a distance of 7.22 Å, in addition to a pi-anion
chemical bond with Glu236 amino acid at a nuclear distance of 6.46 Å. Secondly, the ligand
L2 forms a hydrogen bond established between the oxygen atom of the acetamide cluster
and the Gln110 amino acid, at a nuclear distance of 5.29 Å, as well as a pi-sigma chemical
bond with Glu235 amino acid at a distance of 4.92 Å, in addition to a pi-anion chemical
bond with Glu236 amino acid at a distance of 6.76 Å, and carbon hydrogen bond linked
to the Phe176 amino acid. Thirdly, the ligand L3 forms only two chemical bonds: the first
one is a pi-sigma chemical bond created with Glu235 amino acid at a distance of 4.40 Å,
and the second one is a pi-anion chemical bond established with Glu236 amino acid, with
a nuclear distance of 5.59 Å. Consequently, the results of molecular docking prove that
L1, L2 and L3 ligands share a pi-anion chemical bond as a common molecular interaction
with Glu236 amino acid. L2 and L3 ligands form a common pi-sigma chemical bond with
the Glu235 amino acid. Moreover, both L1 and L2 ligands react with the Phe176 amino
acid. As such, compared to the active sites of ifenprodil as a co-crystallized ligand, we
conclude that Glu236, Glu235, Gln110, Phe176, Asp136 and Glu178 amino acids are the
active sites in which L1, L2 and L3 ligands can inhibit the NMDA receptor subunit 2B,
providing analgesic activity against neuropathic pain.
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tion demonstrated a desirable profile of L1, L2 and L3 ligands, which were predicted as 
non-toxic inhibitors for 1A2, 2C19 and 2C9 cytochromes, respecting Lipinski, Veber, Egan, 
Ghose and Muegge rules, with a high level of absorption that exceeds 89%, and the highest 
chance of crossing over into the central nervous system (CNS). Finally, the obtained re-
sults were further qualified and reinforced using molecular docking simulation, which 
affirmed that L1, L2 and L3 isoxazoles react specifically with Phe176, Glu235, Glu236, 
Gln110, Asp136 and Glu178 amino acids of the transport protein encoded as 3QEL. Con-
sequently, they can be applied as therapeutics in the field of medicine to prevent neuro-
pathic diseases. Nevertheless, they need to be exposed to in vitro and in vivo investiga-
tions to assess their safety and effectiveness as analgesic medication. 
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Figure 7. 3D (left) and 2D (right) visualization of intermolecular interactions between L1, L2 and L3
ligands and the transport protein encoded as 3QEL, corresponding to the following binding energies
in kcal/mol: −6.45, −5.57 and −6.32, respectively.
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4. Conclusions

A systematic in silico study was conducted on a set of thirty-two selective antagonists
of N-Methyl-D-Aspartate receptor subunit 2B to identify successful analgesic medications
to treat neuropathic pain. Firstly, CoMFA and CoMSIA/EDA models were developed
using the 3D-QSAR technique, and were evaluated using internal and external validation,
indicating a significant effect of steric, electrostatic and hydrogen bond acceptor fields on the
analgesic activity, which is explained through the presence of the [Oxazol-2(3H)-one] group
and the halogen-like atomic groups in the meta and para positions of the aromatic cycle
of the isoxazole derivatives. Afterwards, in silico ADMET pharmacokinetics prediction
demonstrated a desirable profile of L1, L2 and L3 ligands, which were predicted as non-
toxic inhibitors for 1A2, 2C19 and 2C9 cytochromes, respecting Lipinski, Veber, Egan, Ghose
and Muegge rules, with a high level of absorption that exceeds 89%, and the highest chance
of crossing over into the central nervous system (CNS). Finally, the obtained results were
further qualified and reinforced using molecular docking simulation, which affirmed that
L1, L2 and L3 isoxazoles react specifically with Phe176, Glu235, Glu236, Gln110, Asp136
and Glu178 amino acids of the transport protein encoded as 3QEL. Consequently, they
can be applied as therapeutics in the field of medicine to prevent neuropathic diseases.
Nevertheless, they need to be exposed to in vitro and in vivo investigations to assess their
safety and effectiveness as analgesic medication.
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